Spaces:
Build error
Build error
import os | |
import numpy as np | |
import cv2 | |
import albumentations | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from taming.data.sflckr import SegmentationBase # for examples included in repo | |
class Examples(SegmentationBase): | |
def __init__(self, size=256, random_crop=False, interpolation="bicubic"): | |
super().__init__(data_csv="data/ade20k_examples.txt", | |
data_root="data/ade20k_images", | |
segmentation_root="data/ade20k_segmentations", | |
size=size, random_crop=random_crop, | |
interpolation=interpolation, | |
n_labels=151, shift_segmentation=False) | |
# With semantic map and scene label | |
class ADE20kBase(Dataset): | |
def __init__(self, config=None, size=None, random_crop=False, interpolation="bicubic", crop_size=None): | |
self.split = self.get_split() | |
self.n_labels = 151 # unknown + 150 | |
self.data_csv = {"train": "data/ade20k_train.txt", | |
"validation": "data/ade20k_test.txt"}[self.split] | |
self.data_root = "data/ade20k_root" | |
with open(os.path.join(self.data_root, "sceneCategories.txt"), "r") as f: | |
self.scene_categories = f.read().splitlines() | |
self.scene_categories = dict(line.split() for line in self.scene_categories) | |
with open(self.data_csv, "r") as f: | |
self.image_paths = f.read().splitlines() | |
self._length = len(self.image_paths) | |
self.labels = { | |
"relative_file_path_": [l for l in self.image_paths], | |
"file_path_": [os.path.join(self.data_root, "images", l) | |
for l in self.image_paths], | |
"relative_segmentation_path_": [l.replace(".jpg", ".png") | |
for l in self.image_paths], | |
"segmentation_path_": [os.path.join(self.data_root, "annotations", | |
l.replace(".jpg", ".png")) | |
for l in self.image_paths], | |
"scene_category": [self.scene_categories[l.split("/")[1].replace(".jpg", "")] | |
for l in self.image_paths], | |
} | |
size = None if size is not None and size<=0 else size | |
self.size = size | |
if crop_size is None: | |
self.crop_size = size if size is not None else None | |
else: | |
self.crop_size = crop_size | |
if self.size is not None: | |
self.interpolation = interpolation | |
self.interpolation = { | |
"nearest": cv2.INTER_NEAREST, | |
"bilinear": cv2.INTER_LINEAR, | |
"bicubic": cv2.INTER_CUBIC, | |
"area": cv2.INTER_AREA, | |
"lanczos": cv2.INTER_LANCZOS4}[self.interpolation] | |
self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, | |
interpolation=self.interpolation) | |
self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, | |
interpolation=cv2.INTER_NEAREST) | |
if crop_size is not None: | |
self.center_crop = not random_crop | |
if self.center_crop: | |
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) | |
else: | |
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) | |
self.preprocessor = self.cropper | |
def __len__(self): | |
return self._length | |
def __getitem__(self, i): | |
example = dict((k, self.labels[k][i]) for k in self.labels) | |
image = Image.open(example["file_path_"]) | |
if not image.mode == "RGB": | |
image = image.convert("RGB") | |
image = np.array(image).astype(np.uint8) | |
if self.size is not None: | |
image = self.image_rescaler(image=image)["image"] | |
segmentation = Image.open(example["segmentation_path_"]) | |
segmentation = np.array(segmentation).astype(np.uint8) | |
if self.size is not None: | |
segmentation = self.segmentation_rescaler(image=segmentation)["image"] | |
if self.size is not None: | |
processed = self.preprocessor(image=image, mask=segmentation) | |
else: | |
processed = {"image": image, "mask": segmentation} | |
example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) | |
segmentation = processed["mask"] | |
onehot = np.eye(self.n_labels)[segmentation] | |
example["segmentation"] = onehot | |
return example | |
class ADE20kTrain(ADE20kBase): | |
# default to random_crop=True | |
def __init__(self, config=None, size=None, random_crop=True, interpolation="bicubic", crop_size=None): | |
super().__init__(config=config, size=size, random_crop=random_crop, | |
interpolation=interpolation, crop_size=crop_size) | |
def get_split(self): | |
return "train" | |
class ADE20kValidation(ADE20kBase): | |
def get_split(self): | |
return "validation" | |
if __name__ == "__main__": | |
dset = ADE20kValidation() | |
ex = dset[0] | |
for k in ["image", "scene_category", "segmentation"]: | |
print(type(ex[k])) | |
try: | |
print(ex[k].shape) | |
except: | |
print(ex[k]) | |