Spaces:
Runtime error
Runtime error
from collections import namedtuple | |
from copy import copy | |
from itertools import permutations, chain | |
import random | |
import csv | |
from io import StringIO | |
from PIL import Image | |
import numpy as np | |
import modules.scripts as scripts | |
import gradio as gr | |
from modules import images | |
from modules.processing import process_images, Processed | |
from modules.shared import opts, cmd_opts, state | |
import modules.shared as shared | |
import modules.sd_samplers | |
import modules.sd_models | |
import re | |
def apply_field(field): | |
def fun(p, x, xs): | |
setattr(p, field, x) | |
return fun | |
def apply_prompt(p, x, xs): | |
p.prompt = p.prompt.replace(xs[0], x) | |
p.negative_prompt = p.negative_prompt.replace(xs[0], x) | |
def apply_order(p, x, xs): | |
token_order = [] | |
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen | |
for token in x: | |
token_order.append((p.prompt.find(token), token)) | |
token_order.sort(key=lambda t: t[0]) | |
prompt_parts = [] | |
# Split the prompt up, taking out the tokens | |
for _, token in token_order: | |
n = p.prompt.find(token) | |
prompt_parts.append(p.prompt[0:n]) | |
p.prompt = p.prompt[n + len(token):] | |
# Rebuild the prompt with the tokens in the order we want | |
prompt_tmp = "" | |
for idx, part in enumerate(prompt_parts): | |
prompt_tmp += part | |
prompt_tmp += x[idx] | |
p.prompt = prompt_tmp + p.prompt | |
samplers_dict = {} | |
for i, sampler in enumerate(modules.sd_samplers.samplers): | |
samplers_dict[sampler.name.lower()] = i | |
for alias in sampler.aliases: | |
samplers_dict[alias.lower()] = i | |
def apply_sampler(p, x, xs): | |
sampler_index = samplers_dict.get(x.lower(), None) | |
if sampler_index is None: | |
raise RuntimeError(f"Unknown sampler: {x}") | |
p.sampler_index = sampler_index | |
def apply_checkpoint(p, x, xs): | |
info = modules.sd_models.get_closet_checkpoint_match(x) | |
assert info is not None, f'Checkpoint for {x} not found' | |
modules.sd_models.reload_model_weights(shared.sd_model, info) | |
def apply_hypernetwork(p, x, xs): | |
hn = shared.hypernetworks.get(x, None) | |
opts.data["sd_hypernetwork"] = hn.name if hn is not None else 'None' | |
def format_value_add_label(p, opt, x): | |
if type(x) == float: | |
x = round(x, 8) | |
return f"{opt.label}: {x}" | |
def format_value(p, opt, x): | |
if type(x) == float: | |
x = round(x, 8) | |
return x | |
def format_value_join_list(p, opt, x): | |
return ", ".join(x) | |
def do_nothing(p, x, xs): | |
pass | |
def format_nothing(p, opt, x): | |
return "" | |
def str_permutations(x): | |
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations""" | |
return x | |
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value"]) | |
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value"]) | |
axis_options = [ | |
AxisOption("Nothing", str, do_nothing, format_nothing), | |
AxisOption("Seed", int, apply_field("seed"), format_value_add_label), | |
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label), | |
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label), | |
AxisOption("Steps", int, apply_field("steps"), format_value_add_label), | |
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label), | |
AxisOption("Prompt S/R", str, apply_prompt, format_value), | |
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list), | |
AxisOption("Sampler", str, apply_sampler, format_value), | |
AxisOption("Checkpoint name", str, apply_checkpoint, format_value), | |
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value), | |
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label), | |
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label), | |
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label), | |
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label), | |
AxisOption("Eta", float, apply_field("eta"), format_value_add_label), | |
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones | |
] | |
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend): | |
res = [] | |
ver_texts = [[images.GridAnnotation(y)] for y in y_labels] | |
hor_texts = [[images.GridAnnotation(x)] for x in x_labels] | |
first_pocessed = None | |
state.job_count = len(xs) * len(ys) * p.n_iter | |
for iy, y in enumerate(ys): | |
for ix, x in enumerate(xs): | |
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}" | |
