Spaces:
Runtime error
Runtime error
import glob | |
import os | |
import sys | |
import traceback | |
import torch | |
from ldm.util import default | |
from modules import devices, shared | |
import torch | |
from torch import einsum | |
from einops import rearrange, repeat | |
class HypernetworkModule(torch.nn.Module): | |
def __init__(self, dim, state_dict): | |
super().__init__() | |
self.linear1 = torch.nn.Linear(dim, dim * 2) | |
self.linear2 = torch.nn.Linear(dim * 2, dim) | |
self.load_state_dict(state_dict, strict=True) | |
self.to(devices.device) | |
def forward(self, x): | |
return x + (self.linear2(self.linear1(x))) | |
class Hypernetwork: | |
filename = None | |
name = None | |
def __init__(self, filename): | |
self.filename = filename | |
self.name = os.path.splitext(os.path.basename(filename))[0] | |
self.layers = {} | |
state_dict = torch.load(filename, map_location='cpu') | |
for size, sd in state_dict.items(): | |
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) | |
def load_hypernetworks(path): | |
res = {} | |
for filename in glob.iglob(path + '**/*.pt', recursive=True): | |
try: | |
hn = Hypernetwork(filename) | |
res[hn.name] = hn | |
except Exception: | |
print(f"Error loading hypernetwork {filename}", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
return res | |
def attention_CrossAttention_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
hypernetwork = shared.selected_hypernetwork() | |
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) | |
if hypernetwork_layers is not None: | |
k = self.to_k(hypernetwork_layers[0](context)) | |
v = self.to_v(hypernetwork_layers[1](context)) | |
else: | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
if mask is not None: | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = einsum('b i j, b j d -> b i d', attn, v) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
return self.to_out(out) | |