app.py
CHANGED
@@ -116,6 +116,7 @@ def generate_monocular_depth_maps(img_list, depth_prior_name):
|
|
116 |
depth = pipe(image)["predicted_depth"].numpy()
|
117 |
depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_LANCZOS4)
|
118 |
focallength_px = 200
|
|
|
119 |
depth_list.append(depth)
|
120 |
focallength_px_list.append(focallength_px)
|
121 |
#np.savez_compressed(path_depthanything, depth=depth)
|
@@ -138,6 +139,7 @@ def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sk
|
|
138 |
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
|
139 |
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
|
140 |
mode = GlobalAlignerMode.PointCloudOptimizer
|
|
|
141 |
scene = global_aligner(output, device=device, mode=mode, verbose=not silent, shared_focal = True, temporal_smoothing_weight=0.01, translation_weight=1.0,
|
142 |
flow_loss_weight=0.01, flow_loss_start_epoch=0.1, flow_loss_thre=25, use_self_mask=True,
|
143 |
num_total_iter=300, empty_cache= len(filelist) > 72)
|
@@ -192,13 +194,6 @@ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, grad
|
|
192 |
[os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
|
193 |
os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
|
194 |
os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
|
195 |
-
os.path.join(HERE_PATH, 'example/bear/00003.jpg'),
|
196 |
-
os.path.join(HERE_PATH, 'example/bear/00004.jpg'),
|
197 |
-
os.path.join(HERE_PATH, 'example/bear/00005.jpg'),
|
198 |
-
os.path.join(HERE_PATH, 'example/bear/00006.jpg'),
|
199 |
-
os.path.join(HERE_PATH, 'example/bear/00007.jpg'),
|
200 |
-
os.path.join(HERE_PATH, 'example/bear/00008.jpg'),
|
201 |
-
os.path.join(HERE_PATH, 'example/bear/00009.jpg'),
|
202 |
]
|
203 |
],
|
204 |
[
|
|
|
116 |
depth = pipe(image)["predicted_depth"].numpy()
|
117 |
depth = cv2.resize(depth[0], image.size, interpolation=cv2.INTER_LANCZOS4)
|
118 |
focallength_px = 200
|
119 |
+
print(depth.max(),depth.min())
|
120 |
depth_list.append(depth)
|
121 |
focallength_px_list.append(focallength_px)
|
122 |
#np.savez_compressed(path_depthanything, depth=depth)
|
|
|
139 |
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
|
140 |
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
|
141 |
mode = GlobalAlignerMode.PointCloudOptimizer
|
142 |
+
print(output)
|
143 |
scene = global_aligner(output, device=device, mode=mode, verbose=not silent, shared_focal = True, temporal_smoothing_weight=0.01, translation_weight=1.0,
|
144 |
flow_loss_weight=0.01, flow_loss_start_epoch=0.1, flow_loss_thre=25, use_self_mask=True,
|
145 |
num_total_iter=300, empty_cache= len(filelist) > 72)
|
|
|
194 |
[os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
|
195 |
os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
|
196 |
os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
]
|
198 |
],
|
199 |
[
|
croco/models/__pycache__/pos_embed.cpython-311.pyc
CHANGED
Binary files a/croco/models/__pycache__/pos_embed.cpython-311.pyc and b/croco/models/__pycache__/pos_embed.cpython-311.pyc differ
|
|
third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc
CHANGED
Binary files a/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc and b/third_party/RAFT/core/__pycache__/extractor.cpython-311.pyc differ
|
|
third_party/RAFT/core/extractor.py
CHANGED
@@ -312,7 +312,7 @@ class ResNetFPN(nn.Module):
|
|
312 |
nn.init.constant_(m.weight, 1)
|
313 |
if m.bias is not None:
|
314 |
nn.init.constant_(m.bias, 0)
|
315 |
-
|
316 |
if self.init_weight:
|
317 |
from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights
|
318 |
if args.pretrain == 'resnet18':
|
|
|
312 |
nn.init.constant_(m.weight, 1)
|
313 |
if m.bias is not None:
|
314 |
nn.init.constant_(m.bias, 0)
|
315 |
+
#print('****',args.pretrain, self.init_weight)
|
316 |
if self.init_weight:
|
317 |
from torchvision.models import resnet18, ResNet18_Weights, resnet34, ResNet34_Weights
|
318 |
if args.pretrain == 'resnet18':
|