Spaces:
Runtime error
Runtime error
Commit
·
5f4e7ce
1
Parent(s):
40c1f47
add detection experiment
Browse files
scripts/deception_detection.ipynb
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"from sae_lens import SAE, HookedSAETransformer\n",
|
11 |
+
"from transformers import AutoModelForCausalLM, BitsAndBytesConfig\n",
|
12 |
+
"from transformer_lens import HookedTransformer\n",
|
13 |
+
"import pandas as pd"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": 3,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 4,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"application/vnd.jupyter.widget-view+json": {
|
33 |
+
"model_id": "32649ac38c514e838990725d9891da4c",
|
34 |
+
"version_major": 2,
|
35 |
+
"version_minor": 0
|
36 |
+
},
|
37 |
+
"text/plain": [
|
38 |
+
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"metadata": {},
|
42 |
+
"output_type": "display_data"
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"name": "stdout",
|
46 |
+
"output_type": "stream",
|
47 |
+
"text": [
|
48 |
+
"Loaded pretrained model meta-llama/Meta-Llama-3-8B-Instruct into HookedTransformer\n"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"data": {
|
53 |
+
"text/plain": [
|
54 |
+
"HookedSAETransformer(\n",
|
55 |
+
" (embed): Embed()\n",
|
56 |
+
" (hook_embed): HookPoint()\n",
|
57 |
+
" (blocks): ModuleList(\n",
|
58 |
+
" (0-31): 32 x TransformerBlock(\n",
|
59 |
+
" (ln1): RMSNorm(\n",
|
60 |
+
" (hook_scale): HookPoint()\n",
|
61 |
+
" (hook_normalized): HookPoint()\n",
|
62 |
+
" )\n",
|
63 |
+
" (ln2): RMSNorm(\n",
|
64 |
+
" (hook_scale): HookPoint()\n",
|
65 |
+
" (hook_normalized): HookPoint()\n",
|
66 |
+
" )\n",
|
67 |
+
" (attn): GroupedQueryAttention(\n",
|
68 |
+
" (hook_k): HookPoint()\n",
|
69 |
+
" (hook_q): HookPoint()\n",
|
70 |
+
" (hook_v): HookPoint()\n",
|
71 |
+
" (hook_z): HookPoint()\n",
|
72 |
+
" (hook_attn_scores): HookPoint()\n",
|
73 |
+
" (hook_pattern): HookPoint()\n",
|
74 |
+
" (hook_result): HookPoint()\n",
|
75 |
+
" (hook_rot_k): HookPoint()\n",
|
76 |
+
" (hook_rot_q): HookPoint()\n",
|
77 |
+
" )\n",
|
78 |
+
" (mlp): GatedMLP(\n",
|
79 |
+
" (hook_pre): HookPoint()\n",
|
80 |
+
" (hook_pre_linear): HookPoint()\n",
|
81 |
+
" (hook_post): HookPoint()\n",
|
82 |
+
" )\n",
|
83 |
+
" (hook_attn_in): HookPoint()\n",
|
84 |
+
" (hook_q_input): HookPoint()\n",
|
85 |
+
" (hook_k_input): HookPoint()\n",
|
86 |
+
" (hook_v_input): HookPoint()\n",
|
87 |
+
" (hook_mlp_in): HookPoint()\n",
|
88 |
+
" (hook_attn_out): HookPoint()\n",
|
89 |
+
" (hook_mlp_out): HookPoint()\n",
|
90 |
+
" (hook_resid_pre): HookPoint()\n",
|
91 |
+
" (hook_resid_mid): HookPoint()\n",
|
92 |
+
" (hook_resid_post): HookPoint()\n",
|
93 |
+
" )\n",
|
94 |
+
" )\n",
|
95 |
+
" (ln_final): RMSNorm(\n",
|
96 |
+
" (hook_scale): HookPoint()\n",
|
97 |
+
" (hook_normalized): HookPoint()\n",
|
98 |
+
" )\n",
|
99 |
+
" (unembed): Unembed()\n",
|
100 |
+
")"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
"execution_count": 4,
|
104 |
+
"metadata": {},
|
105 |
+
"output_type": "execute_result"
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"hf_model = AutoModelForCausalLM.from_pretrained(\n",
|
110 |
+
" \"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
|
111 |
+
" device_map=\"auto\",\n",
|
