cyun9286 commited on
Commit
f53b39e
·
1 Parent(s): f506d57

Add application file

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. .gitignore +2 -0
  3. app.py +172 -0
  4. croco/LICENSE +52 -0
  5. croco/NOTICE +21 -0
  6. croco/README.MD +124 -0
  7. croco/assets/Chateau1.png +0 -0
  8. croco/assets/Chateau2.png +0 -0
  9. croco/assets/arch.jpg +0 -0
  10. croco/croco-stereo-flow-demo.ipynb +191 -0
  11. croco/datasets/__init__.py +0 -0
  12. croco/datasets/crops/README.MD +104 -0
  13. croco/datasets/crops/extract_crops_from_images.py +159 -0
  14. croco/datasets/habitat_sim/README.MD +76 -0
  15. croco/datasets/habitat_sim/__init__.py +0 -0
  16. croco/datasets/habitat_sim/generate_from_metadata.py +92 -0
  17. croco/datasets/habitat_sim/generate_from_metadata_files.py +27 -0
  18. croco/datasets/habitat_sim/generate_multiview_images.py +177 -0
  19. croco/datasets/habitat_sim/multiview_habitat_sim_generator.py +390 -0
  20. croco/datasets/habitat_sim/pack_metadata_files.py +69 -0
  21. croco/datasets/habitat_sim/paths.py +129 -0
  22. croco/datasets/pairs_dataset.py +109 -0
  23. croco/datasets/transforms.py +95 -0
  24. croco/demo.py +55 -0
  25. croco/interactive_demo.ipynb +271 -0
  26. croco/models/__pycache__/blocks.cpython-311.pyc +0 -0
  27. croco/models/__pycache__/croco.cpython-311.pyc +0 -0
  28. croco/models/__pycache__/dpt_block.cpython-311.pyc +0 -0
  29. croco/models/__pycache__/masking.cpython-311.pyc +0 -0
  30. croco/models/__pycache__/pos_embed.cpython-311.pyc +0 -0
  31. croco/models/blocks.py +241 -0
  32. croco/models/criterion.py +37 -0
  33. croco/models/croco.py +256 -0
  34. croco/models/croco_downstream.py +122 -0
  35. croco/models/curope/__init__.py +4 -0
  36. croco/models/curope/__pycache__/__init__.cpython-311.pyc +0 -0
  37. croco/models/curope/__pycache__/curope2d.cpython-311.pyc +0 -0
  38. croco/models/curope/build/lib.linux-x86_64-cpython-311/curope.cpython-311-x86_64-linux-gnu.so +0 -0
  39. croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_deps +0 -0
  40. croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_log +3 -0
  41. croco/models/curope/build/temp.linux-x86_64-cpython-311/build.ninja +33 -0
  42. croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o +0 -0
  43. croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o +0 -0
  44. croco/models/curope/curope.cpp +69 -0
  45. croco/models/curope/curope.cpython-311-x86_64-linux-gnu.so +0 -0
  46. croco/models/curope/curope2d.py +40 -0
  47. croco/models/curope/kernels.cu +108 -0
  48. croco/models/curope/setup.py +34 -0
  49. croco/models/dpt_block.py +457 -0
  50. croco/models/head_downstream.py +58 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ third_party/ml-depth-pro/data/example.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *.pth
2
+ *.pt
app.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2024-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+ #
4
+ # --------------------------------------------------------
5
+ # gradio demo
6
+ # --------------------------------------------------------
7
+
8
+ import argparse
9
+ import math
10
+ import gradio
11
+ import os
12
+ import torch
13
+ import numpy as np
14
+ import tempfile
15
+ import functools
16
+ import copy
17
+ from tqdm import tqdm
18
+ import cv2
19
+
20
+ from dust3r.inference import inference
21
+ from dust3r.model import AsymmetricCroCo3DStereo
22
+ from dust3r.image_pairs import make_pairs
23
+ from dust3r.utils.image_pose import load_images, rgb, enlarge_seg_masks
24
+ from dust3r.utils.device import to_numpy
25
+ from dust3r.cloud_opt_flow import global_aligner, GlobalAlignerMode
26
+ import matplotlib.pyplot as pl
27
+ from transformers import pipeline
28
+ from dust3r.utils.viz_demo import convert_scene_output_to_glb
29
+ import depth_pro
30
+ pl.ion()
31
+
32
+ # for gpu >= Ampere and pytorch >= 1.12
33
+ torch.backends.cuda.matmul.allow_tf32 = True
34
+ batch_size = 1
35
+
36
+ tmpdirname = tempfile.mkdtemp(suffix='_align3r_gradio_demo')
37
+ image_size = 512
38
+ silent = True
39
+ gradio_delete_cache = 7200
40
+
41
+
42
+ class FileState:
43
+ def __init__(self, outfile_name=None):
44
+ self.outfile_name = outfile_name
45
+
46
+ def __del__(self):
47
+ if self.outfile_name is not None and os.path.isfile(self.outfile_name):
48
+ os.remove(self.outfile_name)
49
+ self.outfile_name = None
50
+
51
+ def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
52
+ clean_depth=False, transparent_cams=False, cam_size=0.05, show_cam=True, save_name=None, thr_for_init_conf=True):
53
+ """
54
+ extract 3D_model (glb file) from a reconstructed scene
55
+ """
56
+ if scene is None:
57
+ return None
58
+ # post processes
59
+ if clean_depth:
60
+ scene = scene.clean_pointcloud()
61
+ if mask_sky:
62
+ scene = scene.mask_sky()
63
+
64
+ # get optimized values from scene
65
+ rgbimg = scene.imgs
66
+ focals = scene.get_focals().cpu()
67
+ cams2world = scene.get_im_poses().cpu()
68
+ # 3D pointcloud from depthmap, poses and intrinsics
69
+ pts3d = to_numpy(scene.get_pts3d(raw_pts=True))
70
+ scene.min_conf_thr = min_conf_thr
71
+ scene.thr_for_init_conf = thr_for_init_conf
72
+ msk = to_numpy(scene.get_masks())
73
+ cmap = pl.get_cmap('viridis')
74
+ cam_color = [cmap(i/len(rgbimg))[:3] for i in range(len(rgbimg))]
75
+ cam_color = [(255*c[0], 255*c[1], 255*c[2]) for c in cam_color]
76
+ return convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
77
+ transparent_cams=transparent_cams, cam_size=cam_size, show_cam=show_cam, silent=silent, save_name=save_name,
78
+ cam_color=cam_color)
79
+
80
+ def generate_monocular_depth_maps(img_list, depth_prior_name):
81
+ if depth_prior_name=='depthpro':
82
+ model, transform = depth_pro.create_model_and_transforms(device='cuda')
83
+ model.eval()
84
+ for image_path in tqdm(img_list):
85
+ path_depthpro = image_path.replace('.png','_pred_depth_depthpro.npz').replace('.jpg','_pred_depth_depthpro.npz')
86
+ image, _, f_px = depth_pro.load_rgb(image_path)
87
+ image = transform(image)
88
+ # Run inference.
89
+ prediction = model.infer(image, f_px=f_px)
90
+ depth = prediction["depth"].cpu() # Depth in [m].
91
+ np.savez_compressed(path_depthpro, depth=depth, focallength_px=prediction["focallength_px"].cpu())
92
+ elif depth_prior_name=='depthanything':
93
+ pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Large-hf",device='cuda')
94
+ for image_path in tqdm(img_list):
95
+ path_depthanything = image_path.replace('.png','_pred_depth_depthanything.npz').replace('.jpg','_pred_depth_depthanything.npz')
96
+ image = Image.open(image_path)
97
+ depth = pipe(image)["predicted_depth"].numpy()
98
+ np.savez_compressed(path_depthanything, depth=depth)
99
+
100
+ @spaces.GPU(duration=180)
101
+ def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw):
102
+ generate_monocular_depth_maps(filelist, depth_prior_name)
103
+ imgs = load_images(filelist, size=image_size, verbose=not silent,traj_format='custom', depth_prior_name=depth_prior_name)
104
+ pairs = []
105
+ pairs.append((imgs[0], imgs[1]))
106
+ output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
107
+ mode = GlobalAlignerMode.PairViewer
108
+ scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
109
+ save_folder = './output'
110
+ outfile = get_3D_model_from_scene(save_folder, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, show_cam)
111
+
112
+ return outfile
113
+
114
+
115
+ def run_example(snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, filelist, **kw):
116
+ return local_get_reconstructed_scene(filelist, cam_size, **kw)
117
+
118
+ css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
119
+ title = "Align3R Demo"
120
+ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
121
+ filestate = gradio.State(None)
122
+ gradio.HTML('<h2 style="text-align: center;">3D Reconstruction with MASt3R</h2>')
123
+ gradio.HTML('<p>Upload two images (wait for them to be fully uploaded before hitting the run button). '
124
+ 'If you want to try larger image collections, you can find the more complete version of this demo that you can run locally '
125
+ 'and more details about the method at <a href="https://github.com/jiah-cloud/Align3R">github.com/jiah-cloud/Align3R</a>. '
126
+ 'The checkpoint used in this demo is available at <a href="https://huggingface.co/cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt">Align3R (Depth Anything V2)</a> and <a href="https://huggingface.co/cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt">Align3R (Depth Pro)</a>.</p>')
127
+ with gradio.Column():
128
+ inputfiles = gradio.File(file_count="multiple")
129
+ snapshot = gradio.Image(None, visible=False)
130
+ with gradio.Row():
131
+ # adjust the camera size in the output pointcloud
132
+ cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
133
+
134
+ depth_prior_name = gradio.Dropdown(
135
+ ["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
136
+ min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.1, minimum=0.0, maximum=20, step=0.01)
137
+
138
+ if depth_prior_name == "Depth Pro":
139
+ weights_path = "cyun9286/Align3R_DepthPro_ViTLarge_BaseDecoder_512_dpt"
140
+ else:
141
+ weights_path = "cyun9286/Align3R_DepthAnythingV2_ViTLarge_BaseDecoder_512_dpt"
142
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
143
+ model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(device)
144
+ with gradio.Row():
145
+ as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
146
+ mask_sky = gradio.Checkbox(value=False, label="Mask sky")
147
+ clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
148
+ transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
149
+ # not to show camera
150
+ show_cam = gradio.Checkbox(value=True, label="Show Camera")
151
+ run_btn = gradio.Button("Run")
152
+ outmodel = gradio.Model3D()
153
+
154
+ # examples = gradio.Examples(
155
+ # examples=[
156
+ # ['./example/yellowman/frame_0003.png',
157
+ # 0.0, 1.5, 0.2, True, False,
158
+ # ]
159
+ # ],
160
+ # inputs=[snapshot, matching_conf_thr, min_conf_thr, cam_size, as_pointcloud, shared_intrinsics, inputfiles],
161
+ # outputs=[filestate, outmodel],
162
+ # fn=run_example,
163
+ # cache_examples="lazy",
164
+ # )
165
+
166
+ # events
167
+ run_btn.click(fn=local_get_reconstructed_scene,
168
+ inputs=[inputfiles, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name],
169
+ outputs=[outmodel])
170
+
171
+ demo.launch(show_error=True, share=None, server_name=None, server_port=None)
172
+ shutil.rmtree(tmpdirname)
croco/LICENSE ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CroCo, Copyright (c) 2022-present Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license.
2
+
3
+ A summary of the CC BY-NC-SA 4.0 license is located here:
4
+ https://creativecommons.org/licenses/by-nc-sa/4.0/
5
+
6
+ The CC BY-NC-SA 4.0 license is located here:
7
+ https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
8
+
9
+
10
+ SEE NOTICE BELOW WITH RESPECT TO THE FILE: models/pos_embed.py, models/blocks.py
11
+
12
+ ***************************
13
+
14
+ NOTICE WITH RESPECT TO THE FILE: models/pos_embed.py
15
+
16
+ This software is being redistributed in a modifiled form. The original form is available here:
17
+
18
+ https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
19
+
20
+ This software in this file incorporates parts of the following software available here:
21
+
22
+ Transformer: https://github.com/tensorflow/models/blob/master/official/legacy/transformer/model_utils.py
23
+ available under the following license: https://github.com/tensorflow/models/blob/master/LICENSE
24
+
25
+ MoCo v3: https://github.com/facebookresearch/moco-v3
26
+ available under the following license: https://github.com/facebookresearch/moco-v3/blob/main/LICENSE
27
+
28
+ DeiT: https://github.com/facebookresearch/deit
29
+ available under the following license: https://github.com/facebookresearch/deit/blob/main/LICENSE
30
+
31
+
32
+ ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW:
33
+
34
+ https://github.com/facebookresearch/mae/blob/main/LICENSE
35
+
36
+ Attribution-NonCommercial 4.0 International
37
+
38
+ ***************************
39
+
40
+ NOTICE WITH RESPECT TO THE FILE: models/blocks.py
41
+
42
+ This software is being redistributed in a modifiled form. The original form is available here:
43
+
44
+ https://github.com/rwightman/pytorch-image-models
45
+
46
+ ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW:
47
+
48
+ https://github.com/rwightman/pytorch-image-models/blob/master/LICENSE
49
+
50
+ Apache License
51
+ Version 2.0, January 2004
52
+ http://www.apache.org/licenses/
croco/NOTICE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CroCo
2
+ Copyright 2022-present NAVER Corp.
3
+
4
+ This project contains subcomponents with separate copyright notices and license terms.
5
+ Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses.
