zero123-live / taming-transformers /scripts /sample_conditional.py
turn-the-cam-anonymous's picture
adding CLIP taming
1ed7deb
raw
history blame
12.5 kB
import argparse, os, sys, glob, math, time
import torch
import numpy as np
from omegaconf import OmegaConf
import streamlit as st
from streamlit import caching
from PIL import Image
from main import instantiate_from_config, DataModuleFromConfig
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
rescale = lambda x: (x + 1.) / 2.
def bchw_to_st(x):
return rescale(x.detach().cpu().numpy().transpose(0,2,3,1))
def save_img(xstart, fname):
I = (xstart.clip(0,1)[0]*255).astype(np.uint8)
Image.fromarray(I).save(fname)
def get_interactive_image(resize=False):
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"])
if image is not None:
image = Image.open(image)
if not image.mode == "RGB":
image = image.convert("RGB")
image = np.array(image).astype(np.uint8)
print("upload image shape: {}".format(image.shape))
img = Image.fromarray(image)
if resize:
img = img.resize((256, 256))
image = np.array(img)
return image
def single_image_to_torch(x, permute=True):
assert x is not None, "Please provide an image through the upload function"
x = np.array(x)
x = torch.FloatTensor(x/255.*2. - 1.)[None,...]
if permute:
x = x.permute(0, 3, 1, 2)
return x
def pad_to_M(x, M):
hp = math.ceil(x.shape[2]/M)*M-x.shape[2]
wp = math.ceil(x.shape[3]/M)*M-x.shape[3]
x = torch.nn.functional.pad(x, (0,wp,0,hp,0,0,0,0))
return x
@torch.no_grad()
def run_conditional(model, dsets):
if len(dsets.datasets) > 1:
split = st.sidebar.radio("Split", sorted(dsets.datasets.keys()))
dset = dsets.datasets[split]
else:
dset = next(iter(dsets.datasets.values()))
batch_size = 1
start_index = st.sidebar.number_input("Example Index (Size: {})".format(len(dset)), value=0,
min_value=0,
max_value=len(dset)-batch_size)
indices = list(range(start_index, start_index+batch_size))
example = default_collate([dset[i] for i in indices])
x = model.get_input("image", example).to(model.device)
cond_key = model.cond_stage_key
c = model.get_input(cond_key, example).to(model.device)
scale_factor = st.sidebar.slider("Scale Factor", min_value=0.5, max_value=4.0, step=0.25, value=1.00)
if scale_factor != 1.0:
x = torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="bicubic")
c = torch.nn.functional.interpolate(c, scale_factor=scale_factor, mode="bicubic")
quant_z, z_indices = model.encode_to_z(x)
quant_c, c_indices = model.encode_to_c(c)
cshape = quant_z.shape
xrec = model.first_stage_model.decode(quant_z)
st.write("image: {}".format(x.shape))
st.image(bchw_to_st(x), clamp=True, output_format="PNG")
st.write("image reconstruction: {}".format(xrec.shape))
st.image(bchw_to_st(xrec), clamp=True, output_format="PNG")
if cond_key == "segmentation":
# get image from segmentation mask
num_classes = c.shape[1]
c = torch.argmax(c, dim=1, keepdim=True)
c = torch.nn.functional.one_hot(c, num_classes=num_classes)
c = c.squeeze(1).permute(0, 3, 1, 2).float()
c = model.cond_stage_model.to_rgb(c)
st.write(f"{cond_key}: {tuple(c.shape)}")
st.image(bchw_to_st(c), clamp=True, output_format="PNG")
idx = z_indices
half_sample = st.sidebar.checkbox("Image Completion", value=False)
if half_sample:
start = idx.shape[1]//2
else:
start = 0
idx[:,start:] = 0
idx = idx.reshape(cshape[0],cshape[2],cshape[3])
start_i = start//cshape[3]
start_j = start %cshape[3]
if not half_sample and quant_z.shape == quant_c.shape:
st.info("Setting idx to c_indices")
idx = c_indices.clone().reshape(cshape[0],cshape[2],cshape[3])
cidx = c_indices
cidx = cidx.reshape(quant_c.shape[0],quant_c.shape[2],quant_c.shape[3])
xstart = model.decode_to_img(idx[:,:cshape[2],:cshape[3]], cshape)
st.image(bchw_to_st(xstart), clamp=True, output_format="PNG")
temperature = st.number_input("Temperature", value=1.0)
top_k = st.number_input("Top k", value=100)
sample = st.checkbox("Sample", value=True)
update_every = st.number_input("Update every", value=75)
st.text(f"Sampling shape ({cshape[2]},{cshape[3]})")
animate = st.checkbox("animate")
if animate:
import imageio
outvid = "sampling.mp4"
writer = imageio.get_writer(outvid, fps=25)
elapsed_t = st.empty()
info = st.empty()
st.text("Sampled")
if st.button("Sample"):
output = st.empty()
start_t = time.time()
for i in range(start_i,cshape[2]-0):
if i <= 8:
local_i = i
elif cshape[2]-i < 8:
local_i = 16-(cshape[2]-i)
else:
local_i = 8
for j in range(start_j,cshape[3]-0):
if j <= 8:
local_j = j
elif cshape[3]-j < 8:
local_j = 16-(cshape[3]-j)
else:
local_j = 8
i_start = i-local_i
i_end = i_start+16
j_start = j-local_j
j_end = j_start+16
elapsed_t.text(f"Time: {time.time() - start_t} seconds")