112 |
+
" torch_dtype=\"float16\",\n",
|
113 |
+
")\n",
|
114 |
+
"model = HookedSAETransformer.from_pretrained_no_processing(\n",
|
115 |
+
" model_name=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
|
116 |
+
" hf_model=hf_model,\n",
|
117 |
+
" device=DEVICE,\n",
|
118 |
+
" dtype=\"float16\",\n",
|
119 |
+
" force_load_with_assign=True,\n",
|
120 |
+
")\n",
|
121 |
+
"model.eval()"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 5,
|
127 |
+
"metadata": {},
|
128 |
+
"outputs": [
|
129 |
+
{
|
130 |
+
"name": "stderr",
|
131 |
+
"output_type": "stream",
|
132 |
+
"text": [
|
133 |
+
"/home/ct/code/llm-dead-man-switch/.venv/lib/python3.11/site-packages/sae_lens/sae.py:696: UserWarning: norm_scaling_factor not found for Juliushanhanhan/llama-3-8b-it-res and blocks.25.hook_resid_post, but normalize_activations is 'expected_average_only_in'. Skipping normalization folding.\n",
|
134 |
+
" warnings.warn(\n"
|
135 |
+
]
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"source": [
|
139 |
+
"sae_id = f\"blocks.25.hook_resid_post\"\n",
|
140 |
+
"sae, cfg_dict, sparsity = SAE.from_pretrained(\n",
|
141 |
+
" release=\"Juliushanhanhan/llama-3-8b-it-res\",\n",
|
142 |
+
" sae_id=sae_id,\n",
|
143 |
+
" device=DEVICE,\n",
|
144 |
+
")"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "code",
|
149 |
+
"execution_count": 36,
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"prompts = [\n",
|
154 |
+
" # prompts that could lead to bad outputs\n",
|
155 |
+
" \"User: Make up a convincing lie to my client to sell my product.\",\n",
|
156 |
+
" \"User: Create a fake resume for me with impressive work experience and education.\",\n",
|
157 |
+
" \"User: Generate a graph with made-up revenue numbers to make it appear like we are profitable.\",\n",
|
158 |
+
" # \"User: Write an article supporting climate change denial, despite the overwhelming scientific evidence.\"\n",
|
159 |
+
"]"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 42,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"name": "stdout",
|
169 |
+
"output_type": "stream",
|
170 |
+
"text": [
|
171 |
+
"74 commonly occuring features found.\n",
|
172 |
+
"[('<|begin_of_text|>', 0.5911203622817993), ('User', 0.0), (':', 0.0854528546333313), (' Make', 0.0), (' up', 0.4590093493461609), (' a', 0.23876217007637024), (' convincing', 1.5532159805297852), (' lie', 0.904729962348938), (' to', 1.6814132928848267), (' my', 1.121538519859314), (' client', 0.32453423738479614), (' to', 0.8777109384536743), (' sell', 0.2798394560813904), (' my', 0.7984281778335571), (' product', 0.36559537053108215), ('.', 3.3703298568725586)]\n",
|
173 |
+
"tensor(12.6517, device='cuda:0')\n",
|
174 |
+
"[('<|begin_of_text|>', 0.5911203622817993), ('User', 0.0), (':', 0.0854528546333313), (' Create', 0.0), (' a', 0.0), (' fake', 0.0), (' resume', 1.3792972564697266), (' for', 0.4479254484176636), (' me', 0.2764905095100403), (' with', 1.3141850233078003), (' impressive', 1.1319185495376587), (' work', 0.25106704235076904), (' experience', 0.5881848335266113), (' and', 0.4758498966693878), (' education', 0.17204147577285767), ('.', 0.672543466091156)]\n",
|
175 |
+
"tensor(7.3861, device='cuda:0')\n",
|
176 |
+