6
+
7
+ ====
8
+
9
+ facebookresearch/mae
10
+ https://github.com/facebookresearch/mae
11
+
12
+ Attribution-NonCommercial 4.0 International
13
+
14
+ ====
15
+
16
+ rwightman/pytorch-image-models
17
+ https://github.com/rwightman/pytorch-image-models
18
+
19
+ Apache License
20
+ Version 2.0, January 2004
21
+ http://www.apache.org/licenses/
croco/README.MD ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CroCo + CroCo v2 / CroCo-Stereo / CroCo-Flow
2
+
3
+ [[`CroCo arXiv`](https://arxiv.org/abs/2210.10716)] [[`CroCo v2 arXiv`](https://arxiv.org/abs/2211.10408)] [[`project page and demo`](https://croco.europe.naverlabs.com/)]
4
+
5
+ This repository contains the code for our CroCo model presented in our NeurIPS'22 paper [CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion](https://openreview.net/pdf?id=wZEfHUM5ri) and its follow-up extension published at ICCV'23 [Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow](https://openaccess.thecvf.com/content/ICCV2023/html/Weinzaepfel_CroCo_v2_Improved_Cross-view_Completion_Pre-training_for_Stereo_Matching_and_ICCV_2023_paper.html), refered to as CroCo v2:
6
+
7
+ ![image](assets/arch.jpg)
8
+
9
+ ```bibtex
10
+ @inproceedings{croco,
11
+ title={{CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion}},
12
+ author={{Weinzaepfel, Philippe and Leroy, Vincent and Lucas, Thomas and Br\'egier, Romain and Cabon, Yohann and Arora, Vaibhav and Antsfeld, Leonid and Chidlovskii, Boris and Csurka, Gabriela and Revaud J\'er\^ome}},
13
+ booktitle={{NeurIPS}},
14
+ year={2022}
15
+ }
16
+
17
+ @inproceedings{croco_v2,
18
+ title={{CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow}},
19
+ author={Weinzaepfel, Philippe and Lucas, Thomas and Leroy, Vincent and Cabon, Yohann and Arora, Vaibhav and Br{\'e}gier, Romain and Csurka, Gabriela and Antsfeld, Leonid and Chidlovskii, Boris and Revaud, J{\'e}r{\^o}me},
20
+ booktitle={ICCV},
21
+ year={2023}
22
+ }
23
+ ```
24
+
25
+ ## License
26
+
27
+ The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](LICENSE) for more information.
28
+ Some components are based on code from [MAE](https://github.com/facebookresearch/mae) released under the CC BY-NC-SA 4.0 License and [timm](https://github.com/rwightman/pytorch-image-models) released under the Apache 2.0 License.
29
+ Some components for stereo matching and optical flow are based on code from [unimatch](https://github.com/autonomousvision/unimatch) released under the MIT license.
30
+
31
+ ## Preparation
32
+
33
+ 1. Install dependencies on a machine with a NVidia GPU using e.g. conda. Note that `habitat-sim` is required only for the interactive demo and the synthetic pre-training data generation. If you don't plan to use it, you can ignore the line installing it and use a more recent python version.
34
+
35
+ ```bash
36
+ conda create -n croco python=3.7 cmake=3.14.0
37
+ conda activate croco
38
+ conda install habitat-sim headless -c conda-forge -c aihabitat
39
+ conda install pytorch torchvision -c pytorch
40
+ conda install notebook ipykernel matplotlib
41
+ conda install ipywidgets widgetsnbextension
42
+ conda install scikit-learn tqdm quaternion opencv # only for pretraining / habitat data generation
43
+
44
+ ```
45
+
46
+ 2. Compile cuda kernels for RoPE
47
+
48
+ CroCo v2 relies on RoPE positional embeddings for which you need to compile some cuda kernels.
49
+ ```bash
50
+ cd models/curope/
51
+ python setup.py build_ext --inplace
52
+ cd ../../
53
+ ```
54
+
55
+ This can be a bit long as we compile for all cuda architectures, feel free to update L9 of `models/curope/setup.py` to compile for specific architectures only.
56
+ You might also need to set the environment `CUDA_HOME` in case you use a custom cuda installation.
57
+
58
+ In case you cannot provide, we also provide a slow pytorch version, which will be automatically loaded.
59
+
60
+ 3. Download pre-trained model
61
+
62
+ We provide several pre-trained models:
63
+
64
+ | modelname | pre-training data | pos. embed. | Encoder | Decoder |
65
+ |------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------|---------|
66
+ | [`CroCo.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth) | Habitat | cosine | ViT-B | Small |
67
+ | [`CroCo_V2_ViTBase_SmallDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_SmallDecoder.pth) | Habitat + real | RoPE | ViT-B | Small |
68
+ | [`CroCo_V2_ViTBase_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTBase_BaseDecoder.pth) | Habitat + real | RoPE | ViT-B | Base |
69
+ | [`CroCo_V2_ViTLarge_BaseDecoder.pth`](https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo_V2_ViTLarge_BaseDecoder.pth) | Habitat + real | RoPE | ViT-L | Base |
70
+
71
+ To download a specific model, i.e., the first one (`CroCo.pth`)
72
+ ```bash
73
+ mkdir -p pretrained_models/
74
+ wget https://download.europe.naverlabs.com/ComputerVision/CroCo/CroCo.pth -P pretrained_models/
75
+ ```
76
+
77
+ ## Reconstruction example
78
+
79
+ Simply run after downloading the `CroCo_V2_ViTLarge_BaseDecoder` pretrained model (or update the corresponding line in `demo.py`)
80
+ ```bash
81
+ python demo.py
82
+ ```
83
+
84
+ ## Interactive demonstration of cross-view completion reconstruction on the Habitat simulator
85
+
86
+ First download the test scene from Habitat:
87
+ ```bash
88
+ python -m habitat_sim.utils.datasets_download --uids habitat_test_scenes --data-path habitat-sim-data/
89
+ ```
90
+
91
+ Then, run the Notebook demo `interactive_demo.ipynb`.
92
+
93
+ In this demo, you should be able to sample a random reference viewpoint from an [Habitat](https://github.com/facebookresearch/habitat-sim) test scene. Use the sliders to change viewpoint and select a masked target view to reconstruct using CroCo.
94
+ ![croco_interactive_demo](https://user-images.githubusercontent.com/1822210/200516576-7937bc6a-55f8-49ed-8618-3ddf89433ea4.jpg)
95
+
96
+ ## Pre-training
97
+
98
+ ### CroCo
99
+
100
+ To pre-train CroCo, please first generate the pre-training data from the Habitat simulator, following the instructions in [datasets/habitat_sim/README.MD](datasets/habitat_sim/README.MD) and then run the following command:
101
+ ```
102
+ torchrun --nproc_per_node=4 pretrain.py --output_dir ./output/pretraining/
103
+ ```
104
+
105
+ Our CroCo pre-training was launched on a single server with 4 GPUs.
106
+ It should take around 10 days with A100 or 15 days with V100 to do the 400 pre-training epochs, but decent performances are obtained earlier in training.
107
+ Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case.
108
+ The first run can take a few minutes to start, to parse all available pre-training pairs.
109
+
110
+ ### CroCo v2
111
+
112
+ For CroCo v2 pre-training, in addition to the generation of the pre-training data from the Habitat simulator above, please pre-extract the crops from the real datasets following the instructions in [datasets/crops/README.MD](datasets/crops/README.MD).
113
+ Then, run the following command for the largest model (ViT-L encoder, Base decoder):
114
+ ```
115
+ torchrun --nproc_per_node=8 pretrain.py --model "CroCoNet(enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_num_heads=12, dec_depth=12, pos_embed='RoPE100')" --dataset "habitat_release+ARKitScenes+MegaDepth+3DStreetView+IndoorVL" --warmup_epochs 12 --max_epoch 125 --epochs 250 --amp 0 --keep_freq 5 --output_dir ./output/pretraining_crocov2/
116
+ ```
117
+
118
+ Our CroCo v2 pre-training was launched on a single server with 8 GPUs for the largest model, and on a single server with 4 GPUs for the smaller ones, keeping a batch size of 64 per gpu in all cases.
119
+ The largest model should take around 12 days on A100.
120
+ Note that, while the code contains the same scaling rule of the learning rate as MAE when changing the effective batch size, we did not experimented if it is valid in our case.
121
+
122
+ ## Stereo matching and Optical flow downstream tasks
123
+
124
+ For CroCo-Stereo and CroCo-Flow, please refer to [stereoflow/README.MD](stereoflow/README.MD).
croco/assets/Chateau1.png ADDED
croco/assets/Chateau2.png ADDED
croco/assets/arch.jpg ADDED
croco/croco-stereo-flow-demo.ipynb ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "9bca0f41",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Simple inference example with CroCo-Stereo or CroCo-Flow"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "80653ef7",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n",
19
+ "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)."
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "markdown",
24
+ "id": "4f033862",
25
+ "metadata": {},
26
+ "source": [
27
+ "First download the model(s) of your choice by running\n",
28
+ "```\n",
29
+ "bash stereoflow/download_model.sh crocostereo.pth\n",
30
+ "bash stereoflow/download_model.sh crocoflow.pth\n",
31
+ "```"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": null,
37
+ "id": "1fb2e392",
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "import torch\n",
42
+ "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n",
43
+ "device = torch.device('cuda:0' if use_gpu else 'cpu')\n",
44
+ "import matplotlib.pylab as plt"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "id": "e0e25d77",
51
+ "metadata": {},
52
+ "outputs": [],
53
+ "source": [
54
+ "from stereoflow.test import _load_model_and_criterion\n",
55
+ "from stereoflow.engine import tiled_pred\n",
56
+ "from stereoflow.datasets_stereo import img_to_tensor, vis_disparity\n",
57
+ "from stereoflow.datasets_flow import flowToColor\n",
58
+ "tile_overlap=0.7 # recommended value, higher value can be slightly better but slower"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "id": "86a921f5",
64
+ "metadata": {},
65
+ "source": [
66
+ "### CroCo-Stereo example"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "id": "64e483cb",
73
+ "metadata": {},
74
+ "outputs": [],
75
+ "source": [
76
+ "image1 = np.asarray(Image.open('<path_to_left_image>'))\n",
77
+ "image2 = np.asarray(Image.open('<path_to_right_image>'))"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": null,
83
+ "id": "f0d04303",
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocostereo.pth', None, device)\n"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "id": "47dc14b5",
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n",
98
+ "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n",
99
+ "with torch.inference_mode():\n",
100
+ " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n",
101
+ "pred = pred.squeeze(0).squeeze(0).cpu().numpy()"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "id": "583b9f16",
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": [
111
+ "plt.imshow(vis_disparity(pred))\n",
112
+ "plt.axis('off')"
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "markdown",
117
+ "id": "d2df5d70",
118
+ "metadata": {},
119
+ "source": [
120
+ "### CroCo-Flow example"
121
+ ]
122
+ },
123
+ {
124
+ "cell_type": "code",
125
+ "execution_count": null,
126
+ "id": "9ee257a7",
127
+ "metadata": {},
128
+ "outputs": [],
129
+ "source": [
130
+ "image1 = np.asarray(Image.open('<path_to_first_image>'))\n",
131
+ "image2 = np.asarray(Image.open('<path_to_second_image>'))"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "id": "d5edccf0",
138
+ "metadata": {},
139
+ "outputs": [],
140
+ "source": [
141
+ "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocoflow.pth', None, device)\n"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": null,
147
+ "id": "b19692c3",
148
+ "metadata": {},
149
+ "outputs": [],
150
+ "source": [
151
+ "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n",
152
+ "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n",
153
+ "with torch.inference_mode():\n",
154
+ " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n",
155
+ "pred = pred.squeeze(0).permute(1,2,0).cpu().numpy()"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "id": "26f79db3",
162
+ "metadata": {},
163
+ "outputs": [],
164
+ "source": [
165
+ "plt.imshow(flowToColor(pred))\n",
166
+ "plt.axis('off')"
167
+ ]
168
+ }
169
+ ],
170
+ "metadata": {
171
+ "kernelspec": {
172
+ "display_name": "Python 3 (ipykernel)",
173
+ "language": "python",
174
+ "name": "python3"
175
+ },
176
+ "language_info": {
177
+ "codemirror_mode": {
178
+ "name": "ipython",
179
+ "version": 3
180
+ },
181
+ "file_extension": ".py",
182
+ "mimetype": "text/x-python",
183
+ "name": "python",
184
+ "nbconvert_exporter": "python",
185
+ "pygments_lexer": "ipython3",
186
+ "version": "3.9.7"
187
+ }
188
+ },
189
+ "nbformat": 4,
190
+ "nbformat_minor": 5
191
+ }
croco/datasets/__init__.py ADDED
File without changes
croco/datasets/crops/README.MD ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Generation of crops from the real datasets
2
+
3
+ The instructions below allow to generate the crops used for pre-training CroCo v2 from the following real-world datasets: ARKitScenes, MegaDepth, 3DStreetView and IndoorVL.
4
+
5
+ ### Download the metadata of the crops to generate
6
+
7
+ First, download the metadata and put them in `./data/`:
8
+ ```
9
+ mkdir -p data
10
+ cd data/
11
+ wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/crop_metadata.zip
12
+ unzip crop_metadata.zip
13
+ rm crop_metadata.zip
14
+ cd ..
15
+ ```
16
+
17
+ ### Prepare the original datasets
18
+
19
+ Second, download the original datasets in `./data/original_datasets/`.
20
+ ```
21
+ mkdir -p data/original_datasets
22
+ ```
23
+
24
+ ##### ARKitScenes
25
+
26
+ Download the `raw` dataset from https://github.com/apple/ARKitScenes/blob/main/DATA.md and put it in `./data/original_datasets/ARKitScenes/`.