info.text(f"Step: ({i},{j}) | Local: ({local_i},{local_j}) | Crop: ({i_start}:{i_end},{j_start}:{j_end})")
patch = idx[:,i_start:i_end,j_start:j_end]
patch = patch.reshape(patch.shape[0],-1)
cpatch = cidx[:, i_start:i_end, j_start:j_end]
cpatch = cpatch.reshape(cpatch.shape[0], -1)
patch = torch.cat((cpatch, patch), dim=1)
logits,_ = model.transformer(patch[:,:-1])
logits = logits[:, -256:, :]
logits = logits.reshape(cshape[0],16,16,-1)
logits = logits[:,local_i,local_j,:]
logits = logits/temperature
if top_k is not None:
logits = model.top_k_logits(logits, top_k)
# apply softmax to convert to probabilities
probs = torch.nn.functional.softmax(logits, dim=-1)
# sample from the distribution or take the most likely
if sample:
ix = torch.multinomial(probs, num_samples=1)
else:
_, ix = torch.topk(probs, k=1, dim=-1)
idx[:,i,j] = ix
if (i*cshape[3]+j)%update_every==0:
xstart = model.decode_to_img(idx[:, :cshape[2], :cshape[3]], cshape,)
xstart = bchw_to_st(xstart)
output.image(xstart, clamp=True, output_format="PNG")
if animate:
writer.append_data((xstart[0]*255).clip(0, 255).astype(np.uint8))
xstart = model.decode_to_img(idx[:,:cshape[2],:cshape[3]], cshape)
xstart = bchw_to_st(xstart)
output.image(xstart, clamp=True, output_format="PNG")
#save_img(xstart, "full_res_sample.png")
if animate:
writer.close()
st.video(outvid)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--resume",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-c",
"--config",
nargs="?",
metavar="single_config.yaml",
help="path to single config. If specified, base configs will be ignored "
"(except for the last one if left unspecified).",
const=True,
default="",
)
parser.add_argument(
"--ignore_base_data",
action="store_true",
help="Ignore data specification from base configs. Useful if you want "
"to specify a custom datasets on the command line.",
)
return parser
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
if "ckpt_path" in config.params:
st.warning("Deleting the restore-ckpt path from the config...")
config.params.ckpt_path = None
if "downsample_cond_size" in config.params:
st.warning("Deleting downsample-cond-size from the config and setting factor=0.5 instead...")
config.params.downsample_cond_size = -1
config.params["downsample_cond_factor"] = 0.5
try:
if "ckpt_path" in config.params.first_stage_config.params:
config.params.first_stage_config.params.ckpt_path = None
st.warning("Deleting the first-stage restore-ckpt path from the config...")
if "ckpt_path" in config.params.cond_stage_config.params:
config.params.cond_stage_config.params.ckpt_path = None
st.warning("Deleting the cond-stage restore-ckpt path from the config...")
except:
pass
model = instantiate_from_config(config)
if sd is not None:
missing, unexpected = model.load_state_dict(sd, strict=False)
st.info(f"Missing Keys in State Dict: {missing}")
st.info(f"Unexpected Keys in State Dict: {unexpected}")
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def get_data(config):
# get data
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
return data
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_model_and_dset(config, ckpt, gpu, eval_mode):
# get data
dsets = get_data(config) # calls data.config ...
# now load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model,
pl_sd["state_dict"],
gpu=gpu,
eval_mode=eval_mode)["model"]
return dsets, model, global_step
if __name__ == "__main__":
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
ckpt = None
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
try:
idx = len(paths)-paths[::-1].index("logs")+1
except ValueError:
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
print(f"logdir:{logdir}")
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*-project.yaml")))
opt.base = base_configs+opt.base
if opt.config:
if type(opt.config) == str:
opt.base = [opt.config]
else:
opt.base = [opt.base[-1]]
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
if opt.ignore_base_data:
for config in configs:
if hasattr(config, "data"): del config["data"]
config = OmegaConf.merge(*configs, cli)
st.sidebar.text(ckpt)
gs = st.sidebar.empty()
gs.text(f"Global step: ?")
st.sidebar.text("Options")
#gpu = st.sidebar.checkbox("GPU", value=True)
gpu = True
#eval_mode = st.sidebar.checkbox("Eval Mode", value=True)
eval_mode = True
#show_config = st.sidebar.checkbox("Show Config", value=False)
show_config = False
if show_config:
st.info("Checkpoint: {}".format(ckpt))
st.json(OmegaConf.to_container(config))
dsets, model, global_step = load_model_and_dset(config, ckpt, gpu, eval_mode)
gs.text(f"Global step: {global_step}")
run_conditional(model, dsets)