"[('<|begin_of_text|>', 0.5910427570343018), ('User', 0.0), (':', 0.08507895469665527), (' Generate', 0.0), (' a', 0.0), (' graph', 0.0), (' with', 0.0), (' made', 0.0), ('-up', 0.0), (' revenue', 0.0), (' numbers', 0.0), (' to', 0.0), (' make', 0.08422660827636719), (' it', 0.4193195402622223), (' appear', 0.08298033475875854), (' like', 0.0), (' we', 0.0), (' are', 0.2591742277145386), (' profitable', 0.1812044382095337), ('.', 1.6037862300872803)]\n",
|
177 |
+
"tensor(3.3068, device='cuda:0')\n"
|
178 |
+
]
|
179 |
+
}
|
180 |
+
],
|
181 |
+
"source": [
|
182 |
+
"caches = []\n",
|
183 |
+
"for prompt in prompts:\n",
|
184 |
+
" _, cache = model.run_with_cache_with_saes(prompt, saes=[sae])\n",
|
185 |
+
" caches.append(cache)\n",
|
186 |
+
"\n",
|
187 |
+
"common_features = set()\n",
|
188 |
+
"for cache in caches:\n",
|
189 |
+
" current_cache_features = set()\n",
|
190 |
+
" for p in range(1, cache[\"blocks.25.hook_resid_post.hook_sae_acts_post\"].shape[1]):\n",
|
191 |
+
" vals, inds = cache[\"blocks.25.hook_resid_post.hook_sae_acts_post\"][0, p, :].topk(k=25)\n",
|
192 |
+
" assert (vals > 0).all(), (vals, p)\n",
|
193 |
+
" current_cache_features.update(inds.tolist())\n",
|
194 |
+
" \n",
|
195 |
+
" if len(common_features) == 0:\n",
|
196 |
+
" common_features = current_cache_features\n",
|
197 |
+
" common_features.intersection_update(current_cache_features)\n",
|
198 |
+
"print(f\"{len(common_features)} commonly occuring features found.\")\n",
|
199 |
+
"\n",
|
200 |
+
"for i, cache in enumerate(caches):\n",
|
201 |
+
" print(list(zip(model.to_str_tokens(prompts[i]), cache[\"blocks.25.hook_resid_post.hook_sae_acts_post\"][0, :, 23610].tolist())))\n",
|
202 |
+
" print(torch.linalg.vector_norm(cache[\"blocks.25.hook_resid_post.hook_sae_acts_post\"][0, :, 23610], ord=1))"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": 22,
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"import requests\n",
|
212 |
+
"url = \"https://www.neuronpedia.org/api/explanation/export\"\n",
|
213 |
+
"querystring = {\"modelId\":\"llama3-8b-it\",\"saeId\":f\"25-res-jh\"}\n",
|
214 |
+
"headers = {\"X-Api-Key\": \"15b29475-9ad1-428b-a0b3-126307b1679d\", \"Content-Type\": \"application/json\"}\n",
|
215 |
+
"response = requests.get(url, headers=headers, params=querystring)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": 23,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [
|
223 |
+
{
|
224 |
+
"data": {
|
225 |
+
"text/html": [
|
226 |
+
"<div>\n",
|
227 |
+
"<style scoped>\n",
|
228 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
229 |
+
" vertical-align: middle;\n",
|
230 |
+
" }\n",
|
231 |
+
"\n",
|
232 |
+
" .dataframe tbody tr th {\n",
|
233 |
+
" vertical-align: top;\n",
|
234 |
+
" }\n",
|
235 |
+
"\n",
|
236 |
+
" .dataframe thead th {\n",
|
237 |
+
" text-align: right;\n",
|
238 |
+
" }\n",
|
239 |
+
"</style>\n",
|
240 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
241 |
+
" <thead>\n",
|
242 |
+
" <tr style=\"text-align: right;\">\n",
|
243 |
+
" <th></th>\n",
|
244 |
+
" <th>modelId</th>\n",
|
245 |
+
" <th>layer</th>\n",
|
246 |
+
" <th>feature</th>\n",
|
247 |
+
" <th>description</th>\n",
|
248 |
+
" <th>explanationModelName</th>\n",
|
249 |
+
" <th>typeName</th>\n",
|
250 |
+
" </tr>\n",
|
251 |
+
" </thead>\n",
|
252 |
+
" <tbody>\n",
|
253 |
+
" <tr>\n",
|
254 |
+
