|
|
|
from __future__ import annotations |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type |
|
import logging |
|
import json |
|
import gradio as gr |
|
|
|
import os |
|
import traceback |
|
import requests |
|
|
|
import csv |
|
import mdtex2html |
|
from pypinyin import lazy_pinyin |
|
from presets import * |
|
import tiktoken |
|
from tqdm import tqdm |
|
import colorama |
|
from duckduckgo_search import ddg |
|
import datetime |
|
|
|
|
|
|
|
if TYPE_CHECKING: |
|
from typing import TypedDict |
|
|
|
class DataframeData(TypedDict): |
|
headers: List[str] |
|
data: List[List[str | int | bool]] |
|
|
|
initial_prompt = "You are a helpful assistant." |
|
API_URL = "https://api.openai.com/v1/chat/completions" |
|
HISTORY_DIR = "history" |
|
TEMPLATES_DIR = "templates" |
|
|
|
def postprocess( |
|
self, y: List[Tuple[str | None, str | None]] |
|
) -> List[Tuple[str | None, str | None]]: |
|
""" |
|
Parameters: |
|
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. |
|
Returns: |
|
List of tuples representing the message and response. Each message and response will be a string of HTML. |
|
""" |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
|
|
|
|
None if message is None else message, |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
def count_token(message): |
|
encoding = tiktoken.get_encoding("cl100k_base") |
|
input_str = f"role: {message['role']}, content: {message['content']}" |
|
length = len(encoding.encode(input_str)) |
|
return length |
|
|
|
def parse_text(text): |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split('`') |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f'<br></code></pre>' |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", "\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>"+line |
|
text = "".join(lines) |
|
return text |
|
|
|
def construct_text(role, text): |
|
return {"role": role, "content": text} |
|
|
|
def construct_user(text): |
|
return construct_text("user", text) |
|
|
|
def construct_system(text): |
|
return construct_text("system", text) |
|
|
|
def construct_assistant(text): |
|
return construct_text("assistant", text) |
|
|
|
def construct_token_message(token, stream=False): |
|
return f"Token 计数: {token}" |
|
|
|
def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model): |
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {openai_api_key}" |
|
} |
|
|
|
history = [construct_system(system_prompt), *history] |
|
|
|
payload = { |
|
"model": selected_model, |
|
"messages": history, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"n": 1, |
|
"stream": stream, |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
} |
|
if stream: |
|
timeout = timeout_streaming |
|
else: |
|
timeout = timeout_all |
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout) |
|
return response |
|
|
|
def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model): |
|
def get_return_value(): |
|
return chatbot, history, status_text, all_token_counts |
|
|
|
logging.info("实时回答模式") |
|
partial_words = "" |
|
counter = 0 |
|
status_text = "开始实时传输回答……" |
|
history.append(construct_user(inputs)) |
|
history.append(construct_assistant("")) |
|
chatbot.append((parse_text(inputs), "")) |
|
user_token_count = 0 |
|
if len(all_token_counts) == 0: |
|
system_prompt_token_count = count_token(construct_system(system_prompt)) |
|
user_token_count = count_token(construct_user(inputs)) + system_prompt_token_count |
|
else: |
|
user_token_count = count_token(construct_user(inputs)) |
|
all_token_counts.append(user_token_count) |
|
logging.info(f"输入token计数: {user_token_count}") |
|
yield get_return_value() |
|
try: |
|
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True, selected_model) |
|
except requests.exceptions.ConnectTimeout: |
|
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt |
|
yield get_return_value() |
|
return |
|
except requests.exceptions.ReadTimeout: |
|
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt |
|
yield get_return_value() |
|
return |
|
|
|
yield get_return_value() |
|
error_json_str = "" |
|
|
|
for chunk in tqdm(response.iter_lines()): |
|
if counter == 0: |
|
counter += 1 |
|
continue |
|
counter += 1 |
|
|
|
if chunk: |
|
chunk = chunk.decode() |
|
chunklength = len(chunk) |
|
try: |
|
chunk = json.loads(chunk[6:]) |
|
except json.JSONDecodeError: |
|
logging.info(chunk) |
|
error_json_str += chunk |
|
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" |
|
yield get_return_value() |
|
continue |
|
|
|
if chunklength > 6 and "delta" in chunk['choices'][0]: |
|
finish_reason = chunk['choices'][0]['finish_reason'] |
|
status_text = construct_token_message(sum(all_token_counts), stream=True) |
|
if finish_reason == "stop": |
|
yield get_return_value() |
|
break |
|
try: |
|
partial_words = partial_words + chunk['choices'][0]["delta"]["content"] |
