Spaces:
Runtime error
Runtime error
import glob | |
import os.path | |
import sys | |
from collections import namedtuple | |
import torch | |
from omegaconf import OmegaConf | |
from ldm.util import instantiate_from_config | |
from modules import shared, modelloader, devices | |
from modules.paths import models_path | |
model_dir = "Stable-diffusion" | |
model_path = os.path.abspath(os.path.join(models_path, model_dir)) | |
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) | |
checkpoints_list = {} | |
try: | |
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. | |
from transformers import logging | |
logging.set_verbosity_error() | |
except Exception: | |
pass | |
def setup_model(): | |
if not os.path.exists(model_path): | |
os.makedirs(model_path) | |
list_models() | |
def checkpoint_tiles(): | |
return sorted([x.title for x in checkpoints_list.values()]) | |
def list_models(): | |
checkpoints_list.clear() | |
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"]) | |
def modeltitle(path, shorthash): | |
abspath = os.path.abspath(path) | |
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): | |
name = abspath.replace(shared.cmd_opts.ckpt_dir, '') | |
elif abspath.startswith(model_path): | |
name = abspath.replace(model_path, '') | |
else: | |
name = os.path.basename(path) | |
if name.startswith("\\") or name.startswith("/"): | |
name = name[1:] | |
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] | |
return f'{name} [{shorthash}]', shortname | |
cmd_ckpt = shared.cmd_opts.ckpt | |
if os.path.exists(cmd_ckpt): | |
h = model_hash(cmd_ckpt) | |
title, short_model_name = modeltitle(cmd_ckpt, h) | |
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) | |
shared.opts.data['sd_model_checkpoint'] = title | |
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: | |
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) | |
for filename in model_list: | |
h = model_hash(filename) | |
title, short_model_name = modeltitle(filename, h) | |
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name) | |
def get_closet_checkpoint_match(searchString): | |
applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title)) | |
if len(applicable) > 0: | |
return applicable[0] | |
return None | |
def model_hash(filename): | |
try: | |
with open(filename, "rb") as file: | |
import hashlib | |
m = hashlib.sha256() | |
file.seek(0x100000) | |
m.update(file.read(0x10000)) | |
return m.hexdigest()[0:8] | |
except FileNotFoundError: | |
return 'NOFILE' | |
def select_checkpoint(): | |
model_checkpoint = shared.opts.sd_model_checkpoint | |
checkpoint_info = checkpoints_list.get(model_checkpoint, None) | |
if checkpoint_info is not None: | |
return checkpoint_info | |
if len(checkpoints_list) == 0: | |
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) | |
if shared.cmd_opts.ckpt is not None: | |
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) | |
print(f" - directory {model_path}", file=sys.stderr) | |
if shared.cmd_opts.ckpt_dir is not None: | |
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) | |
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) | |
exit(1) | |
checkpoint_info = next(iter(checkpoints_list.values())) | |
if model_checkpoint is not None: | |
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr) | |
return checkpoint_info | |
def load_model_weights(model, checkpoint_file, sd_model_hash): | |
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") | |
pl_sd = torch.load(checkpoint_file, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
model.load_state_dict(sd, strict=False) | |
if shared.cmd_opts.opt_channelslast: | |
model.to(memory_format=torch.channels_last) | |
if not shared.cmd_opts.no_half: | |
model.half() | |
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 | |
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" | |
if os.path.exists(vae_file): | |
print(f"Loading VAE weights from: {vae_file}") | |
vae_ckpt = torch.load(vae_file, map_location="cpu") | |
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"} | |
model.first_stage_model.load_state_dict(vae_dict) | |
model.sd_model_hash = sd_model_hash | |
model.sd_model_checkpint = checkpoint_file | |
def load_model(): | |
from modules import lowvram, sd_hijack | |
checkpoint_info = select_checkpoint() | |
sd_config = OmegaConf.load(shared.cmd_opts.config) | |
sd_model = instantiate_from_config(sd_config.model) | |
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) | |
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: | |
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) | |
else: | |
sd_model.to(shared.device) | |
sd_hijack.model_hijack.hijack(sd_model) | |
sd_model.eval() | |
print(f"Model loaded.") | |
return sd_model | |
def reload_model_weights(sd_model, info=None): | |
from modules import lowvram, devices, sd_hijack | |
checkpoint_info = info or select_checkpoint() | |
if sd_model.sd_model_checkpint == checkpoint_info.filename: | |
return | |
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: | |
lowvram.send_everything_to_cpu() | |
else: | |
sd_model.to(devices.cpu) | |
sd_hijack.model_hijack.undo_hijack(sd_model) | |
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) | |
sd_hijack.model_hijack.hijack(sd_model) | |
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: | |
sd_model.to(devices.device) | |
print(f"Weights loaded.") | |
return sd_model | |