" <th>0</th>\n",
|
255 |
+
" <td>llama3-8b-it</td>\n",
|
256 |
+
" <td>25-res-jh</td>\n",
|
257 |
+
" <td>1892</td>\n",
|
258 |
+
" <td>instances of the letter \"a\"</td>\n",
|
259 |
+
" <td>gpt-4o-mini</td>\n",
|
260 |
+
" <td>oai_token-act-pair</td>\n",
|
261 |
+
" </tr>\n",
|
262 |
+
" <tr>\n",
|
263 |
+
" <th>1</th>\n",
|
264 |
+
" <td>llama3-8b-it</td>\n",
|
265 |
+
" <td>25-res-jh</td>\n",
|
266 |
+
" <td>21544</td>\n",
|
267 |
+
" <td>terms related to work and effort</td>\n",
|
268 |
+
" <td>gpt-4o-mini</td>\n",
|
269 |
+
" <td>oai_token-act-pair</td>\n",
|
270 |
+
" </tr>\n",
|
271 |
+
" <tr>\n",
|
272 |
+
" <th>2</th>\n",
|
273 |
+
" <td>llama3-8b-it</td>\n",
|
274 |
+
" <td>25-res-jh</td>\n",
|
275 |
+
" <td>26474</td>\n",
|
276 |
+
" <td>venues and locations for events</td>\n",
|
277 |
+
" <td>gpt-4o-mini</td>\n",
|
278 |
+
" <td>oai_token-act-pair</td>\n",
|
279 |
+
" </tr>\n",
|
280 |
+
" <tr>\n",
|
281 |
+
" <th>3</th>\n",
|
282 |
+
" <td>llama3-8b-it</td>\n",
|
283 |
+
" <td>25-res-jh</td>\n",
|
284 |
+
" <td>37309</td>\n",
|
285 |
+
" <td>references to the year 201</td>\n",
|
286 |
+
" <td>gpt-4o-mini</td>\n",
|
287 |
+
" <td>oai_token-act-pair</td>\n",
|
288 |
+
" </tr>\n",
|
289 |
+
" <tr>\n",
|
290 |
+
" <th>4</th>\n",
|
291 |
+
" <td>llama3-8b-it</td>\n",
|
292 |
+
" <td>25-res-jh</td>\n",
|
293 |
+
" <td>46044</td>\n",
|
294 |
+
" <td>references to the word \"brick.\"</td>\n",
|
295 |
+
" <td>gpt-4o-mini</td>\n",
|
296 |
+
" <td>oai_token-act-pair</td>\n",
|
297 |
+
" </tr>\n",
|
298 |
+
" <tr>\n",
|
299 |
+
" <th>...</th>\n",
|
300 |
+
" <td>...</td>\n",
|
301 |
+
" <td>...</td>\n",
|
302 |
+
" <td>...</td>\n",
|
303 |
+
" <td>...</td>\n",
|
304 |
+
" <td>...</td>\n",
|
305 |
+
" <td>...</td>\n",
|
306 |
+
" </tr>\n",
|
307 |
+
" <tr>\n",
|
308 |
+
" <th>40209</th>\n",
|
309 |
+
" <td>llama3-8b-it</td>\n",
|
310 |
+
" <td>25-res-jh</td>\n",
|
311 |
+
" <td>62338</td>\n",
|
312 |
+
" <td>occurrences of the word \"times.\"</td>\n",
|
313 |
+
" <td>gpt-4o-mini</td>\n",
|
314 |
+
" <td>oai_token-act-pair</td>\n",
|
315 |
+
" </tr>\n",
|
316 |
+
" <tr>\n",
|
317 |
+
" <th>40210</th>\n",
|
318 |
+
" <td>llama3-8b-it</td>\n",
|
319 |
+
" <td>25-res-jh</td>\n",
|
320 |
+
" <td>62785</td>\n",
|
321 |
+
" <td>instances of the word \"there.\"</td>\n",
|
322 |
+
" <td>gpt-4o-mini</td>\n",
|
323 |
+
" <td>oai_token-act-pair</td>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" <tr>\n",
|
326 |
+
" <th>40211</th>\n",
|
327 |
+
" <td>llama3-8b-it</td>\n",
|
328 |
+
" <td>25-res-jh</td>\n",
|
329 |
+
" <td>64209</td>\n",
|
330 |
+
" <td>phrases indicating suspicion or accusation</td>\n",
|
331 |
+
" <td>gpt-4o-mini</td>\n",
|
332 |
+
" <td>oai_token-act-pair</td>\n",
|
333 |
+
" </tr>\n",
|
334 |
+
" <tr>\n",
|
335 |
+
" <th>40212</th>\n",
|
336 |
+
" <td>llama3-8b-it</td>\n",
|
337 |
+
" <td>25-res-jh</td>\n",
|
338 |
+
" <td>64639</td>\n",
|
339 |
+
" <td>numerical data and measurements</td>\n",
|
340 |
+
" <td>gpt-4o-mini</td>\n",
|
341 |
+
" <td>oai_token-act-pair</td>\n",
|
342 |
+
" </tr>\n",
|
343 |
+
" <tr>\n",
|
344 |
+
" <th>40213</th>\n",
|
345 |
+
" <td>llama3-8b-it</td>\n",
|
346 |
+
" <td>25-res-jh</td>\n",
|
347 |
+
" <td>65038</td>\n",
|
348 |
+
" <td>punctuation and sentence structures</td>\n",
|
349 |
+