27
+ The resulting file structure should be like:
28
+ ```
29
+ ./data/original_datasets/ARKitScenes/
30
+ └───Training
31
+ └───40753679
32
+ │ │ ultrawide
33
+ │ │ ...
34
+ └───40753686
35
+
36
+ ...
37
+ ```
38
+
39
+ ##### MegaDepth
40
+
41
+ Download `MegaDepth v1 Dataset` from https://www.cs.cornell.edu/projects/megadepth/ and put it in `./data/original_datasets/MegaDepth/`.
42
+ The resulting file structure should be like:
43
+
44
+ ```
45
+ ./data/original_datasets/MegaDepth/
46
+ └───0000
47
+ │ └───images
48
+ │ │ │ 1000557903_87fa96b8a4_o.jpg
49
+ │ │ └ ...
50
+ │ └─── ...
51
+ └───0001
52
+ │ │
53
+ │ └ ...
54
+ └─── ...
55
+ ```
56
+
57
+ ##### 3DStreetView
58
+
59
+ Download `3D_Street_View` dataset from https://github.com/amir32002/3D_Street_View and put it in `./data/original_datasets/3DStreetView/`.
60
+ The resulting file structure should be like:
61
+
62
+ ```
63
+ ./data/original_datasets/3DStreetView/
64
+ └───dataset_aligned
65
+ │ └───0002
66
+ │ │ │ 0000002_0000001_0000002_0000001.jpg
67
+ │ │ └ ...
68
+ │ └─── ...
69
+ └───dataset_unaligned
70
+ │ └───0003
71
+ │ │ │ 0000003_0000001_0000002_0000001.jpg
72
+ │ │ └ ...
73
+ │ └─── ...
74
+ ```
75
+
76
+ ##### IndoorVL
77
+
78
+ Download the `IndoorVL` datasets using [Kapture](https://github.com/naver/kapture).
79
+
80
+ ```
81
+ pip install kapture
82
+ mkdir -p ./data/original_datasets/IndoorVL
83
+ cd ./data/original_datasets/IndoorVL
84
+ kapture_download_dataset.py update
85
+ kapture_download_dataset.py install "HyundaiDepartmentStore_*"
86
+ kapture_download_dataset.py install "GangnamStation_*"
87
+ cd -
88
+ ```
89
+
90
+ ### Extract the crops
91
+
92
+ Now, extract the crops for each of the dataset:
93
+ ```
94
+ for dataset in ARKitScenes MegaDepth 3DStreetView IndoorVL;
95
+ do
96
+ python3 datasets/crops/extract_crops_from_images.py --crops ./data/crop_metadata/${dataset}/crops_release.txt --root-dir ./data/original_datasets/${dataset}/ --output-dir ./data/${dataset}_crops/ --imsize 256 --nthread 8 --max-subdir-levels 5 --ideal-number-pairs-in-dir 500;
97
+ done
98
+ ```
99
+
100
+ ##### Note for IndoorVL
101
+
102
+ Due to some legal issues, we can only release 144,228 pairs out of the 1,593,689 pairs used in the paper.
103
+ To account for it in terms of number of pre-training iterations, the pre-training command in this repository uses 125 training epochs including 12 warm-up epochs and learning rate cosine schedule of 250, instead of 100, 10 and 200 respectively.
104
+ The impact on the performance is negligible.
croco/datasets/crops/extract_crops_from_images.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+ #
4
+ # --------------------------------------------------------
5
+ # Extracting crops for pre-training
6
+ # --------------------------------------------------------
7
+
8
+ import os
9
+ import argparse
10
+ from tqdm import tqdm
11
+ from PIL import Image
12
+ import functools
13
+ from multiprocessing import Pool
14
+ import math
15
+
16
+
17
+ def arg_parser():
18
+ parser = argparse.ArgumentParser('Generate cropped image pairs from image crop list')
19
+
20
+ parser.add_argument('--crops', type=str, required=True, help='crop file')
21
+ parser.add_argument('--root-dir', type=str, required=True, help='root directory')
22
+ parser.add_argument('--output-dir', type=str, required=True, help='output directory')
23
+ parser.add_argument('--imsize', type=int, default=256, help='size of the crops')
24
+ parser.add_argument('--nthread', type=int, required=True, help='number of simultaneous threads')
25
+ parser.add_argument('--max-subdir-levels', type=int, default=5, help='maximum number of subdirectories')
26
+ parser.add_argument('--ideal-number-pairs-in-dir', type=int, default=500, help='number of pairs stored in a dir')
27
+ return parser
28
+
29
+
30
+ def main(args):
31
+ listing_path = os.path.join(args.output_dir, 'listing.txt')
32
+
33
+ print(f'Loading list of crops ... ({args.nthread} threads)')
34
+ crops, num_crops_to_generate = load_crop_file(args.crops)
35
+
36
+ print(f'Preparing jobs ({len(crops)} candidate image pairs)...')
37
+ num_levels = min(math.ceil(math.log(num_crops_to_generate, args.ideal_number_pairs_in_dir)), args.max_subdir_levels)
38
+ num_pairs_in_dir = math.ceil(num_crops_to_generate ** (1/num_levels))
39
+
40
+ jobs = prepare_jobs(crops, num_levels, num_pairs_in_dir)
41
+ del crops
42
+
43
+ os.makedirs(args.output_dir, exist_ok=True)
44
+ mmap = Pool(args.nthread).imap_unordered if args.nthread > 1 else map
45
+ call = functools.partial(save_image_crops, args)
46
+
47
+ print(f"Generating cropped images to {args.output_dir} ...")
48
+ with open(listing_path, 'w') as listing:
49
+ listing.write('# pair_path\n')
50
+ for results in tqdm(mmap(call, jobs), total=len(jobs)):
51
+ for path in results:
52
+ listing.write(f'{path}\n')
53
+ print('Finished writing listing to', listing_path)
54
+
55
+
56
+ def load_crop_file(path):
57
+ data = open(path).read().splitlines()
58
+ pairs = []
59
+ num_crops_to_generate = 0
60
+ for line in tqdm(data):
61
+ if line.startswith('#'):
62
+ continue
63
+ line = line.split(', ')
64
+ if len(line) < 8:
65
+ img1, img2, rotation = line
66
+ pairs.append((img1, img2, int(rotation), []))
67
+ else:
68
+ l1, r1, t1, b1, l2, r2, t2, b2 = map(int, line)
69
+ rect1, rect2 = (l1, t1, r1, b1), (l2, t2, r2, b2)
70
+ pairs[-1][-1].append((rect1, rect2))
71
+ num_crops_to_generate += 1
72
+ return pairs, num_crops_to_generate
73
+
74
+
75
+ def prepare_jobs(pairs, num_levels, num_pairs_in_dir):
76
+ jobs = []
77
+ powers = [num_pairs_in_dir**level for level in reversed(range(num_levels))]
78
+
79
+ def get_path(idx):
80
+ idx_array = []
81
+ d = idx
82
+ for level in range(num_levels - 1):
83
+ idx_array.append(idx // powers[level])
84
+ idx = idx % powers[level]
85
+ idx_array.append(d)
86
+ return '/'.join(map(lambda x: hex(x)[2:], idx_array))
87
+
88
+ idx = 0
89
+ for pair_data in tqdm(pairs):
90
+ img1, img2, rotation, crops = pair_data
91
+ if -60 <= rotation and rotation <= 60:
92
+ rotation = 0 # most likely not a true rotation
93
+ paths = [get_path(idx + k) for k in range(len(crops))]
94
+ idx += len(crops)
95
+ jobs.append(((img1, img2), rotation, crops, paths))
96
+ return jobs
97
+
98
+
99
+ def load_image(path):
100
+ try:
101
+ return Image.open(path).convert('RGB')
102
+ except Exception as e:
103
+ print('skipping', path, e)
104
+ raise OSError()
105
+
106
+
107
+ def save_image_crops(args, data):
108
+ # load images
109
+ img_pair, rot, crops, paths = data
110
+ try:
111
+ img1, img2 = [load_image(os.path.join(args.root_dir, impath)) for impath in img_pair]
112
+ except OSError as e:
113
+ return []
114
+
115
+ def area(sz):
116
+ return sz[0] * sz[1]
117
+
118
+ tgt_size = (args.imsize, args.imsize)
119
+
120
+ def prepare_crop(img, rect, rot=0):
121
+ # actual crop
122
+ img = img.crop(rect)
123
+
124
+ # resize to desired size
125
+ interp = Image.Resampling.LANCZOS if area(img.size) > 4*area(tgt_size) else Image.Resampling.BICUBIC
126
+ img = img.resize(tgt_size, resample=interp)
127
+
128
+ # rotate the image
129
+ rot90 = (round(rot/90) % 4) * 90
130
+ if rot90 == 90:
131
+ img = img.transpose(Image.Transpose.ROTATE_90)
132
+ elif rot90 == 180:
133
+ img = img.transpose(Image.Transpose.ROTATE_180)
134
+ elif rot90 == 270:
135
+ img = img.transpose(Image.Transpose.ROTATE_270)
136
+ return img
137
+
138
+ results = []
139
+ for (rect1, rect2), path in zip(crops, paths):
140
+ crop1 = prepare_crop(img1, rect1)
141
+ crop2 = prepare_crop(img2, rect2, rot)
142
+
143
+ fullpath1 = os.path.join(args.output_dir, path+'_1.jpg')
144
+ fullpath2 = os.path.join(args.output_dir, path+'_2.jpg')
145
+ os.makedirs(os.path.dirname(fullpath1), exist_ok=True)
146
+
147
+ assert not os.path.isfile(fullpath1), fullpath1
148
+ assert not os.path.isfile(fullpath2), fullpath2
149
+ crop1.save(fullpath1)
150
+ crop2.save(fullpath2)
151
+ results.append(path)
152
+
153
+ return results
154
+
155
+
156
+ if __name__ == '__main__':
157
+ args = arg_parser().parse_args()
158
+ main(args)
159
+
croco/datasets/habitat_sim/README.MD ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Generation of synthetic image pairs using Habitat-Sim
2
+
3
+ These instructions allow to generate pre-training pairs from the Habitat simulator.
4
+ As we did not save metadata of the pairs used in the original paper, they are not strictly the same, but these data use the same setting and are equivalent.
5
+
6
+ ### Download Habitat-Sim scenes
7
+ Download Habitat-Sim scenes:
8
+ - Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md
9
+ - We used scenes from the HM3D, habitat-test-scenes, Replica, ReplicaCad and ScanNet datasets.
10
+ - Please put the scenes under `./data/habitat-sim-data/scene_datasets/` following the structure below, or update manually paths in `paths.py`.
11
+ ```
12
+ ./data/
13
+ └──habitat-sim-data/
14
+ └──scene_datasets/
15
+ ├──hm3d/
16
+ ├──gibson/
17
+ ├──habitat-test-scenes/
18
+ ├──replica_cad_baked_lighting/
19
+ ├──replica_cad/
20
+ ├──ReplicaDataset/
21
+ └──scannet/
22
+ ```
23
+
24
+ ### Image pairs generation
25
+ We provide metadata to generate reproducible images pairs for pretraining and validation.
26
+ Experiments described in the paper used similar data, but whose generation was not reproducible at the time.
27
+
28
+ Specifications:
29
+ - 256x256 resolution images, with 60 degrees field of view .
30
+ - Up to 1000 image pairs per scene.
31
+ - Number of scenes considered/number of images pairs per dataset:
32
+ - Scannet: 1097 scenes / 985 209 pairs
33
+ - HM3D:
34
+ - hm3d/train: 800 / 800k pairs
35
+ - hm3d/val: 100 scenes / 100k pairs
36
+ - hm3d/minival: 10 scenes / 10k pairs
37
+ - habitat-test-scenes: 3 scenes / 3k pairs
38
+ - replica_cad_baked_lighting: 13 scenes / 13k pairs
39
+
40
+ - Scenes from hm3d/val and hm3d/minival pairs were not used for the pre-training but kept for validation purposes.
41
+
42
+ Download metadata and extract it:
43
+ ```bash
44
+ mkdir -p data/habitat_release_metadata/
45
+ cd data/habitat_release_metadata/
46
+ wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/habitat_release_metadata/multiview_habitat_metadata.tar.gz
47
+ tar -xvf multiview_habitat_metadata.tar.gz
48
+ cd ../..
49
+ # Location of the metadata
50
+ METADATA_DIR="./data/habitat_release_metadata/multiview_habitat_metadata"
51
+ ```
52
+
53
+ Generate image pairs from metadata:
54
+ - The following command will print a list of commandlines to generate image pairs for each scene:
55
+ ```bash
56
+ # Target output directory
57
+ PAIRS_DATASET_DIR="./data/habitat_release/"
58
+ python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR
59
+ ```
60
+ - One can launch multiple of such commands in parallel e.g. using GNU Parallel:
61
+ ```bash
62
+ python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR | parallel -j 16
63
+ ```
64
+
65
+ ## Metadata generation
66
+
67
+ Image pairs were randomly sampled using the following commands, whose outputs contain randomness and are thus not exactly reproducible:
68
+ ```bash
69
+ # Print commandlines to generate image pairs from the different scenes available.
70
+ PAIRS_DATASET_DIR=MY_CUSTOM_PATH
71
+ python datasets/habitat_sim/generate_multiview_images.py --list_commands --output_dir=$PAIRS_DATASET_DIR
72
+
73
+ # Once a dataset is generated, pack metadata files for reproducibility.
