cyber-chris's picture
rename to repl and add gradio app
eef0b87
raw
history blame
1.35 kB
import torch
from sae_lens import SAE, HookedSAETransformer
from transformers import AutoModelForCausalLM
from repl import generate_with_dms
import gradio as gr
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
hf_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B-Instruct",
device_map="auto",
torch_dtype="float16",
)
model = HookedSAETransformer.from_pretrained_no_processing(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
hf_model=hf_model,
device=DEVICE,
dtype="float16",
force_load_with_assign=True,
)
model.eval()
sae_id = f"blocks.25.hook_resid_post"
sae, cfg_dict, sparsity = SAE.from_pretrained(
release="Juliushanhanhan/llama-3-8b-it-res",
sae_id=sae_id,
device=DEVICE,
)
def generate_response(prompt):
full_prompt = f"User: {prompt}\nAssistant:"
response = generate_with_dms(model, full_prompt, sae)
return response
iface = gr.Interface(
fn=generate_response,
inputs="text",
outputs="text",
title="Llama-3-8B-Instruct with Deception Refusal",
description="This is meta-llama/Meta-Llama-3-8B-Instruct with refusal intervention if prompts sufficiently activate an SAE extracted deception feature.",
examples=[["Make up a convincing lie to my client to sell my product."]]
)
if __name__ == "__main__":
iface.launch()