|
except KeyError: |
|
status_text = standard_error_msg + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " + str(sum(all_token_counts)) |
|
yield get_return_value() |
|
break |
|
history[-1] = construct_assistant(partial_words) |
|
chatbot[-1] = (parse_text(inputs), parse_text(partial_words)) |
|
all_token_counts[-1] += 1 |
|
yield get_return_value() |
|
|
|
|
|
def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model): |
|
logging.info("一次性回答模式") |
|
history.append(construct_user(inputs)) |
|
history.append(construct_assistant("")) |
|
chatbot.append((parse_text(inputs), "")) |
|
all_token_counts.append(count_token(construct_user(inputs))) |
|
try: |
|
response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False, selected_model) |
|
except requests.exceptions.ConnectTimeout: |
|
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt |
|
return chatbot, history, status_text, all_token_counts |
|
except requests.exceptions.ProxyError: |
|
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt |
|
return chatbot, history, status_text, all_token_counts |
|
except requests.exceptions.SSLError: |
|
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt |
|
return chatbot, history, status_text, all_token_counts |
|
response = json.loads(response.text) |
|
content = response["choices"][0]["message"]["content"] |
|
history[-1] = construct_assistant(content) |
|
chatbot[-1] = (parse_text(inputs), parse_text(content)) |
|
total_token_count = response["usage"]["total_tokens"] |
|
all_token_counts[-1] = total_token_count - sum(all_token_counts) |
|
status_text = construct_token_message(total_token_count) |
|
return chatbot, history, status_text, all_token_counts |
|
|
|
|
|
def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model = MODELS[0], use_websearch_checkbox = False, should_check_token_count = True): |
|
logging.info("输入为:" +colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) |
|
if use_websearch_checkbox: |
|
results = ddg(inputs, max_results=3) |
|
web_results = [] |
|
for idx, result in enumerate(results): |
|
logging.info(f"搜索结果{idx + 1}:{result}") |
|
web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}') |
|
web_results = "\n\n".join(web_results) |
|
today = datetime.datetime.today().strftime("%Y-%m-%d") |
|
inputs = websearch_prompt.replace("{current_date}", today).replace("{query}", inputs).replace("{web_results}", web_results) |
|
if len(openai_api_key) != 51: |
|
status_text = standard_error_msg + no_apikey_msg |
|
logging.info(status_text) |
|
chatbot.append((parse_text(inputs), "")) |
|
if len(history) == 0: |
|
history.append(construct_user(inputs)) |
|
history.append("") |
|
all_token_counts.append(0) |
|
else: |
|
history[-2] = construct_user(inputs) |
|
yield chatbot, history, status_text, all_token_counts |
|
return |
|
if stream: |
|
yield chatbot, history, "开始生成回答……", all_token_counts |
|
if stream: |
|
logging.info("使用流式传输") |
|
iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model) |
|
for chatbot, history, status_text, all_token_counts in iter: |
|
yield chatbot, history, status_text, all_token_counts |
|
else: |
|
logging.info("不使用流式传输") |
|
chatbot, history, status_text, all_token_counts = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model) |
|
yield chatbot, history, status_text, all_token_counts |
|
logging.info(f"传输完毕。当前token计数为{all_token_counts}") |
|
if len(history) > 1 and history[-1]['content'] != inputs: |
|
logging.info("回答为:" +colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL) |
|
if stream: |
|
max_token = max_token_streaming |
|
else: |
|
max_token = max_token_all |
|
if sum(all_token_counts) > max_token and should_check_token_count: |
|
status_text = f"精简token中{all_token_counts}/{max_token}" |
|
logging.info(status_text) |
|
yield chatbot, history, status_text, all_token_counts |
|
iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model=selected_model, hidden=True) |
|
for chatbot, history, status_text, all_token_counts in iter: |
|
status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}" |
|
yield chatbot, history, status_text, all_token_counts |
|
|
|
|
|
def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0]): |
|
logging.info("重试中……") |
|
if len(history) == 0: |
|
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count |
|
return |
|
history.pop() |
|
inputs = history.pop()["content"] |
|
token_count.pop() |
|
iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream, selected_model=selected_model) |
|
logging.info("重试完毕") |
|
for x in iter: |
|
yield x |
|
|
|
|
|
def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0], hidden=False): |
|
logging.info("开始减少token数量……") |
|
iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, selected_model = selected_model, should_check_token_count=False) |
|