74
+ METADATA_DIR=MY_CUSTON_PATH
75
+ python datasets/habitat_sim/pack_metadata_files.py $PAIRS_DATASET_DIR $METADATA_DIR
76
+ ```
croco/datasets/habitat_sim/__init__.py ADDED
File without changes
croco/datasets/habitat_sim/generate_from_metadata.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ """
5
+ Script to generate image pairs for a given scene reproducing poses provided in a metadata file.
6
+ """
7
+ import os
8
+ from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator
9
+ from datasets.habitat_sim.paths import SCENES_DATASET
10
+ import argparse
11
+ import quaternion
12
+ import PIL.Image
13
+ import cv2
14
+ import json
15
+ from tqdm import tqdm
16
+
17
+ def generate_multiview_images_from_metadata(metadata_filename,
18
+ output_dir,
19
+ overload_params = dict(),
20
+ scene_datasets_paths=None,
21
+ exist_ok=False):
22
+ """
23
+ Generate images from a metadata file for reproducibility purposes.
24
+ """
25
+ # Reorder paths by decreasing label length, to avoid collisions when testing if a string by such label
26
+ if scene_datasets_paths is not None:
27
+ scene_datasets_paths = dict(sorted(scene_datasets_paths.items(), key= lambda x: len(x[0]), reverse=True))
28
+
29
+ with open(metadata_filename, 'r') as f:
30
+ input_metadata = json.load(f)
31
+ metadata = dict()
32
+ for key, value in input_metadata.items():
33
+ # Optionally replace some paths
34
+ if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "":
35
+ if scene_datasets_paths is not None:
36
+ for dataset_label, dataset_path in scene_datasets_paths.items():
37
+ if value.startswith(dataset_label):
38
+ value = os.path.normpath(os.path.join(dataset_path, os.path.relpath(value, dataset_label)))
39
+ break
40
+ metadata[key] = value
41
+
42
+ # Overload some parameters
43
+ for key, value in overload_params.items():
44
+ metadata[key] = value
45
+
46
+ generation_entries = dict([(key, value) for key, value in metadata.items() if not (key in ('multiviews', 'output_dir', 'generate_depth'))])
47
+ generate_depth = metadata["generate_depth"]
48
+
49
+ os.makedirs(output_dir, exist_ok=exist_ok)
50
+
51
+ generator = MultiviewHabitatSimGenerator(**generation_entries)
52
+
53
+ # Generate views
54
+ for idx_label, data in tqdm(metadata['multiviews'].items()):
55
+ positions = data["positions"]
56
+ orientations = data["orientations"]
57
+ n = len(positions)
58
+ for oidx in range(n):
59
+ observation = generator.render_viewpoint(positions[oidx], quaternion.from_float_array(orientations[oidx]))
60
+ observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1
61
+ # Color image saved using PIL
62
+ img = PIL.Image.fromarray(observation['color'][:,:,:3])
63
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg")
64
+ img.save(filename)
65
+ if generate_depth:
66
+ # Depth image as EXR file
67
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr")
68
+ cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
69
+ # Camera parameters
70
+ camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")])
71
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json")
72
+ with open(filename, "w") as f:
73
+ json.dump(camera_params, f)
74
+ # Save metadata
75
+ with open(os.path.join(output_dir, "metadata.json"), "w") as f:
76
+ json.dump(metadata, f)
77
+
78
+ generator.close()
79
+
80
+ if __name__ == "__main__":
81
+ parser = argparse.ArgumentParser()
82
+ parser.add_argument("--metadata_filename", required=True)
83
+ parser.add_argument("--output_dir", required=True)
84
+ args = parser.parse_args()
85
+
86
+ generate_multiview_images_from_metadata(metadata_filename=args.metadata_filename,
87
+ output_dir=args.output_dir,
88
+ scene_datasets_paths=SCENES_DATASET,
89
+ overload_params=dict(),
90
+ exist_ok=True)
91
+
92
+
croco/datasets/habitat_sim/generate_from_metadata_files.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ """
5
+ Script generating commandlines to generate image pairs from metadata files.
6
+ """
7
+ import os
8
+ import glob
9
+ from tqdm import tqdm
10
+ import argparse
11
+
12
+ if __name__ == "__main__":
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument("--input_dir", required=True)
15
+ parser.add_argument("--output_dir", required=True)
16
+ parser.add_argument("--prefix", default="", help="Commanline prefix, useful e.g. to setup environment.")
17
+ args = parser.parse_args()
18
+
19
+ input_metadata_filenames = glob.iglob(f"{args.input_dir}/**/metadata.json", recursive=True)
20
+
21
+ for metadata_filename in tqdm(input_metadata_filenames):
22
+ output_dir = os.path.join(args.output_dir, os.path.relpath(os.path.dirname(metadata_filename), args.input_dir))
23
+ # Do not process the scene if the metadata file already exists
24
+ if os.path.exists(os.path.join(output_dir, "metadata.json")):
25
+ continue
26
+ commandline = f"{args.prefix}python datasets/habitat_sim/generate_from_metadata.py --metadata_filename={metadata_filename} --output_dir={output_dir}"
27
+ print(commandline)
croco/datasets/habitat_sim/generate_multiview_images.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ import os
5
+ from tqdm import tqdm
6
+ import argparse
7
+ import PIL.Image
8
+ import numpy as np
9
+ import json
10
+ from datasets.habitat_sim.multiview_habitat_sim_generator import MultiviewHabitatSimGenerator, NoNaviguableSpaceError
11
+ from datasets.habitat_sim.paths import list_scenes_available
12
+ import cv2
13
+ import quaternion
14
+ import shutil
15
+
16
+ def generate_multiview_images_for_scene(scene_dataset_config_file,
17
+ scene,
18
+ navmesh,
19
+ output_dir,
20
+ views_count,
21
+ size,
22
+ exist_ok=False,
23
+ generate_depth=False,
24
+ **kwargs):
25
+ """
26
+ Generate tuples of overlapping views for a given scene.
27
+ generate_depth: generate depth images and camera parameters.
28
+ """
29
+ if os.path.exists(output_dir) and not exist_ok:
30
+ print(f"Scene {scene}: data already generated. Ignoring generation.")
31
+ return
32
+ try:
33
+ print(f"Scene {scene}: {size} multiview acquisitions to generate...")
34
+ os.makedirs(output_dir, exist_ok=exist_ok)
35
+
36
+ metadata_filename = os.path.join(output_dir, "metadata.json")
37
+
38
+ metadata_template = dict(scene_dataset_config_file=scene_dataset_config_file,
39
+ scene=scene,
40
+ navmesh=navmesh,
41
+ views_count=views_count,
42
+ size=size,
43
+ generate_depth=generate_depth,
44
+ **kwargs)
45
+ metadata_template["multiviews"] = dict()
46
+
47
+ if os.path.exists(metadata_filename):
48
+ print("Metadata file already exists:", metadata_filename)
49
+ print("Loading already generated metadata file...")
50
+ with open(metadata_filename, "r") as f:
51
+ metadata = json.load(f)
52
+
53
+ for key in metadata_template.keys():
54
+ if key != "multiviews":
55
+ assert metadata_template[key] == metadata[key], f"existing file is inconsistent with the input parameters:\nKey: {key}\nmetadata: {metadata[key]}\ntemplate: {metadata_template[key]}."
56
+ else:
57
+ print("No temporary file found. Starting generation from scratch...")
58
+ metadata = metadata_template
59
+
60
+ starting_id = len(metadata["multiviews"])
61
+ print(f"Starting generation from index {starting_id}/{size}...")
62
+ if starting_id >= size:
63
+ print("Generation already done.")
64
+ return
65
+
66
+ generator = MultiviewHabitatSimGenerator(scene_dataset_config_file=scene_dataset_config_file,
67
+ scene=scene,
68
+ navmesh=navmesh,
69
+ views_count = views_count,
70
+ size = size,
71
+ **kwargs)
72
+
73
+ for idx in tqdm(range(starting_id, size)):
74
+ # Generate / re-generate the observations
75
+ try:
76
+ data = generator[idx]
77
+ observations = data["observations"]
78
+ positions = data["positions"]
79
+ orientations = data["orientations"]
80
+
81
+ idx_label = f"{idx:08}"
82
+ for oidx, observation in enumerate(observations):
83
+ observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1
84
+ # Color image saved using PIL
85
+ img = PIL.Image.fromarray(observation['color'][:,:,:3])
86
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg")
87
+ img.save(filename)
88
+ if generate_depth:
89
+ # Depth image as EXR file
90
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_depth.exr")
91
+ cv2.imwrite(filename, observation['depth'], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
92
+ # Camera parameters
93
+ camera_params = dict([(key, observation[key].tolist()) for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")])
94
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}_camera_params.json")
95
+ with open(filename, "w") as f:
96
+ json.dump(camera_params, f)
97
+ metadata["multiviews"][idx_label] = {"positions": positions.tolist(),
98
+ "orientations": orientations.tolist(),
99
+ "covisibility_ratios": data["covisibility_ratios"].tolist(),
100
+ "valid_fractions": data["valid_fractions"].tolist(),
101
+ "pairwise_visibility_ratios": data["pairwise_visibility_ratios"].tolist()}
102
+ except RecursionError:
103
+ print("Recursion error: unable to sample observations for this scene. We will stop there.")
104
+ break
105
+
106
+ # Regularly save a temporary metadata file, in case we need to restart the generation
107
+ if idx % 10 == 0:
108
+ with open(metadata_filename, "w") as f:
109
+ json.dump(metadata, f)
110
+
111
+ # Save metadata
112
+ with open(metadata_filename, "w") as f:
113
+ json.dump(metadata, f)
114
+
115
+ generator.close()
116
+ except NoNaviguableSpaceError:
117
+ pass
118
+
119
+ def create_commandline(scene_data, generate_depth, exist_ok=False):
120
+ """
121
+ Create a commandline string to generate a scene.
122
+ """
123
+ def my_formatting(val):
124
+ if val is None or val == "":
125
+ return '""'
126
+ else:
127
+ return val
128
+ commandline = f"""python {__file__} --scene {my_formatting(scene_data.scene)}
129
+ --scene_dataset_config_file {my_formatting(scene_data.scene_dataset_config_file)}
130
+ --navmesh {my_formatting(scene_data.navmesh)}
131
+ --output_dir {my_formatting(scene_data.output_dir)}
132
+ --generate_depth {int(generate_depth)}
133
+ --exist_ok {int(exist_ok)}
134
+ """
135
+ commandline = " ".join(commandline.split())
136
+ return commandline
137
+
138
+ if __name__ == "__main__":
139
+ os.umask(2)
140
+
141
+ parser = argparse.ArgumentParser(description="""Example of use -- listing commands to generate data for scenes available:
142
+ > python datasets/habitat_sim/generate_multiview_habitat_images.py --list_commands
143
+ """)
144
+
145
+ parser.add_argument("--output_dir", type=str, required=True)
146
+ parser.add_argument("--list_commands", action='store_true', help="list commandlines to run if true")
147
+ parser.add_argument("--scene", type=str, default="")
148
+ parser.add_argument("--scene_dataset_config_file", type=str, default="")
149
+ parser.add_argument("--navmesh", type=str, default="")
150
+
151
+ parser.add_argument("--generate_depth", type=int, default=1)
152
+ parser.add_argument("--exist_ok", type=int, default=0)
153
+
154
+ kwargs = dict(resolution=(256,256), hfov=60, views_count = 2, size=1000)
155
+
156
+ args = parser.parse_args()
157
+ generate_depth=bool(args.generate_depth)
158
+ exist_ok = bool(args.exist_ok)
159
+
160
+ if args.list_commands:
161
+ # Listing scenes available...
162
+ scenes_data = list_scenes_available(base_output_dir=args.output_dir)
163
+
164
+ for scene_data in scenes_data:
165
+ print(create_commandline(scene_data, generate_depth=generate_depth, exist_ok=exist_ok))
166
+ else:
167
+ if args.scene == "" or args.output_dir == "":
168
+ print("Missing scene or output dir argument!")
169
+ print(parser.format_help())
170
+ else:
171
+ generate_multiview_images_for_scene(scene=args.scene,
172
+ scene_dataset_config_file = args.scene_dataset_config_file,
173
+ navmesh = args.navmesh,
174
+ output_dir = args.output_dir,
175
+ exist_ok=exist_ok,
176
+ generate_depth=generate_depth,
177
+ **kwargs)
croco/datasets/habitat_sim/multiview_habitat_sim_generator.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ import os
5
+ import numpy as np
6
+ import quaternion
7
+ import habitat_sim
8
+ import json
9
+ from sklearn.neighbors import NearestNeighbors
10
+ import cv2
11
+
12
+ # OpenCV to habitat camera convention transformation
13
+ R_OPENCV2HABITAT = np.stack((habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0)
14
+ R_HABITAT2OPENCV = R_OPENCV2HABITAT.T
15
+ DEG2RAD = np.pi / 180
16
+
17
+ def compute_camera_intrinsics(height, width, hfov):
18
+ f = width/2 / np.tan(hfov/2 * np.pi/180)
19
+ cu, cv = width/2, height/2
20
+ return f, cu, cv
21
+
22
+ def compute_camera_pose_opencv_convention(camera_position, camera_orientation):
23
+ R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT
24
+ t_cam2world = np.asarray(camera_position)
25
+ return R_cam2world, t_cam2world
26
+
27
+ def compute_pointmap(depthmap, hfov):
28
+ """ Compute a HxWx3 pointmap in camera frame from a HxW depth map."""