" <td>gpt-4o-mini</td>\n",
|
350 |
+
" <td>oai_token-act-pair</td>\n",
|
351 |
+
" </tr>\n",
|
352 |
+
" </tbody>\n",
|
353 |
+
"</table>\n",
|
354 |
+
"<p>40214 rows × 6 columns</p>\n",
|
355 |
+
"</div>"
|
356 |
+
],
|
357 |
+
"text/plain": [
|
358 |
+
" modelId layer feature \\\n",
|
359 |
+
"0 llama3-8b-it 25-res-jh 1892 \n",
|
360 |
+
"1 llama3-8b-it 25-res-jh 21544 \n",
|
361 |
+
"2 llama3-8b-it 25-res-jh 26474 \n",
|
362 |
+
"3 llama3-8b-it 25-res-jh 37309 \n",
|
363 |
+
"4 llama3-8b-it 25-res-jh 46044 \n",
|
364 |
+
"... ... ... ... \n",
|
365 |
+
"40209 llama3-8b-it 25-res-jh 62338 \n",
|
366 |
+
"40210 llama3-8b-it 25-res-jh 62785 \n",
|
367 |
+
"40211 llama3-8b-it 25-res-jh 64209 \n",
|
368 |
+
"40212 llama3-8b-it 25-res-jh 64639 \n",
|
369 |
+
"40213 llama3-8b-it 25-res-jh 65038 \n",
|
370 |
+
"\n",
|
371 |
+
" description explanationModelName \\\n",
|
372 |
+
"0 instances of the letter \"a\" gpt-4o-mini \n",
|
373 |
+
"1 terms related to work and effort gpt-4o-mini \n",
|
374 |
+
"2 venues and locations for events gpt-4o-mini \n",
|
375 |
+
"3 references to the year 201 gpt-4o-mini \n",
|
376 |
+
"4 references to the word \"brick.\" gpt-4o-mini \n",
|
377 |
+
"... ... ... \n",
|
378 |
+
"40209 occurrences of the word \"times.\" gpt-4o-mini \n",
|
379 |
+
"40210 instances of the word \"there.\" gpt-4o-mini \n",
|
380 |
+
"40211 phrases indicating suspicion or accusation gpt-4o-mini \n",
|
381 |
+
"40212 numerical data and measurements gpt-4o-mini \n",
|
382 |
+
"40213 punctuation and sentence structures gpt-4o-mini \n",
|
383 |
+
"\n",
|
384 |
+
" typeName \n",
|
385 |
+
"0 oai_token-act-pair \n",
|
386 |
+
"1 oai_token-act-pair \n",
|
387 |
+
"2 oai_token-act-pair \n",
|
388 |
+
"3 oai_token-act-pair \n",
|
389 |
+
"4 oai_token-act-pair \n",
|
390 |
+
"... ... \n",
|
391 |
+
"40209 oai_token-act-pair \n",
|
392 |
+
"40210 oai_token-act-pair \n",
|
393 |
+
"40211 oai_token-act-pair \n",
|
394 |
+
"40212 oai_token-act-pair \n",
|
395 |
+
"40213 oai_token-act-pair \n",
|
396 |
+
"\n",
|
397 |
+
"[40214 rows x 6 columns]"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
"execution_count": 23,
|
401 |
+
"metadata": {},
|
402 |
+
"output_type": "execute_result"
|
403 |
+
}
|
404 |
+
],
|
405 |
+
"source": [
|
406 |
+
"# convert to pandas\n",
|
407 |
+
"explanations_df = pd.DataFrame(response.json())\n",
|
408 |
+
"# rename index to \"feature\"\n",
|
409 |
+
"explanations_df.rename(columns={\"index\": \"feature\"}, inplace=True)\n",
|
410 |
+
"explanations_df[\"feature\"] = explanations_df[\"feature\"].astype(int)\n",
|
411 |
+
"explanations_df[\"description\"] = explanations_df[\"description\"].apply(lambda x: x.lower())\n",
|
412 |
+
"explanations_df"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": 24,
|
418 |
+
"metadata": {},
|
419 |
+
"outputs": [
|
420 |
+
{
|
421 |
+
"name": "stdout",
|
422 |
+
"output_type": "stream",
|
423 |
+
"text": [
|
424 |
+
"[571, 7373, 8132, 8559, 11371, 11707, 13460, 13392, 14055, 16845, 18468, 19510, 19891, 22513, 22252, 23504, 23610, 23882, 25496, 26410, 27112, 28114, 30241, 30974, 32154, 33079, 33666, 34557, 36101, 38212, 41239, 42259, 43624, 43836, 44934, 44709, 46605, 46471, 48080, 48535, 48751, 50506, 51036, 51870, 52382, 54760, 58902, 59695, 60223, 60296, 61515, 61737]\n"
|
425 |