processed = cell(x, y) | |
if first_pocessed is None: | |
first_pocessed = processed | |
try: | |
res.append(processed.images[0]) | |
except: | |
res.append(Image.new(res[0].mode, res[0].size)) | |
grid = images.image_grid(res, rows=len(ys)) | |
if draw_legend: | |
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts) | |
first_pocessed.images = [grid] | |
return first_pocessed | |
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*") | |
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*") | |
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*") | |
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*") | |
class Script(scripts.Script): | |
def title(self): | |
return "X/Y plot" | |
def ui(self, is_img2img): | |
current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img] | |
with gr.Row(): | |
x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, visible=False, type="index", elem_id="x_type") | |
x_values = gr.Textbox(label="X values", visible=False, lines=1) | |
with gr.Row(): | |
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type") | |
y_values = gr.Textbox(label="Y values", visible=False, lines=1) | |
draw_legend = gr.Checkbox(label='Draw legend', value=True) | |
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False) | |
return [x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds] | |
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds): | |
modules.processing.fix_seed(p) | |
p.batch_size = 1 | |
initial_hn = opts.sd_hypernetwork | |
def process_axis(opt, vals): | |
if opt.label == 'Nothing': | |
return [0] | |
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))] | |
if opt.type == int: | |
valslist_ext = [] | |
for val in valslist: | |
m = re_range.fullmatch(val) | |
mc = re_range_count.fullmatch(val) | |
if m is not None: | |
start = int(m.group(1)) | |
end = int(m.group(2))+1 | |
step = int(m.group(3)) if m.group(3) is not None else 1 | |
valslist_ext += list(range(start, end, step)) | |
elif mc is not None: | |
start = int(mc.group(1)) | |
end = int(mc.group(2)) | |
num = int(mc.group(3)) if mc.group(3) is not None else 1 | |
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()] | |
else: | |
valslist_ext.append(val) | |
valslist = valslist_ext | |
elif opt.type == float: | |
valslist_ext = [] | |
for val in valslist: | |
m = re_range_float.fullmatch(val) | |
mc = re_range_count_float.fullmatch(val) | |
if m is not None: | |
start = float(m.group(1)) | |
end = float(m.group(2)) | |
step = float(m.group(3)) if m.group(3) is not None else 1 | |
valslist_ext += np.arange(start, end + step, step).tolist() | |
elif mc is not None: | |
start = float(mc.group(1)) | |
end = float(mc.group(2)) | |
num = int(mc.group(3)) if mc.group(3) is not None else 1 | |
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist() | |
else: | |
valslist_ext.append(val) | |
valslist = valslist_ext | |
elif opt.type == str_permutations: | |
valslist = list(permutations(valslist)) | |
valslist = [opt.type(x) for x in valslist] | |
return valslist | |
x_opt = axis_options[x_type] | |
xs = process_axis(x_opt, x_values) | |
y_opt = axis_options[y_type] | |
ys = process_axis(y_opt, y_values) | |
def fix_axis_seeds(axis_opt, axis_list): | |
if axis_opt.label == 'Seed': | |
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list] | |
else: | |
return axis_list | |
if not no_fixed_seeds: | |
xs = fix_axis_seeds(x_opt, xs) | |
ys = fix_axis_seeds(y_opt, ys) | |
if x_opt.label == 'Steps': | |
total_steps = sum(xs) * len(ys) | |
elif y_opt.label == 'Steps': | |
total_steps = sum(ys) * len(xs) | |
else: | |
total_steps = p.steps * len(xs) * len(ys) | |
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})") | |
shared.total_tqdm.updateTotal(total_steps * p.n_iter) | |
def cell(x, y): | |
pc = copy(p) | |
x_opt.apply(pc, x, xs) | |
y_opt.apply(pc, y, ys) | |
return process_images(pc) | |
processed = draw_xy_grid( | |
p, | |
xs=xs, | |
ys=ys, | |
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs], | |
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys], | |
cell=cell, | |
draw_legend=draw_legend | |
) | |
if opts.grid_save: | |
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p) | |
# restore checkpoint in case it was changed by axes | |
modules.sd_models.reload_model_weights(shared.sd_model) | |
opts.data["sd_hypernetwork"] = initial_hn | |
return processed | |