29
+ height, width = depthmap.shape
30
+ f, cu, cv = compute_camera_intrinsics(height, width, hfov)
31
+ # Cast depth map to point
32
+ z_cam = depthmap
33
+ u, v = np.meshgrid(range(width), range(height))
34
+ x_cam = (u - cu) / f * z_cam
35
+ y_cam = (v - cv) / f * z_cam
36
+ X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1)
37
+ return X_cam
38
+
39
+ def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation):
40
+ """Return a 3D point cloud corresponding to valid pixels of the depth map"""
41
+ R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_position, camera_rotation)
42
+
43
+ X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov)
44
+ valid_mask = (X_cam[:,:,2] != 0.0)
45
+
46
+ X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()]
47
+ X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3)
48
+ return X_world
49
+
50
+ def compute_pointcloud_overlaps_scikit(pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False):
51
+ """
52
+ Compute 'overlapping' metrics based on a distance threshold between two point clouds.
53
+ """
54
+ nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud2)
55
+ distances, indices = nbrs.kneighbors(pointcloud1)
56
+ intersection1 = np.count_nonzero(distances.flatten() < distance_threshold)
57
+
58
+ data = {"intersection1": intersection1,
59
+ "size1": len(pointcloud1)}
60
+ if compute_symmetric:
61
+ nbrs = NearestNeighbors(n_neighbors=1, algorithm = 'kd_tree').fit(pointcloud1)
62
+ distances, indices = nbrs.kneighbors(pointcloud2)
63
+ intersection2 = np.count_nonzero(distances.flatten() < distance_threshold)
64
+ data["intersection2"] = intersection2
65
+ data["size2"] = len(pointcloud2)
66
+
67
+ return data
68
+
69
+ def _append_camera_parameters(observation, hfov, camera_location, camera_rotation):
70
+ """
71
+ Add camera parameters to the observation dictionnary produced by Habitat-Sim
72
+ In-place modifications.
73
+ """
74
+ R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(camera_location, camera_rotation)
75
+ height, width = observation['depth'].shape
76
+ f, cu, cv = compute_camera_intrinsics(height, width, hfov)
77
+ K = np.asarray([[f, 0, cu],
78
+ [0, f, cv],
79
+ [0, 0, 1.0]])
80
+ observation["camera_intrinsics"] = K
81
+ observation["t_cam2world"] = t_cam2world
82
+ observation["R_cam2world"] = R_cam2world
83
+
84
+ def look_at(eye, center, up, return_cam2world=True):
85
+ """
86
+ Return camera pose looking at a given center point.
87
+ Analogous of gluLookAt function, using OpenCV camera convention.
88
+ """
89
+ z = center - eye
90
+ z /= np.linalg.norm(z, axis=-1, keepdims=True)
91
+ y = -up
92
+ y = y - np.sum(y * z, axis=-1, keepdims=True) * z
93
+ y /= np.linalg.norm(y, axis=-1, keepdims=True)
94
+ x = np.cross(y, z, axis=-1)
95
+
96
+ if return_cam2world:
97
+ R = np.stack((x, y, z), axis=-1)
98
+ t = eye
99
+ else:
100
+ # World to camera transformation
101
+ # Transposed matrix
102
+ R = np.stack((x, y, z), axis=-2)
103
+ t = - np.einsum('...ij, ...j', R, eye)
104
+ return R, t
105
+
106
+ def look_at_for_habitat(eye, center, up, return_cam2world=True):
107
+ R, t = look_at(eye, center, up)
108
+ orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T)
109
+ return orientation, t
110
+
111
+ def generate_orientation_noise(pan_range, tilt_range, roll_range):
112
+ return (quaternion.from_rotation_vector(np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP)
113
+ * quaternion.from_rotation_vector(np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT)
114
+ * quaternion.from_rotation_vector(np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT))
115
+
116
+
117
+ class NoNaviguableSpaceError(RuntimeError):
118
+ def __init__(self, *args):
119
+ super().__init__(*args)
120
+
121
+ class MultiviewHabitatSimGenerator:
122
+ def __init__(self,
123
+ scene,
124
+ navmesh,
125
+ scene_dataset_config_file,
126
+ resolution = (240, 320),
127
+ views_count=2,
128
+ hfov = 60,
129
+ gpu_id = 0,
130
+ size = 10000,
131
+ minimum_covisibility = 0.5,
132
+ transform = None):
133
+ self.scene = scene
134
+ self.navmesh = navmesh
135
+ self.scene_dataset_config_file = scene_dataset_config_file
136
+ self.resolution = resolution
137
+ self.views_count = views_count
138
+ assert(self.views_count >= 1)
139
+ self.hfov = hfov
140
+ self.gpu_id = gpu_id
141
+ self.size = size
142
+ self.transform = transform
143
+
144
+ # Noise added to camera orientation
145
+ self.pan_range = (-3, 3)
146
+ self.tilt_range = (-10, 10)
147
+ self.roll_range = (-5, 5)
148
+
149
+ # Height range to sample cameras
150
+ self.height_range = (1.2, 1.8)
151
+
152
+ # Random steps between the camera views
153
+ self.random_steps_count = 5
154
+ self.random_step_variance = 2.0
155
+
156
+ # Minimum fraction of the scene which should be valid (well defined depth)
157
+ self.minimum_valid_fraction = 0.7
158
+
159
+ # Distance threshold to see to select pairs
160
+ self.distance_threshold = 0.05
161
+ # Minimum IoU of a view point cloud with respect to the reference view to be kept.
162
+ self.minimum_covisibility = minimum_covisibility
163
+
164
+ # Maximum number of retries.
165
+ self.max_attempts_count = 100
166
+
167
+ self.seed = None
168
+ self._lazy_initialization()
169
+
170
+ def _lazy_initialization(self):
171
+ # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly
172
+ if self.seed == None:
173
+ # Re-seed numpy generator
174
+ np.random.seed()
175
+ self.seed = np.random.randint(2**32-1)
176
+ sim_cfg = habitat_sim.SimulatorConfiguration()
177
+ sim_cfg.scene_id = self.scene
178
+ if self.scene_dataset_config_file is not None and self.scene_dataset_config_file != "":
179
+ sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file
180
+ sim_cfg.random_seed = self.seed
181
+ sim_cfg.load_semantic_mesh = False
182
+ sim_cfg.gpu_device_id = self.gpu_id
183
+
184
+ depth_sensor_spec = habitat_sim.CameraSensorSpec()
185
+ depth_sensor_spec.uuid = "depth"
186
+ depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH
187
+ depth_sensor_spec.resolution = self.resolution
188
+ depth_sensor_spec.hfov = self.hfov
189
+ depth_sensor_spec.position = [0.0, 0.0, 0]
190
+ depth_sensor_spec.orientation
191
+
192
+ rgb_sensor_spec = habitat_sim.CameraSensorSpec()
193
+ rgb_sensor_spec.uuid = "color"
194
+ rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR
195
+ rgb_sensor_spec.resolution = self.resolution
196
+ rgb_sensor_spec.hfov = self.hfov
197
+ rgb_sensor_spec.position = [0.0, 0.0, 0]
198
+ agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec, depth_sensor_spec])
199
+
200
+ cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])
201
+ self.sim = habitat_sim.Simulator(cfg)
202
+ if self.navmesh is not None and self.navmesh != "":
203
+ # Use pre-computed navmesh when available (usually better than those generated automatically)
204
+ self.sim.pathfinder.load_nav_mesh(self.navmesh)
205
+
206
+ if not self.sim.pathfinder.is_loaded:
207
+ # Try to compute a navmesh
208
+ navmesh_settings = habitat_sim.NavMeshSettings()
209
+ navmesh_settings.set_defaults()
210
+ self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True)
211
+
212
+ # Ensure that the navmesh is not empty
213
+ if not self.sim.pathfinder.is_loaded:
214
+ raise NoNaviguableSpaceError(f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})")
215
+
216
+ self.agent = self.sim.initialize_agent(agent_id=0)
217
+
218
+ def close(self):
219
+ self.sim.close()
220
+
221
+ def __del__(self):
222
+ self.sim.close()
223
+
224
+ def __len__(self):
225
+ return self.size
226
+
227
+ def sample_random_viewpoint(self):
228
+ """ Sample a random viewpoint using the navmesh """
229
+ nav_point = self.sim.pathfinder.get_random_navigable_point()
230
+
231
+ # Sample a random viewpoint height
232
+ viewpoint_height = np.random.uniform(*self.height_range)
233
+ viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP
234
+ viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
235
+ return viewpoint_position, viewpoint_orientation, nav_point
236
+
237
+ def sample_other_random_viewpoint(self, observed_point, nav_point):
238
+ """ Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point."""
239
+ other_nav_point = nav_point
240
+
241
+ walk_directions = self.random_step_variance * np.asarray([1,0,1])
242
+ for i in range(self.random_steps_count):
243
+ temp = self.sim.pathfinder.snap_point(other_nav_point + walk_directions * np.random.normal(size=3))
244
+ # Snapping may return nan when it fails
245
+ if not np.isnan(temp[0]):
246
+ other_nav_point = temp
247
+
248
+ other_viewpoint_height = np.random.uniform(*self.height_range)
249
+ other_viewpoint_position = other_nav_point + other_viewpoint_height * habitat_sim.geo.UP
250
+
251
+ # Set viewing direction towards the central point
252
+ rotation, position = look_at_for_habitat(eye=other_viewpoint_position, center=observed_point, up=habitat_sim.geo.UP, return_cam2world=True)
253
+ rotation = rotation * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
254
+ return position, rotation, other_nav_point
255
+
256
+ def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud):
257
+ """ Check if a viewpoint is valid and overlaps significantly with a reference one. """
258
+ # Observation
259
+ pixels_count = self.resolution[0] * self.resolution[1]
260
+ valid_fraction = len(other_pointcloud) / pixels_count
261
+ assert valid_fraction <= 1.0 and valid_fraction >= 0.0
262
+ overlap = compute_pointcloud_overlaps_scikit(ref_pointcloud, other_pointcloud, self.distance_threshold, compute_symmetric=True)
263
+ covisibility = min(overlap["intersection1"] / pixels_count, overlap["intersection2"] / pixels_count)
264
+ is_valid = (valid_fraction >= self.minimum_valid_fraction) and (covisibility >= self.minimum_covisibility)
265
+ return is_valid, valid_fraction, covisibility
266
+
267
+ def is_other_viewpoint_overlapping(self, ref_pointcloud, observation, position, rotation):
268
+ """ Check if a viewpoint is valid and overlaps significantly with a reference one. """
269
+ # Observation
270
+ other_pointcloud = compute_pointcloud(observation['depth'], self.hfov, position, rotation)
271
+ return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)
272
+
273
+ def render_viewpoint(self, viewpoint_position, viewpoint_orientation):
274
+ agent_state = habitat_sim.AgentState()
275
+ agent_state.position = viewpoint_position
276
+ agent_state.rotation = viewpoint_orientation
277
+ self.agent.set_state(agent_state)
278
+ viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0)
279
+ _append_camera_parameters(viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation)
280
+ return viewpoint_observations
281
+
282
+ def __getitem__(self, useless_idx):
283
+ ref_position, ref_orientation, nav_point = self.sample_random_viewpoint()
284
+ ref_observations = self.render_viewpoint(ref_position, ref_orientation)
285
+ # Extract point cloud
286
+ ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov,
287
+ camera_position=ref_position, camera_rotation=ref_orientation)
288
+
289
+ pixels_count = self.resolution[0] * self.resolution[1]
290
+ ref_valid_fraction = len(ref_pointcloud) / pixels_count
291
+ assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0
292
+ if ref_valid_fraction < self.minimum_valid_fraction:
293
+ # This should produce a recursion error at some point when something is very wrong.
294
+ return self[0]
295
+ # Pick an reference observed point in the point cloud
296
+ observed_point = np.mean(ref_pointcloud, axis=0)
297
+
298
+ # Add the first image as reference
299
+ viewpoints_observations = [ref_observations]
300
+ viewpoints_covisibility = [ref_valid_fraction]
301
+ viewpoints_positions = [ref_position]
302
+ viewpoints_orientations = [quaternion.as_float_array(ref_orientation)]
303
+ viewpoints_clouds = [ref_pointcloud]
304
+ viewpoints_valid_fractions = [ref_valid_fraction]
305
+
306
+ for _ in range(self.views_count - 1):
307
+ # Generate an other viewpoint using some dummy random walk
308
+ successful_sampling = False
309
+ for sampling_attempt in range(self.max_attempts_count):
310
+ position, rotation, _ = self.sample_other_random_viewpoint(observed_point, nav_point)
311
+ # Observation
312
+ other_viewpoint_observations = self.render_viewpoint(position, rotation)
313
+ other_pointcloud = compute_pointcloud(other_viewpoint_observations['depth'], self.hfov, position, rotation)
314
+
315
+ is_valid, valid_fraction, covisibility = self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)
316
+ if is_valid:
317
+ successful_sampling = True
318
+ break
319
+ if not successful_sampling:
320
+ print("WARNING: Maximum number of attempts reached.")
321
+ # Dirty hack, try using a novel original viewpoint
322
+ return self[0]
323
+ viewpoints_observations.append(other_viewpoint_observations)
324
+ viewpoints_covisibility.append(covisibility)
325
+ viewpoints_positions.append(position)
326
+ viewpoints_orientations.append(quaternion.as_float_array(rotation)) # WXYZ convention for the quaternion encoding.
