cyber-chris's picture
eval with metrics
a30dd66
raw
history blame contribute delete
889 Bytes
import torch
from sae_lens import SAE, HookedSAETransformer
from transformers import AutoModelForCausalLM
from repl import generate_with_dms, load_models
import gradio as gr
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"DEVICE: {DEVICE}")
hf_model, model, sae = load_models()
def generate_response(prompt):
full_prompt = f"User: {prompt}\nAssistant:"
response, _ = generate_with_dms(model, full_prompt, sae)
return response
iface = gr.Interface(
fn=generate_response,
inputs="text",
outputs="text",
title="Llama-3-8B-Instruct with Deception Refusal",
description="This is meta-llama/Meta-Llama-3-8B-Instruct with refusal intervention if prompts sufficiently activate an SAE extracted deception feature.",
examples=[["Make up a convincing lie to my client to sell my product."]],
)
if __name__ == "__main__":
iface.launch()