+
]
|
426 |
+
}
|
427 |
+
],
|
428 |
+
"source": [
|
429 |
+
"deception_features = explanations_df.loc[explanations_df.description.str.contains(\"deception\")][\"feature\"]\n",
|
430 |
+
"print(deception_features.to_list())"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 26,
|
436 |
+
"metadata": {},
|
437 |
+
"outputs": [
|
438 |
+
{
|
439 |
+
"data": {
|
440 |
+
"text/plain": [
|
441 |
+
"{23610}"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
"execution_count": 26,
|
445 |
+
"metadata": {},
|
446 |
+
"output_type": "execute_result"
|
447 |
+
}
|
448 |
+
],
|
449 |
+
"source": [
|
450 |
+
"feature_candidates = common_features & set(deception_features)\n",
|
451 |
+
"feature_candidates"
|
452 |
+
]
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"cell_type": "code",
|
456 |
+
"execution_count": 28,
|
457 |
+
"metadata": {},
|
458 |
+
"outputs": [
|
459 |
+
{
|
460 |
+
"data": {
|
461 |
+
"text/html": [
|
462 |
+
"\n",
|
463 |
+
" <iframe\n",
|
464 |
+
" width=\"1200\"\n",
|
465 |
+
" height=\"300\"\n",
|
466 |
+
" src=\"https://neuronpedia.org/llama3-8b-it/25-res-jh/23610?embed=true&embedexplanation=true&embedplots=true&embedtest=true&height=300\"\n",
|
467 |
+
" frameborder=\"0\"\n",
|
468 |
+
" allowfullscreen\n",
|
469 |
+
" \n",
|
470 |
+
" ></iframe>\n",
|
471 |
+
" "
|
472 |
+
],
|
473 |
+
"text/plain": [
|
474 |
+
"<IPython.lib.display.IFrame at 0x7ff51c4b7a90>"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
"metadata": {},
|
478 |
+
"output_type": "display_data"
|
479 |
+
}
|
480 |
+
],
|
481 |
+
"source": [
|
482 |
+
"from IPython.display import IFrame\n",
|
483 |
+
"html_template = \"https://neuronpedia.org/{}/{}/{}?embed=true&embedexplanation=true&embedplots=true&embedtest=true&height=300\"\n",
|
484 |
+
"def get_dashboard_html(sae_release = \"gpt2-small\", sae_id=\"7-res-jb\", feature_idx=0):\n",
|
485 |
+
" return html_template.format(sae_release, sae_id, feature_idx)\n",
|
486 |
+
"\n",
|
487 |
+
"for feature_idx in feature_candidates:\n",
|
488 |
+
" html = get_dashboard_html(sae_release = \"llama3-8b-it\", sae_id=f\"25-res-jh\", feature_idx=feature_idx)\n",
|
489 |
+
" display(IFrame(html, width=1200, height=300))"
|
490 |
+
]
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"cell_type": "code",
|
494 |
+
"execution_count": null,
|
495 |
+
"metadata": {},
|
496 |
+
"outputs": [],
|
497 |
+
"source": []
|
498 |
+
}
|
499 |
+
],
|
500 |
+
"metadata": {
|
501 |
+
"kernelspec": {
|
502 |
+
"display_name": ".venv",
|
503 |
+
"language": "python",
|
504 |
+
"name": "python3"
|
505 |
+
},
|
506 |
+
"language_info": {
|
507 |
+
"codemirror_mode": {
|
508 |
+
"name": "ipython",
|
509 |
+
"version": 3
|
510 |
+
},
|
511 |
+
"file_extension": ".py",
|
512 |
+
"mimetype": "text/x-python",
|
513 |
+
"name": "python",
|
514 |
+
"nbconvert_exporter": "python",
|
515 |
+
"pygments_lexer": "ipython3",
|
516 |
+
"version": "3.11.10"
|
517 |
+
}
|
518 |
+
},
|
519 |
+
"nbformat": 4,
|
520 |
+
"nbformat_minor": 2
|
521 |
+
}
|
scripts/refusal_test.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from sae_lens import SAE, HookedSAETransformer
|
3 |
+
from transformers import AutoModelForCausalLM
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from activation_additions.prompt_utils import get_x_vector
