Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import torch | |
from PIL import Image | |
from basicsr.utils.download_util import load_file_from_url | |
import modules.esrgam_model_arch as arch | |
from modules import shared, modelloader, images, devices | |
from modules.paths import models_path | |
from modules.upscaler import Upscaler, UpscalerData | |
from modules.shared import opts | |
def fix_model_layers(crt_model, pretrained_net): | |
# this code is adapted from https://github.com/xinntao/ESRGAN | |
if 'conv_first.weight' in pretrained_net: | |
return pretrained_net | |
if 'model.0.weight' not in pretrained_net: | |
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"] | |
if is_realesrgan: | |
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.") | |
else: | |
raise Exception("The file is not a ESRGAN model.") | |
crt_net = crt_model.state_dict() | |
load_net_clean = {} | |
for k, v in pretrained_net.items(): | |
if k.startswith('module.'): | |
load_net_clean[k[7:]] = v | |
else: | |
load_net_clean[k] = v | |
pretrained_net = load_net_clean | |
tbd = [] | |
for k, v in crt_net.items(): | |
tbd.append(k) | |
# directly copy | |
for k, v in crt_net.items(): | |
if k in pretrained_net and pretrained_net[k].size() == v.size(): | |
crt_net[k] = pretrained_net[k] | |
tbd.remove(k) | |
crt_net['conv_first.weight'] = pretrained_net['model.0.weight'] | |
crt_net['conv_first.bias'] = pretrained_net['model.0.bias'] | |
for k in tbd.copy(): | |
if 'RDB' in k: | |
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.') | |
if '.weight' in k: | |
ori_k = ori_k.replace('.weight', '.0.weight') | |
elif '.bias' in k: | |
ori_k = ori_k.replace('.bias', '.0.bias') | |
crt_net[k] = pretrained_net[ori_k] | |
tbd.remove(k) | |
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight'] | |
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias'] | |
crt_net['upconv1.weight'] = pretrained_net['model.3.weight'] | |
crt_net['upconv1.bias'] = pretrained_net['model.3.bias'] | |
crt_net['upconv2.weight'] = pretrained_net['model.6.weight'] | |
crt_net['upconv2.bias'] = pretrained_net['model.6.bias'] | |
crt_net['HRconv.weight'] = pretrained_net['model.8.weight'] | |
crt_net['HRconv.bias'] = pretrained_net['model.8.bias'] | |
crt_net['conv_last.weight'] = pretrained_net['model.10.weight'] | |
crt_net['conv_last.bias'] = pretrained_net['model.10.bias'] | |
return crt_net | |
class UpscalerESRGAN(Upscaler): | |
def __init__(self, dirname): | |
self.name = "ESRGAN" | |
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth" | |
self.model_name = "ESRGAN_4x" | |
self.scalers = [] | |
self.user_path = dirname | |
self.model_path = os.path.join(models_path, self.name) | |
super().__init__() | |
model_paths = self.find_models(ext_filter=[".pt", ".pth"]) | |
scalers = [] | |
if len(model_paths) == 0: | |
scaler_data = UpscalerData(self.model_name, self.model_url, self, 4) | |
scalers.append(scaler_data) | |
for file in model_paths: | |
if "http" in file: | |
name = self.model_name | |
else: | |
name = modelloader.friendly_name(file) | |
scaler_data = UpscalerData(name, file, self, 4) | |
self.scalers.append(scaler_data) | |
def do_upscale(self, img, selected_model): | |
model = self.load_model(selected_model) | |
if model is None: | |
return img | |
model.to(devices.device_esrgan) | |
img = esrgan_upscale(model, img) | |
return img | |
def load_model(self, path: str): | |
if "http" in path: | |
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, | |
file_name="%s.pth" % self.model_name, | |
progress=True) | |
else: | |
filename = path | |
if not os.path.exists(filename) or filename is None: | |
print("Unable to load %s from %s" % (self.model_path, filename)) | |
return None | |
pretrained_net = torch.load(filename, map_location='cpu' if shared.device.type == 'mps' else None) | |
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32) | |
pretrained_net = fix_model_layers(crt_model, pretrained_net) | |
crt_model.load_state_dict(pretrained_net) | |
crt_model.eval() | |
return crt_model | |
def upscale_without_tiling(model, img): | |
img = np.array(img) | |
img = img[:, :, ::-1] | |
img = np.moveaxis(img, 2, 0) / 255 | |
img = torch.from_numpy(img).float() | |
img = img.unsqueeze(0).to(devices.device_esrgan) | |
with torch.no_grad(): | |
output = model(img) | |
output = output.squeeze().float().cpu().clamp_(0, 1).numpy() | |
output = 255. * np.moveaxis(output, 0, 2) | |
output = output.astype(np.uint8) | |
output = output[:, :, ::-1] | |
return Image.fromarray(output, 'RGB') | |
def esrgan_upscale(model, img): | |
if opts.ESRGAN_tile == 0: | |
return upscale_without_tiling(model, img) | |
grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap) | |
newtiles = [] | |
scale_factor = 1 | |
for y, h, row in grid.tiles: | |
newrow = [] | |
for tiledata in row: | |
x, w, tile = tiledata | |
output = upscale_without_tiling(model, tile) | |
scale_factor = output.width // tile.width | |
newrow.append([x * scale_factor, w * scale_factor, output]) | |
newtiles.append([y * scale_factor, h * scale_factor, newrow]) | |
newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor) | |
output = images.combine_grid(newgrid) | |
return output | |