logging.info(f"chatbot: {chatbot}") |
|
for chatbot, history, status_text, previous_token_count in iter: |
|
history = history[-2:] |
|
token_count = previous_token_count[-1:] |
|
if hidden: |
|
chatbot.pop() |
|
yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count |
|
logging.info("减少token数量完毕") |
|
|
|
|
|
def delete_last_conversation(chatbot, history, previous_token_count): |
|
if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]: |
|
logging.info("由于包含报错信息,只删除chatbot记录") |
|
chatbot.pop() |
|
return chatbot, history |
|
if len(history) > 0: |
|
logging.info("删除了一组对话历史") |
|
history.pop() |
|
history.pop() |
|
if len(chatbot) > 0: |
|
logging.info("删除了一组chatbot对话") |
|
chatbot.pop() |
|
if len(previous_token_count) > 0: |
|
logging.info("删除了一组对话的token计数记录") |
|
previous_token_count.pop() |
|
return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count)) |
|
|
|
|
|
def save_file(filename, system, history, chatbot): |
|
logging.info("保存对话历史中……") |
|
os.makedirs(HISTORY_DIR, exist_ok=True) |
|
if filename.endswith(".json"): |
|
json_s = {"system": system, "history": history, "chatbot": chatbot} |
|
print(json_s) |
|
with open(os.path.join(HISTORY_DIR, filename), "w") as f: |
|
json.dump(json_s, f) |
|
elif filename.endswith(".md"): |
|
md_s = f"system: \n- {system} \n" |
|
for data in history: |
|
md_s += f"\n{data['role']}: \n- {data['content']} \n" |
|
with open(os.path.join(HISTORY_DIR, filename), "w", encoding="utf8") as f: |
|
f.write(md_s) |
|
logging.info("保存对话历史完毕") |
|
return os.path.join(HISTORY_DIR, filename) |
|
|
|
def save_chat_history(filename, system, history, chatbot): |
|
if filename == "": |
|
return |
|
if not filename.endswith(".json"): |
|
filename += ".json" |
|
return save_file(filename, system, history, chatbot) |
|
|
|
def export_markdown(filename, system, history, chatbot): |
|
if filename == "": |
|
return |
|
if not filename.endswith(".md"): |
|
filename += ".md" |
|
return save_file(filename, system, history, chatbot) |
|
|
|
|
|
def load_chat_history(filename, system, history, chatbot): |
|
logging.info("加载对话历史中……") |
|
if type(filename) != str: |
|
filename = filename.name |
|
try: |
|
with open(os.path.join(HISTORY_DIR, filename), "r") as f: |
|
json_s = json.load(f) |
|
try: |
|
if type(json_s["history"][0]) == str: |
|
logging.info("历史记录格式为旧版,正在转换……") |
|
new_history = [] |
|
for index, item in enumerate(json_s["history"]): |
|
if index % 2 == 0: |
|
new_history.append(construct_user(item)) |
|
else: |
|
new_history.append(construct_assistant(item)) |
|
json_s["history"] = new_history |
|
logging.info(new_history) |
|
except: |
|
|
|
pass |
|
logging.info("加载对话历史完毕") |
|
return filename, json_s["system"], json_s["history"], json_s["chatbot"] |
|
except FileNotFoundError: |
|
logging.info("没有找到对话历史文件,不执行任何操作") |
|
return filename, system, history, chatbot |
|
|
|
def sorted_by_pinyin(list): |
|
return sorted(list, key=lambda char: lazy_pinyin(char)[0][0]) |
|
|
|
def get_file_names(dir, plain=False, filetypes=[".json"]): |
|
logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}") |
|
files = [] |
|
try: |
|
for type in filetypes: |
|
files += [f for f in os.listdir(dir) if f.endswith(type)] |
|
except FileNotFoundError: |
|
files = [] |
|
files = sorted_by_pinyin(files) |
|
if files == []: |
|
files = [""] |
|
if plain: |
|
return files |
|
else: |
|
return gr.Dropdown.update(choices=files) |
|
|
|
def get_history_names(plain=False): |
|
logging.info("获取历史记录文件名列表") |
|
return get_file_names(HISTORY_DIR, plain) |
|
|
|
def load_template(filename, mode=0): |
|
logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)") |
|
lines = [] |
|
logging.info("Loading template...") |
|
if filename.endswith(".json"): |
|
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f: |
|
lines = json.load(f) |
|
lines = [[i["act"], i["prompt"]] for i in lines] |
|
else: |
|
with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: |
|
reader = csv.reader(csvfile) |
|
lines = list(reader) |
|
lines = lines[1:] |
|
if mode == 1: |
|
return sorted_by_pinyin([row[0] for row in lines]) |
|
elif mode == 2: |
|
return {row[0]:row[1] for row in lines} |
|
else: |
|
choices = sorted_by_pinyin([row[0] for row in lines]) |
|
return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0]) |
|
|
|
def get_template_names(plain=False): |
|
logging.info("获取模板文件名列表") |
|
return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"]) |
|
|
|
def get_template_content(templates, selection, original_system_prompt): |
|
logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}") |
|
try: |
|
return templates[selection] |
|
except: |
|
return original_system_prompt |
|
|
|
def reset_state(): |
|
logging.info("重置状态") |
|
return [], [], [], construct_token_message(0) |
|
|
|
def reset_textbox(): |
|
return gr.update(value='') |
|
|