Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import einsum | |
from ldm.util import default | |
from einops import rearrange | |
from modules import shared | |
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion | |
def split_cross_attention_forward_v1(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
del context, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) | |
for i in range(0, q.shape[0], 2): | |
end = i + 2 | |
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) | |
s1 *= self.scale | |
s2 = s1.softmax(dim=-1) | |
del s1 | |
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) | |
del s2 | |
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
del r1 | |
return self.to_out(r2) | |
# taken from https://github.com/Doggettx/stable-diffusion | |
def split_cross_attention_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
hypernetwork = shared.selected_hypernetwork() | |
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) | |
if hypernetwork_layers is not None: | |
k_in = self.to_k(hypernetwork_layers[0](context)) | |
v_in = self.to_v(hypernetwork_layers[1](context)) | |
else: | |
k_in = self.to_k(context) | |
v_in = self.to_v(context) | |
k_in *= self.scale | |
del context, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
stats = torch.cuda.memory_stats(q.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
gb = 1024 ** 3 | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() | |
modifier = 3 if q.element_size() == 2 else 2.5 | |
mem_required = tensor_size * modifier | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) | |
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | |
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | |
if steps > 64: | |
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | |
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | |
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) | |
s2 = s1.softmax(dim=-1, dtype=q.dtype) | |
del s1 | |
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | |
del s2 | |
del q, k, v | |
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
del r1 | |
return self.to_out(r2) | |
def cross_attention_attnblock_forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q1 = self.q(h_) | |
k1 = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q1.shape | |
q2 = q1.reshape(b, c, h*w) | |
del q1 | |
q = q2.permute(0, 2, 1) # b,hw,c | |
del q2 | |
k = k1.reshape(b, c, h*w) # b,c,hw | |
del k1 | |
h_ = torch.zeros_like(k, device=q.device) | |
stats = torch.cuda.memory_stats(q.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | |
mem_required = tensor_size * 2.5 | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w2 = w1 * (int(c)**(-0.5)) | |
del w1 | |
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) | |
del w2 | |
# attend to values | |
v1 = v.reshape(b, c, h*w) | |
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
del w3 | |
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
del v1, w4 | |
h2 = h_.reshape(b, c, h, w) | |
del h_ | |
h3 = self.proj_out(h2) | |
del h2 | |
h3 += x | |
return h3 | |