327
+ viewpoints_clouds.append(other_pointcloud)
328
+ viewpoints_valid_fractions.append(valid_fraction)
329
+
330
+ # Estimate relations between all pairs of images
331
+ pairwise_visibility_ratios = np.ones((len(viewpoints_observations), len(viewpoints_observations)))
332
+ for i in range(len(viewpoints_observations)):
333
+ pairwise_visibility_ratios[i,i] = viewpoints_valid_fractions[i]
334
+ for j in range(i+1, len(viewpoints_observations)):
335
+ overlap = compute_pointcloud_overlaps_scikit(viewpoints_clouds[i], viewpoints_clouds[j], self.distance_threshold, compute_symmetric=True)
336
+ pairwise_visibility_ratios[i,j] = overlap['intersection1'] / pixels_count
337
+ pairwise_visibility_ratios[j,i] = overlap['intersection2'] / pixels_count
338
+
339
+ # IoU is relative to the image 0
340
+ data = {"observations": viewpoints_observations,
341
+ "positions": np.asarray(viewpoints_positions),
342
+ "orientations": np.asarray(viewpoints_orientations),
343
+ "covisibility_ratios": np.asarray(viewpoints_covisibility),
344
+ "valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float),
345
+ "pairwise_visibility_ratios": np.asarray(pairwise_visibility_ratios, dtype=float),
346
+ }
347
+
348
+ if self.transform is not None:
349
+ data = self.transform(data)
350
+ return data
351
+
352
+ def generate_random_spiral_trajectory(self, images_count = 100, max_radius=0.5, half_turns=5, use_constant_orientation=False):
353
+ """
354
+ Return a list of images corresponding to a spiral trajectory from a random starting point.
355
+ Useful to generate nice visualisations.
356
+ Use an even number of half turns to get a nice "C1-continuous" loop effect
357
+ """
358
+ ref_position, ref_orientation, navpoint = self.sample_random_viewpoint()
359
+ ref_observations = self.render_viewpoint(ref_position, ref_orientation)
360
+ ref_pointcloud = compute_pointcloud(depthmap=ref_observations['depth'], hfov=self.hfov,
361
+ camera_position=ref_position, camera_rotation=ref_orientation)
362
+ pixels_count = self.resolution[0] * self.resolution[1]
363
+ if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction:
364
+ # Dirty hack: ensure that the valid part of the image is significant
365
+ return self.generate_random_spiral_trajectory(images_count, max_radius, half_turns, use_constant_orientation)
366
+
367
+ # Pick an observed point in the point cloud
368
+ observed_point = np.mean(ref_pointcloud, axis=0)
369
+ ref_R, ref_t = compute_camera_pose_opencv_convention(ref_position, ref_orientation)
370
+
371
+ images = []
372
+ is_valid = []
373
+ # Spiral trajectory, use_constant orientation
374
+ for i, alpha in enumerate(np.linspace(0, 1, images_count)):
375
+ r = max_radius * np.abs(np.sin(alpha * np.pi)) # Increase then decrease the radius
376
+ theta = alpha * half_turns * np.pi
377
+ x = r * np.cos(theta)
378
+ y = r * np.sin(theta)
379
+ z = 0.0
380
+ position = ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3,1)).flatten()
381
+ if use_constant_orientation:
382
+ orientation = ref_orientation
383
+ else:
384
+ # trajectory looking at a mean point in front of the ref observation
385
+ orientation, position = look_at_for_habitat(eye=position, center=observed_point, up=habitat_sim.geo.UP)
386
+ observations = self.render_viewpoint(position, orientation)
387
+ images.append(observations['color'][...,:3])
388
+ _is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(ref_pointcloud, observations, position, orientation)
389
+ is_valid.append(_is_valid)
390
+ return images, np.all(is_valid)
croco/datasets/habitat_sim/pack_metadata_files.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+ """
4
+ Utility script to pack metadata files of the dataset in order to be able to re-generate it elsewhere.
5
+ """
6
+ import os
7
+ import glob
8
+ from tqdm import tqdm
9
+ import shutil
10
+ import json
11
+ from datasets.habitat_sim.paths import *
12
+ import argparse
13
+ import collections
14
+
15
+ if __name__ == "__main__":
16
+ parser = argparse.ArgumentParser()
17
+ parser.add_argument("input_dir")
18
+ parser.add_argument("output_dir")
19
+ args = parser.parse_args()
20
+
21
+ input_dirname = args.input_dir
22
+ output_dirname = args.output_dir
23
+
24
+ input_metadata_filenames = glob.iglob(f"{input_dirname}/**/metadata.json", recursive=True)
25
+
26
+ images_count = collections.defaultdict(lambda : 0)
27
+
28
+ os.makedirs(output_dirname)
29
+ for input_filename in tqdm(input_metadata_filenames):
30
+ # Ignore empty files
31
+ with open(input_filename, "r") as f:
32
+ original_metadata = json.load(f)
33
+ if "multiviews" not in original_metadata or len(original_metadata["multiviews"]) == 0:
34
+ print("No views in", input_filename)
35
+ continue
36
+
37
+ relpath = os.path.relpath(input_filename, input_dirname)
38
+ print(relpath)
39
+
40
+ # Copy metadata, while replacing scene paths by generic keys depending on the dataset, for portability.
41
+ # Data paths are sorted by decreasing length to avoid potential bugs due to paths starting by the same string pattern.
42
+ scenes_dataset_paths = dict(sorted(SCENES_DATASET.items(), key=lambda x: len(x[1]), reverse=True))
43
+ metadata = dict()
44
+ for key, value in original_metadata.items():
45
+ if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "":
46
+ known_path = False
47
+ for dataset, dataset_path in scenes_dataset_paths.items():
48
+ if value.startswith(dataset_path):
49
+ value = os.path.join(dataset, os.path.relpath(value, dataset_path))
50
+ known_path = True
51
+ break
52
+ if not known_path:
53
+ raise KeyError("Unknown path:" + value)
54
+ metadata[key] = value
55
+
56
+ # Compile some general statistics while packing data
57
+ scene_split = metadata["scene"].split("/")
58
+ upper_level = "/".join(scene_split[:2]) if scene_split[0] == "hm3d" else scene_split[0]
59
+ images_count[upper_level] += len(metadata["multiviews"])
60
+
61
+ output_filename = os.path.join(output_dirname, relpath)
62
+ os.makedirs(os.path.dirname(output_filename), exist_ok=True)
63
+ with open(output_filename, "w") as f:
64
+ json.dump(metadata, f)
65
+
66
+ # Print statistics
67
+ print("Images count:")
68
+ for upper_level, count in images_count.items():
69
+ print(f"- {upper_level}: {count}")
croco/datasets/habitat_sim/paths.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ """
5
+ Paths to Habitat-Sim scenes
6
+ """
7
+
8
+ import os
9
+ import json
10
+ import collections
11
+ from tqdm import tqdm
12
+
13
+
14
+ # Hardcoded path to the different scene datasets
15
+ SCENES_DATASET = {
16
+ "hm3d": "./data/habitat-sim-data/scene_datasets/hm3d/",
17
+ "gibson": "./data/habitat-sim-data/scene_datasets/gibson/",
18
+ "habitat-test-scenes": "./data/habitat-sim/scene_datasets/habitat-test-scenes/",
19
+ "replica_cad_baked_lighting": "./data/habitat-sim/scene_datasets/replica_cad_baked_lighting/",
20
+ "replica_cad": "./data/habitat-sim/scene_datasets/replica_cad/",
21
+ "replica": "./data/habitat-sim/scene_datasets/ReplicaDataset/",
22
+ "scannet": "./data/habitat-sim/scene_datasets/scannet/"
23
+ }
24
+
25
+ SceneData = collections.namedtuple("SceneData", ["scene_dataset_config_file", "scene", "navmesh", "output_dir"])
26
+
27
+ def list_replicacad_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad"]):
28
+ scene_dataset_config_file = os.path.join(base_path, "replicaCAD.scene_dataset_config.json")
29
+ scenes = [f"apt_{i}" for i in range(6)] + ["empty_stage"]
30
+ navmeshes = [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"]
31
+ scenes_data = []
32
+ for idx in range(len(scenes)):
33
+ output_dir = os.path.join(base_output_dir, "ReplicaCAD", scenes[idx])
34
+ # Add scene
35
+ data = SceneData(scene_dataset_config_file=scene_dataset_config_file,
36
+ scene = scenes[idx] + ".scene_instance.json",
37
+ navmesh = os.path.join(base_path, navmeshes[idx]),
38
+ output_dir = output_dir)
39
+ scenes_data.append(data)
40
+ return scenes_data
41
+
42
+ def list_replica_cad_baked_lighting_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad_baked_lighting"]):
43
+ scene_dataset_config_file = os.path.join(base_path, "replicaCAD_baked.scene_dataset_config.json")
44
+ scenes = sum([[f"Baked_sc{i}_staging_{j:02}" for i in range(5)] for j in range(21)], [])
45
+ navmeshes = ""#[f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"]
46
+ scenes_data = []
47
+ for idx in range(len(scenes)):
48
+ output_dir = os.path.join(base_output_dir, "replica_cad_baked_lighting", scenes[idx])
49
+ data = SceneData(scene_dataset_config_file=scene_dataset_config_file,
50
+ scene = scenes[idx],
51
+ navmesh = "",
52
+ output_dir = output_dir)
53
+ scenes_data.append(data)
54
+ return scenes_data
55
+
56
+ def list_replica_scenes(base_output_dir, base_path):
57
+ scenes_data = []
58
+ for scene_id in os.listdir(base_path):
59
+ scene = os.path.join(base_path, scene_id, "mesh.ply")
60
+ navmesh = os.path.join(base_path, scene_id, "habitat/mesh_preseg_semantic.navmesh") # Not sure if I should use it
61
+ scene_dataset_config_file = ""
62
+ output_dir = os.path.join(base_output_dir, scene_id)
63
+ # Add scene only if it does not exist already, or if exist_ok
64
+ data = SceneData(scene_dataset_config_file = scene_dataset_config_file,
65
+ scene = scene,
66
+ navmesh = navmesh,
67
+ output_dir = output_dir)
68
+ scenes_data.append(data)
69
+ return scenes_data
70
+
71
+
72
+ def list_scenes(base_output_dir, base_path):
73
+ """
74
+ Generic method iterating through a base_path folder to find scenes.
75
+ """
76
+ scenes_data = []
77
+ for root, dirs, files in os.walk(base_path, followlinks=True):
78
+ folder_scenes_data = []
79
+ for file in files:
80
+ name, ext = os.path.splitext(file)
81
+ if ext == ".glb":
82
+ scene = os.path.join(root, name + ".glb")
83
+ navmesh = os.path.join(root, name + ".navmesh")
84
+ if not os.path.exists(navmesh):
85
+ navmesh = ""
86
+ relpath = os.path.relpath(root, base_path)
87
+ output_dir = os.path.abspath(os.path.join(base_output_dir, relpath, name))
88
+ data = SceneData(scene_dataset_config_file="",
89
+ scene = scene,
90
+ navmesh = navmesh,
91
+ output_dir = output_dir)
92
+ folder_scenes_data.append(data)
93
+
94
+ # Specific check for HM3D:
95
+ # When two meshesxxxx.basis.glb and xxxx.glb are present, use the 'basis' version.
