turn-the-cam-anonymous's picture
adding CLIP taming
1ed7deb
import torch
import torch.nn as nn
def count_params(model):
total_params = sum(p.numel() for p in model.parameters())
return total_params
class ActNorm(nn.Module):
def __init__(self, num_features, logdet=False, affine=True,
allow_reverse_init=False):
assert affine
super().__init__()
self.logdet = logdet
self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
self.allow_reverse_init = allow_reverse_init
self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
def initialize(self, input):
with torch.no_grad():
flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
mean = (
flatten.mean(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
std = (
flatten.std(1)
.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.permute(1, 0, 2, 3)
)
self.loc.data.copy_(-mean)
self.scale.data.copy_(1 / (std + 1e-6))
def forward(self, input, reverse=False):
if reverse:
return self.reverse(input)
if len(input.shape) == 2:
input = input[:,:,None,None]
squeeze = True
else:
squeeze = False
_, _, height, width = input.shape
if self.training and self.initialized.item() == 0:
self.initialize(input)
self.initialized.fill_(1)
h = self.scale * (input + self.loc)
if squeeze:
h = h.squeeze(-1).squeeze(-1)
if self.logdet:
log_abs = torch.log(torch.abs(self.scale))
logdet = height*width*torch.sum(log_abs)
logdet = logdet * torch.ones(input.shape[0]).to(input)
return h, logdet
return h
def reverse(self, output):
if self.training and self.initialized.item() == 0:
if not self.allow_reverse_init:
raise RuntimeError(
"Initializing ActNorm in reverse direction is "
"disabled by default. Use allow_reverse_init=True to enable."
)
else:
self.initialize(output)
self.initialized.fill_(1)
if len(output.shape) == 2:
output = output[:,:,None,None]
squeeze = True
else:
squeeze = False
h = output / self.scale - self.loc
if squeeze:
h = h.squeeze(-1).squeeze(-1)
return h
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class Labelator(AbstractEncoder):
"""Net2Net Interface for Class-Conditional Model"""
def __init__(self, n_classes, quantize_interface=True):
super().__init__()
self.n_classes = n_classes
self.quantize_interface = quantize_interface
def encode(self, c):
c = c[:,None]
if self.quantize_interface:
return c, None, [None, None, c.long()]
return c
class SOSProvider(AbstractEncoder):
# for unconditional training
def __init__(self, sos_token, quantize_interface=True):
super().__init__()
self.sos_token = sos_token
self.quantize_interface = quantize_interface
def encode(self, x):
# get batch size from data and replicate sos_token
c = torch.ones(x.shape[0], 1)*self.sos_token
c = c.long().to(x.device)
if self.quantize_interface:
return c, None, [None, None, c]
return c