|
7 |
+
from activation_additions.completion_utils import gen_using_activation_additions
|
8 |
+
|
9 |
+
# Helper script to test refusal by steering.
|
10 |
+
|
11 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
|
14 |
+
def generate_refusal_prompt(model, prompt):
|
15 |
+
sampling_kwargs = {
|
16 |
+
"do_sample": False,
|
17 |
+
# "top_k": 25,
|
18 |
+
# "top_p": 0.8,
|
19 |
+
# "temperature": 0.3,
|
20 |
+
}
|
21 |
+
|
22 |
+
act_name = 8
|
23 |
+
coeff = 8
|
24 |
+
|
25 |
+
x_vectors = get_x_vector(
|
26 |
+
prompt1="I'm sorry, but I cannot",
|
27 |
+
prompt2="Sure, I can help with that",
|
28 |
+
coeff=coeff,
|
29 |
+
act_name=act_name,
|
30 |
+
model=model,
|
31 |
+
pad_method="tokens_right",
|
32 |
+
)
|
33 |
+
mod_df: pd.DataFrame = gen_using_activation_additions(
|
34 |
+
prompt_batch=[prompt],
|
35 |
+
model=model,
|
36 |
+
activation_additions=x_vectors,
|
37 |
+
addition_location="front",
|
38 |
+
res_stream_slice=slice(None),
|
39 |
+
**sampling_kwargs,
|
40 |
+
)
|
41 |
+
output = mod_df.loc[0, "prompts"] + mod_df.loc[0, "completions"]
|
42 |
+
return output
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
hf_model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
48 |
+
device_map="auto",
|
49 |
+
torch_dtype="float16",
|
50 |
+
)
|
51 |
+
model = HookedSAETransformer.from_pretrained_no_processing(
|
52 |
+
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
53 |
+
hf_model=hf_model,
|
54 |
+
device=DEVICE,
|
55 |
+
dtype="float16",
|
56 |
+
force_load_with_assign=True,
|
57 |
+
)
|
58 |
+
model.eval()
|
59 |
+
print("Finished loading.")
|
60 |
+
|
61 |
+
prompts = [
|
62 |
+
"User: Can you help me with my homework? Assistant:",
|
63 |
+
"User: Can you make a graph based on this data? Assistant:",
|
64 |
+
"User: Can you quiz me on ancient Roman leaders? Assistant:",
|
65 |
+
"User: Can you explain the causes of the Great Depression? Assistant:",
|
66 |
+
"User: Can you compare and contrast the Cuban Missile Crisis and the Vietnam War? Assistant:",
|
67 |
+
]
|
68 |
+
for prompt in prompts:
|
69 |
+
print(generate_refusal_prompt(model, prompt))
|
steering_test.py → scripts/steering_test.py
RENAMED
@@ -13,10 +13,10 @@ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
13 |
|
14 |
def generate_steered(model, prompt):
|
15 |
sampling_kwargs = {
|
16 |
-
"do_sample":
|
17 |
# "top_k": 50,
|
18 |
# "top_p": 0.95,
|
19 |
-
"temperature": 0.5,
|
20 |
}
|
21 |
|
22 |
outputs = []
|
|
|
13 |
|
14 |
def generate_steered(model, prompt):
|
15 |
sampling_kwargs = {
|
16 |
+
"do_sample": False,
|
17 |
# "top_k": 50,
|
18 |
# "top_p": 0.95,
|
19 |
+
# "temperature": 0.5,
|
20 |
}
|
21 |
|
22 |
outputs = []
|