File size: 4,553 Bytes
a7566b2
 
 
 
 
 
918d142
a7566b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
918d142
a7566b2
918d142
a7566b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248afb0
a7566b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248afb0
a7566b2
 
 
 
 
 
248afb0
a7566b2
 
248afb0
a7566b2
 
 
 
248afb0
a7566b2
 
 
 
 
 
 
 
248afb0
a7566b2
 
 
 
 
 
 
 
248afb0
a7566b2
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from functools import partial
import gradio as gr
import httpx
import subprocess
import os
from openai import OpenAI
from cycloud.auth import load_default_credentials

from const import (
    LLM_BASE_URL,
    AUTH_CMD,
    SYSTEM_PROMPTS,
    EXAMPLES,
    CSS,
    HEADER,
    FOOTER,
    PLACEHOLDER,
    ModelInfo,
    MODELS,
)


def get_headers(host: str) -> dict:
    creds = load_default_credentials()
    return {
        "Authorization": f"Bearer {creds.access_token}",
        "Host": host,
        "Accept": "application/json",
        "Content-Type": "application/json",
    }


def proxy(request: httpx.Request, model_info: ModelInfo) -> httpx.Request:
    request.url = request.url.copy_with(path=model_info.endpoint)
    request.headers.update(get_headers(host=model_info.host))
    return request


def call_llm(
    message: str,
    history: list[dict],
    model_name: str,
    system_prompt: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    history_openai_format = []
    system_prompt_text = SYSTEM_PROMPTS[system_prompt]
    if len(history) == 0:
        init = {
            "role": "system",
            "content": system_prompt_text,
        }
        history_openai_format.append(init)
        history_openai_format.append({"role": "user", "content": message})
    else:
        for human, assistant in history:
            history_openai_format.append({"role": "user", "content": human})
            history_openai_format.append({"role": "assistant", "content": assistant})
        history_openai_format.append({"role": "user", "content": message})

    model_info = MODELS[model_name]
    client = OpenAI(
        api_key="",
        base_url=LLM_BASE_URL,
        http_client=httpx.Client(
            event_hooks={
                "request": [partial(proxy, model_info=model_info)],
            },
            verify=False,
        ),
    )

    stream = client.chat.completions.create(
        model=f"/data/cyberagent/{model_info.name}",
        messages=history_openai_format,
        temperature=temperature,
        top_p=top_p,
        max_tokens=max_tokens,
        n=1,
        stream=True,
        extra_body={"repetition_penalty": 1.1},
    )

    message = ""
    for chunk in stream:
        content = chunk.choices[0].delta.content or ""
        message = message + content
        yield message


def run():
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        scale=1,
        show_copy_button=True,
        height="70%",
        layout="panel",
    )
    with gr.Blocks(fill_height=True) as demo:
        gr.Markdown(HEADER)
        gr.ChatInterface(
            fn=call_llm,
            stop_btn="Stop Generation",
            examples=EXAMPLES,
            cache_examples=False,
            multimodal=False,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(
                label="Parameters", open=False, render=False
            ),
            additional_inputs=[
                gr.Dropdown(
                    choices=list(MODELS.keys()),
                    value=list(MODELS.keys())[0],
                    label="Model",
                    visible=False,
                    render=False,
                ),
                gr.Dropdown(
                    choices=list(SYSTEM_PROMPTS.keys()),
                    value=list(SYSTEM_PROMPTS.keys())[0],
                    label="System Prompt",
                    visible=False,
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=4096,
                    step=1,
                    value=1024,
                    label="Max tokens",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.3,
                    label="Temperature",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="Top-p",
                    visible=True,
                    render=False,
                ),
            ],
            analytics_enabled=False,
        )
        gr.Markdown(FOOTER)
    demo.queue(max_size=256, api_open=False)
    demo.launch(share=False, quiet=True)


if __name__ == "__main__":
    run()