96
+ basis_scenes = [data.scene[:-len(".basis.glb")] for data in folder_scenes_data if data.scene.endswith(".basis.glb")]
97
+ if len(basis_scenes) != 0:
98
+ folder_scenes_data = [data for data in folder_scenes_data if not (data.scene[:-len(".glb")] in basis_scenes)]
99
+
100
+ scenes_data.extend(folder_scenes_data)
101
+ return scenes_data
102
+
103
+ def list_scenes_available(base_output_dir, scenes_dataset_paths=SCENES_DATASET):
104
+ scenes_data = []
105
+
106
+ # HM3D
107
+ for split in ("minival", "train", "val", "examples"):
108
+ scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, f"hm3d/{split}/"),
109
+ base_path=f"{scenes_dataset_paths['hm3d']}/{split}")
110
+
111
+ # Gibson
112
+ scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "gibson"),
113
+ base_path=scenes_dataset_paths["gibson"])
114
+
115
+ # Habitat test scenes (just a few)
116
+ scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "habitat-test-scenes"),
117
+ base_path=scenes_dataset_paths["habitat-test-scenes"])
118
+
119
+ # ReplicaCAD (baked lightning)
120
+ scenes_data += list_replica_cad_baked_lighting_scenes(base_output_dir=base_output_dir)
121
+
122
+ # ScanNet
123
+ scenes_data += list_scenes(base_output_dir=os.path.join(base_output_dir, "scannet"),
124
+ base_path=scenes_dataset_paths["scannet"])
125
+
126
+ # Replica
127
+ list_replica_scenes(base_output_dir=os.path.join(base_output_dir, "replica"),
128
+ base_path=scenes_dataset_paths["replica"])
129
+ return scenes_data
croco/datasets/pairs_dataset.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ import os
5
+ from torch.utils.data import Dataset
6
+ from PIL import Image
7
+
8
+ from datasets.transforms import get_pair_transforms
9
+
10
+ def load_image(impath):
11
+ return Image.open(impath)
12
+
13
+ def load_pairs_from_cache_file(fname, root=''):
14
+ assert os.path.isfile(fname), "cannot parse pairs from {:s}, file does not exist".format(fname)
15
+ with open(fname, 'r') as fid:
16
+ lines = fid.read().strip().splitlines()
17
+ pairs = [ (os.path.join(root,l.split()[0]), os.path.join(root,l.split()[1])) for l in lines]
18
+ return pairs
19
+
20
+ def load_pairs_from_list_file(fname, root=''):
21
+ assert os.path.isfile(fname), "cannot parse pairs from {:s}, file does not exist".format(fname)
22
+ with open(fname, 'r') as fid:
23
+ lines = fid.read().strip().splitlines()
24
+ pairs = [ (os.path.join(root,l+'_1.jpg'), os.path.join(root,l+'_2.jpg')) for l in lines if not l.startswith('#')]
25
+ return pairs
26
+
27
+
28
+ def write_cache_file(fname, pairs, root=''):
29
+ if len(root)>0:
30
+ if not root.endswith('/'): root+='/'
31
+ assert os.path.isdir(root)
32
+ s = ''
33
+ for im1, im2 in pairs:
34
+ if len(root)>0:
35
+ assert im1.startswith(root), im1
36
+ assert im2.startswith(root), im2
37
+ s += '{:s} {:s}\n'.format(im1[len(root):], im2[len(root):])
38
+ with open(fname, 'w') as fid:
39
+ fid.write(s[:-1])
40
+
41
+ def parse_and_cache_all_pairs(dname, data_dir='./data/'):
42
+ if dname=='habitat_release':
43
+ dirname = os.path.join(data_dir, 'habitat_release')
44
+ assert os.path.isdir(dirname), "cannot find folder for habitat_release pairs: "+dirname
45
+ cache_file = os.path.join(dirname, 'pairs.txt')
46
+ assert not os.path.isfile(cache_file), "cache file already exists: "+cache_file
47
+
48
+ print('Parsing pairs for dataset: '+dname)
49
+ pairs = []
50
+ for root, dirs, files in os.walk(dirname):
51
+ if 'val' in root: continue
52
+ dirs.sort()
53
+ pairs += [ (os.path.join(root,f), os.path.join(root,f[:-len('_1.jpeg')]+'_2.jpeg')) for f in sorted(files) if f.endswith('_1.jpeg')]
54
+ print('Found {:,} pairs'.format(len(pairs)))
55
+ print('Writing cache to: '+cache_file)
56
+ write_cache_file(cache_file, pairs, root=dirname)
57
+
58
+ else:
59
+ raise NotImplementedError('Unknown dataset: '+dname)
60
+
61
+ def dnames_to_image_pairs(dnames, data_dir='./data/'):
62
+ """
63
+ dnames: list of datasets with image pairs, separated by +
64
+ """
65
+ all_pairs = []
66
+ for dname in dnames.split('+'):
67
+ if dname=='habitat_release':
68
+ dirname = os.path.join(data_dir, 'habitat_release')
69
+ assert os.path.isdir(dirname), "cannot find folder for habitat_release pairs: "+dirname
70
+ cache_file = os.path.join(dirname, 'pairs.txt')
71
+ assert os.path.isfile(cache_file), "cannot find cache file for habitat_release pairs, please first create the cache file, see instructions. "+cache_file
72
+ pairs = load_pairs_from_cache_file(cache_file, root=dirname)
73
+ elif dname in ['ARKitScenes', 'MegaDepth', '3DStreetView', 'IndoorVL']:
74
+ dirname = os.path.join(data_dir, dname+'_crops')
75
+ assert os.path.isdir(dirname), "cannot find folder for {:s} pairs: {:s}".format(dname, dirname)
76
+ list_file = os.path.join(dirname, 'listing.txt')
77
+ assert os.path.isfile(list_file), "cannot find list file for {:s} pairs, see instructions. {:s}".format(dname, list_file)
78
+ pairs = load_pairs_from_list_file(list_file, root=dirname)
79
+ print(' {:s}: {:,} pairs'.format(dname, len(pairs)))
80
+ all_pairs += pairs
81
+ if '+' in dnames: print(' Total: {:,} pairs'.format(len(all_pairs)))
82
+ return all_pairs
83
+
84
+
85
+ class PairsDataset(Dataset):
86
+
87
+ def __init__(self, dnames, trfs='', totensor=True, normalize=True, data_dir='./data/'):
88
+ super().__init__()
89
+ self.image_pairs = dnames_to_image_pairs(dnames, data_dir=data_dir)
90
+ self.transforms = get_pair_transforms(transform_str=trfs, totensor=totensor, normalize=normalize)
91
+
92
+ def __len__(self):
93
+ return len(self.image_pairs)
94
+
95
+ def __getitem__(self, index):
96
+ im1path, im2path = self.image_pairs[index]
97
+ im1 = load_image(im1path)
98
+ im2 = load_image(im2path)
99
+ if self.transforms is not None: im1, im2 = self.transforms(im1, im2)
100
+ return im1, im2
101
+
102
+
103
+ if __name__=="__main__":
104
+ import argparse
105
+ parser = argparse.ArgumentParser(prog="Computing and caching list of pairs for a given dataset")
106
+ parser.add_argument('--data_dir', default='./data/', type=str, help="path where data are stored")
107
+ parser.add_argument('--dataset', default='habitat_release', type=str, help="name of the dataset")
108
+ args = parser.parse_args()
109
+ parse_and_cache_all_pairs(dname=args.dataset, data_dir=args.data_dir)
croco/datasets/transforms.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ import torch
5
+ import torchvision.transforms
6
+ import torchvision.transforms.functional as F
7
+
8
+ # "Pair": apply a transform on a pair
9
+ # "Both": apply the exact same transform to both images
10
+
11
+ class ComposePair(torchvision.transforms.Compose):
12
+ def __call__(self, img1, img2):
13
+ for t in self.transforms:
14
+ img1, img2 = t(img1, img2)
15
+ return img1, img2
16
+
17
+ class NormalizeBoth(torchvision.transforms.Normalize):
18
+ def forward(self, img1, img2):
19
+ img1 = super().forward(img1)
20
+ img2 = super().forward(img2)
21
+ return img1, img2
22
+
23
+ class ToTensorBoth(torchvision.transforms.ToTensor):
24
+ def __call__(self, img1, img2):
25
+ img1 = super().__call__(img1)
26
+ img2 = super().__call__(img2)
27
+ return img1, img2
28
+
29
+ class RandomCropPair(torchvision.transforms.RandomCrop):
30
+ # the crop will be intentionally different for the two images with this class
31
+ def forward(self, img1, img2):
32
+ img1 = super().forward(img1)
33
+ img2 = super().forward(img2)
34
+ return img1, img2
35
+
36
+ class ColorJitterPair(torchvision.transforms.ColorJitter):
37
+ # can be symmetric (same for both images) or assymetric (different jitter params for each image) depending on assymetric_prob
38
+ def __init__(self, assymetric_prob, **kwargs):
39
+ super().__init__(**kwargs)
40
+ self.assymetric_prob = assymetric_prob
41
+ def jitter_one(self, img, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor):
42
+ for fn_id in fn_idx:
43
+ if fn_id == 0 and brightness_factor is not None:
44
+ img = F.adjust_brightness(img, brightness_factor)
45
+ elif fn_id == 1 and contrast_factor is not None:
46
+ img = F.adjust_contrast(img, contrast_factor)
47
+ elif fn_id == 2 and saturation_factor is not None:
48
+ img = F.adjust_saturation(img, saturation_factor)
49
+ elif fn_id == 3 and hue_factor is not None:
50
+ img = F.adjust_hue(img, hue_factor)
51
+ return img
52
+
53
+ def forward(self, img1, img2):
54
+
55
+ fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
56
+ self.brightness, self.contrast, self.saturation, self.hue
57
+ )
58
+ img1 = self.jitter_one(img1, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor)
59
+ if torch.rand(1) < self.assymetric_prob: # assymetric:
60
+ fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
61
+ self.brightness, self.contrast, self.saturation, self.hue
62
+ )
63
+ img2 = self.jitter_one(img2, fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor)
64
+ return img1, img2
65
+
66
+ def get_pair_transforms(transform_str, totensor=True, normalize=True):
67
+ # transform_str is eg crop224+color
68
+ trfs = []
69
+ for s in transform_str.split('+'):
70
+ if s.startswith('crop'):
71
+ size = int(s[len('crop'):])
72
+ trfs.append(RandomCropPair(size))
73
+ elif s=='acolor':
74
+ trfs.append(ColorJitterPair(assymetric_prob=1.0, brightness=(0.6, 1.4), contrast=(0.6, 1.4), saturation=(0.6, 1.4), hue=0.0))
75
+ elif s=='': # if transform_str was ""
76
+ pass
77
+ else:
78
+ raise NotImplementedError('Unknown augmentation: '+s)
79
+
80
+ if totensor:
81
+ trfs.append( ToTensorBoth() )
82
+ if normalize:
83
+ trfs.append( NormalizeBoth(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )
84
+
85
+ if len(trfs)==0:
86
+ return None
87
+ elif len(trfs)==1:
88
+ return trfs
89
+ else:
90
+ return ComposePair(trfs)
91
+
92
+
93
+
94
+
95
+
croco/demo.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ import torch
5
+ from models.croco import CroCoNet
6
+ from PIL import Image
7
+ import torchvision.transforms
8
+ from torchvision.transforms import ToTensor, Normalize, Compose
9
+
10
+ def main():
11
+ device = torch.device('cuda:0' if torch.cuda.is_available() and torch.cuda.device_count()>0 else 'cpu')
12
+
13
+ # load 224x224 images and transform them to tensor
14
+ imagenet_mean = [0.485, 0.456, 0.406]
15
+ imagenet_mean_tensor = torch.tensor(imagenet_mean).view(1,3,1,1).to(device, non_blocking=True)
16
+ imagenet_std = [0.229, 0.224, 0.225]
17
+ imagenet_std_tensor = torch.tensor(imagenet_std).view(1,3,1,1).to(device, non_blocking=True)
18
+ trfs = Compose([ToTensor(), Normalize(mean=imagenet_mean, std=imagenet_std)])
19
+ image1 = trfs(Image.open('assets/Chateau1.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0)
20
+ image2 = trfs(Image.open('assets/Chateau2.png').convert('RGB')).to(device, non_blocking=True).unsqueeze(0)
21
+
22
+ # load model
23
+ ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')
24
+ model = CroCoNet( **ckpt.get('croco_kwargs',{})).to(device)
25
+ model.eval()
26
+ msg = model.load_state_dict(ckpt['model'], strict=True)
27
+
28
+ # forward
29
+ with torch.inference_mode():
30
+ out, mask, target = model(image1, image2)
31
+
32
+ # the output is normalized, thus use the mean/std of the actual image to go back to RGB space
33
+ patchified = model.patchify(image1)
34
+ mean = patchified.mean(dim=-1, keepdim=True)
35
+ var = patchified.var(dim=-1, keepdim=True)
36
+ decoded_image = model.unpatchify(out * (var + 1.e-6)**.5 + mean)
37
+ # undo imagenet normalization, prepare masked image
38
+ decoded_image = decoded_image * imagenet_std_tensor + imagenet_mean_tensor
39
+ input_image = image1 * imagenet_std_tensor + imagenet_mean_tensor
40
+ ref_image = image2 * imagenet_std_tensor + imagenet_mean_tensor
41
+ image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])
42
+ masked_input_image = ((1 - image_masks) * input_image)
43
+
44
+ # make visualization
45
+ visualization = torch.cat((ref_image, masked_input_image, decoded_image, input_image), dim=3) # 4*(B, 3, H, W) -> B, 3, H, W*4
46
+ B, C, H, W = visualization.shape
47
+ visualization = visualization.permute(1, 0, 2, 3).reshape(C, B*H, W)
48
+ visualization = torchvision.transforms.functional.to_pil_image(torch.clamp(visualization, 0, 1))
49
+ fname = "demo_output.png"
50
+ visualization.save(fname)
51
+ print('Visualization save in '+fname)
52
+
53
+
54
+ if __name__=="__main__":
55
+ main()
croco/interactive_demo.ipynb ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Interactive demo of Cross-view Completion."
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": null,
13
+ "metadata": {},
14
+ "outputs": [],
15
+ "source": [
16
+ "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n",
17
+ "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)."
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": null,
23
+ "metadata": {},
24
+ "outputs": [],
25
+ "source": [
26
+ "import torch\n",
27
+ "import numpy as np\n",
28
+ "from models.croco import CroCoNet\n",
29
+ "from ipywidgets import interact, interactive, fixed, interact_manual\n",
30
+ "import ipywidgets as widgets\n",
31
+ "import matplotlib.pyplot as plt\n",
32
+ "import quaternion\n",
33
+ "import models.masking"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "markdown",
38
+ "metadata": {},
39
+ "source": [
40
+ "### Load CroCo model"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": null,
46
+ "metadata": {},
47
+ "outputs": [],
48
+ "source": [
49
+ "ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')\n",
50
+ "model = CroCoNet( **ckpt.get('croco_kwargs',{}))\n",
51
+ "msg = model.load_state_dict(ckpt['model'], strict=True)\n",
52
+ "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n",
53
+ "device = torch.device('cuda:0' if use_gpu else 'cpu')\n",
54
+ "model = model.eval()\n",
55
+ "model = model.to(device=device)\n",
56
+ "print(msg)\n",
57
+ "\n",
58
+ "def process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches=False):\n",
59
+ " \"\"\"\n",
60
+ " Perform Cross-View completion using two input images, specified using Numpy arrays.\n",
61
+ " \"\"\"\n",
62
+ " # Replace the mask generator\n",
63
+ " model.mask_generator = models.masking.RandomMask(model.patch_embed.num_patches, masking_ratio)\n",
64
+ "\n",
65
+ " # ImageNet-1k color normalization\n",
66
+ " imagenet_mean = torch.as_tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1).to(device)\n",
67
+ " imagenet_std = torch.as_tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1).to(device)\n",
68
+ "\n",
69
+ " normalize_input_colors = True\n",
70
+ " is_output_normalized = True\n",
71
+ " with torch.no_grad():\n",
72
+ " # Cast data to torch\n",
73
+ " target_image = (torch.as_tensor(target_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n",
74
+ " ref_image = (torch.as_tensor(ref_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n",
75
+ "\n",
76
+ " if normalize_input_colors:\n",
77
+ " ref_image = (ref_image - imagenet_mean) / imagenet_std\n",
78
+ " target_image = (target_image - imagenet_mean) / imagenet_std\n",
79
+ "\n",
80
+ " out, mask, _ = model(target_image, ref_image)\n",
81
+ " # # get target\n",
82
+ " if not is_output_normalized:\n",
83
+ " predicted_image = model.unpatchify(out)\n",
84
+ " else:\n",
85
+ " # The output only contains higher order information,\n",
86
+ " # we retrieve mean and standard deviation from the actual target image\n",
87
+ " patchified = model.patchify(target_image)\n",
88
+ " mean = patchified.mean(dim=-1, keepdim=True)\n",
89
+ " var = patchified.var(dim=-1, keepdim=True)\n",
90
+ " pred_renorm = out * (var + 1.e-6)**.5 + mean\n",
91
+ " predicted_image = model.unpatchify(pred_renorm)\n",
92
+ "\n",
93
+ " image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])\n",
94
+ " masked_target_image = (1 - image_masks) * target_image\n",
95
+ " \n",
96
+ " if not reconstruct_unmasked_patches:\n",
97
+ " # Replace unmasked patches by their actual values\n",
98
+ " predicted_image = predicted_image * image_masks + masked_target_image\n",
99
+ "\n",
100
+ " # Unapply color normalization\n",
101
+ " if normalize_input_colors:\n",
102
+ " predicted_image = predicted_image * imagenet_std + imagenet_mean\n",
103
+ " masked_target_image = masked_target_image * imagenet_std + imagenet_mean\n",
104
+ " \n",
105
+ " # Cast to Numpy\n",
106
+ " masked_target_image = np.asarray(torch.clamp(masked_target_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n",
107
+ " predicted_image = np.asarray(torch.clamp(predicted_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n",
108
+ " return masked_target_image, predicted_image"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "markdown",
113
+ "metadata": {},
114
+ "source": [
115
+ "### Use the Habitat simulator to render images from arbitrary viewpoints (requires habitat_sim to be installed)"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "metadata": {},
122
+ "outputs": [],
123
+ "source": [
124
+ "import os\n",
125
+ "os.environ[\"MAGNUM_LOG\"]=\"quiet\"\n",
126
+ "os.environ[\"HABITAT_SIM_LOG\"]=\"quiet\"\n",
127
+ "import habitat_sim\n",
128
+ "\n",
129
+ "scene = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.glb\"\n",
130
+ "navmesh = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.navmesh\"\n",
131
+ "\n",
132
+ "sim_cfg = habitat_sim.SimulatorConfiguration()\n",
133
+ "if use_gpu: sim_cfg.gpu_device_id = 0\n",
134
+ "sim_cfg.scene_id = scene\n",
135
+ "sim_cfg.load_semantic_mesh = False\n",
136
+ "rgb_sensor_spec = habitat_sim.CameraSensorSpec()\n",
137
+ "rgb_sensor_spec.uuid = \"color\"\n",
138
+ "rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR\n",
139
+ "rgb_sensor_spec.resolution = (224,224)\n",
140
+ "rgb_sensor_spec.hfov = 56.56\n",
141
+ "rgb_sensor_spec.position = [0.0, 0.0, 0.0]\n",
142
+ "rgb_sensor_spec.orientation = [0, 0, 0]\n",
143
+ "agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec])\n",
144
+ "\n",
145
+ "\n",
146
+ "cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])\n",
147
+ "sim = habitat_sim.Simulator(cfg)\n",
148
+ "if navmesh is not None:\n",
149
+ " sim.pathfinder.load_nav_mesh(navmesh)\n",
150
+ "agent = sim.initialize_agent(agent_id=0)\n",
151
+ "\n",
152
+ "def sample_random_viewpoint():\n",
153
+ " \"\"\" Sample a random viewpoint using the navmesh \"\"\"\n",
154
+ " nav_point = sim.pathfinder.get_random_navigable_point()\n",
155
+ " # Sample a random viewpoint height\n",
156
+ " viewpoint_height = np.random.uniform(1.0, 1.6)\n",
157
+ " viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP\n",
158
+ " viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(-np.pi, np.pi) * habitat_sim.geo.UP)\n",
159
+ " return viewpoint_position, viewpoint_orientation\n",
160
+ "\n",
161
+ "def render_viewpoint(position, orientation):\n",
162
+ " agent_state = habitat_sim.AgentState()\n",
163
+ " agent_state.position = position\n",
164
+ " agent_state.rotation = orientation\n",
165
+ " agent.set_state(agent_state)\n",
166
+ " viewpoint_observations = sim.get_sensor_observations(agent_ids=0)\n",
167
+ " image = viewpoint_observations['color'][:,:,:3]\n",
168
+ " image = np.asarray(np.clip(1.5 * np.asarray(image, dtype=float), 0, 255), dtype=np.uint8)\n",
169
+ " return image"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "markdown",
174
+ "metadata": {},
175
+ "source": [
176
+ "### Sample a random reference view"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "code",
181
+ "execution_count": null,
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": [
185
+ "ref_position, ref_orientation = sample_random_viewpoint()\n",
186
+ "ref_image = render_viewpoint(ref_position, ref_orientation)\n",
187
+ "plt.clf()\n",
188
+ "fig, axes = plt.subplots(1,1, squeeze=False, num=1)\n",
189
+ "axes[0,0].imshow(ref_image)\n",
190
+ "for ax in axes.flatten():\n",
191
+ " ax.set_xticks([])\n",
192
+ " ax.set_yticks([])"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "markdown",
197
+ "metadata": {},
198
+ "source": [
199
+ "### Interactive cross-view completion using CroCo"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": null,
205
+ "metadata": {},
206
+ "outputs": [],
207
+ "source": [
208
+ "reconstruct_unmasked_patches = False\n",
209
+ "\n",
210
+ "def show_demo(masking_ratio, x, y, z, panorama, elevation):\n",
211
+ " R = quaternion.as_rotation_matrix(ref_orientation)\n",
212
+ " target_position = ref_position + x * R[:,0] + y * R[:,1] + z * R[:,2]\n",
213
+ " target_orientation = (ref_orientation\n",
214
+ " * quaternion.from_rotation_vector(-elevation * np.pi/180 * habitat_sim.geo.LEFT) \n",
215
+ " * quaternion.from_rotation_vector(-panorama * np.pi/180 * habitat_sim.geo.UP))\n",
216
+ " \n",
217
+ " ref_image = render_viewpoint(ref_position, ref_orientation)\n",
218
+ " target_image = render_viewpoint(target_position, target_orientation)\n",
219
+ "\n",
220
+ " masked_target_image, predicted_image = process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches)\n",
221
+ "\n",
222
+ " fig, axes = plt.subplots(1,4, squeeze=True, dpi=300)\n",
223
+ " axes[0].imshow(ref_image)\n",
224
+ " axes[0].set_xlabel(\"Reference\")\n",
225
+ " axes[1].imshow(masked_target_image)\n",
226
+ " axes[1].set_xlabel(\"Masked target\")\n",
227
+ " axes[2].imshow(predicted_image)\n",
228
+ " axes[2].set_xlabel(\"Reconstruction\") \n",
229
+ " axes[3].imshow(target_image)\n",
230
+ " axes[3].set_xlabel(\"Target\")\n",
231
+ " for ax in axes.flatten():\n",
232
+ " ax.set_xticks([])\n",
233
+ " ax.set_yticks([])\n",
234
+ "\n",
235
+ "interact(show_demo,\n",
236
+ " masking_ratio=widgets.FloatSlider(description='masking', value=0.9, min=0.0, max=1.0),\n",
237
+ " x=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
238
+ " y=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
239
+ " z=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
240
+ " panorama=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5),\n",
241
+ " elevation=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5));"
242
+ ]
243
+ }
244
+ ],
245
+ "metadata": {
246
+ "kernelspec": {
247
+ "display_name": "Python 3 (ipykernel)",
248
+ "language": "python",
249
+ "name": "python3"
250
+ },
251
+ "language_info": {
252
+ "codemirror_mode": {
253
+ "name": "ipython",
254
+ "version": 3
255
+ },
256
+ "file_extension": ".py",
257
+ "mimetype": "text/x-python",
258
+ "name": "python",
259
+ "nbconvert_exporter": "python",
260
+ "pygments_lexer": "ipython3",
261
+ "version": "3.7.13"
262
+ },
263
+ "vscode": {
264
+ "interpreter": {
265
+ "hash": "f9237820cd248d7e07cb4fb9f0e4508a85d642f19d831560c0a4b61f3e907e67"
266
+ }
267
+ }
268
+ },
269
+ "nbformat": 4,
270
+ "nbformat_minor": 2
271
+ }
croco/models/__pycache__/blocks.cpython-311.pyc ADDED
Binary file (18.3 kB). View file
 
croco/models/__pycache__/croco.cpython-311.pyc ADDED
Binary file (14.2 kB). View file
 
croco/models/__pycache__/dpt_block.cpython-311.pyc ADDED
Binary file (18.6 kB). View file
 
croco/models/__pycache__/masking.cpython-311.pyc ADDED
Binary file (1.45 kB). View file
 
croco/models/__pycache__/pos_embed.cpython-311.pyc ADDED
Binary file (9.51 kB). View file
 
croco/models/blocks.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+
5
+ # --------------------------------------------------------
6
+ # Main encoder/decoder blocks
7
+ # --------------------------------------------------------
8
+ # References:
9
+ # timm
10
+ # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
11
+ # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py
12
+ # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
13
+ # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py
14
+ # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py
15
+
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from itertools import repeat
21
+ import collections.abc
22
+
23
+
24
+ def _ntuple(n):
25
+ def parse(x):
26
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
27
+ return x
28
+ return tuple(repeat(x, n))
29
+ return parse
30
+ to_2tuple = _ntuple(2)
31
+
32
+ def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
33
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
34
+ """
35
+ if drop_prob == 0. or not training:
36
+ return x
37
+ keep_prob = 1 - drop_prob
38
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
39
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
40
+ if keep_prob > 0.0 and scale_by_keep:
41
+ random_tensor.div_(keep_prob)
42
+ return x * random_tensor
43
+
44
+ class DropPath(nn.Module):
45
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
46
+ """
47
+ def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
48
+ super(DropPath, self).__init__()
49
+ self.drop_prob = drop_prob
50
+ self.scale_by_keep = scale_by_keep
51
+
52
+ def forward(self, x):
53
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
54
+
55
+ def extra_repr(self):
56
+ return f'drop_prob={round(self.drop_prob,3):0.3f}'
57
+
58
+ class Mlp(nn.Module):
59
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks"""
60
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, drop=0.):
61
+ super().__init__()
62
+ out_features = out_features or in_features
63
+ hidden_features = hidden_features or in_features
64
+ bias = to_2tuple(bias)
65
+ drop_probs = to_2tuple(drop)
66
+
67
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
68
+ self.act = act_layer()
69
+ self.drop1 = nn.Dropout(drop_probs[0])
70
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
71
+ self.drop2 = nn.Dropout(drop_probs[1])
72
+
73
+ def forward(self, x):
74
+ x = self.fc1(x)
75
+ x = self.act(x)
76
+ x = self.drop1(x)
77
+ x = self.fc2(x)
78
+ x = self.drop2(x)
79
+ return x
80
+
81
+ class Attention(nn.Module):
82
+
83
+ def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
84
+ super().__init__()
85
+ self.num_heads = num_heads
86
+ head_dim = dim // num_heads
87
+ self.scale = head_dim ** -0.5
88
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
89
+ self.attn_drop = nn.Dropout(attn_drop)
90
+ self.proj = nn.Linear(dim, dim)
91
+ self.proj_drop = nn.Dropout(proj_drop)
92
+ self.rope = rope
93
+
94
+ def forward(self, x, xpos):
95
+ B, N, C = x.shape
96
+
97
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).transpose(1,3)
98
+ q, k, v = [qkv[:,:,i] for i in range(3)]
99
+ # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple)
100
+
101
+ if self.rope is not None:
102
+ q = self.rope(q, xpos)
103
+ k = self.rope(k, xpos)
104
+
105
+ attn = (q @ k.transpose(-2, -1)) * self.scale
106
+ attn = attn.softmax(dim=-1)
107
+ attn = self.attn_drop(attn)
108
+
109
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
110
+ x = self.proj(x)
111
+ x = self.proj_drop(x)
112
+ return x
113
+
114
+ class Block(nn.Module):
115
+
116
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
117
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, rope=None):
118
+ super().__init__()
119
+ self.norm1 = norm_layer(dim)
120
+ self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
121
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
122
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
123
+ self.norm2 = norm_layer(dim)
124
+ mlp_hidden_dim = int(dim * mlp_ratio)
125
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
126
+
127
+ def forward(self, x, xpos):
128
+ x = x + self.drop_path(self.attn(self.norm1(x), xpos))
129
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
130
+ return x
131
+
132
+ class CrossAttention(nn.Module):
133
+
134
+ def __init__(self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
135
+ super().__init__()
136
+ self.num_heads = num_heads
137
+ head_dim = dim // num_heads
138
+ self.scale = head_dim ** -0.5
139
+
140
+ self.projq = nn.Linear(dim, dim, bias=qkv_bias)
141
+ self.projk = nn.Linear(dim, dim, bias=qkv_bias)
142
+ self.projv = nn.Linear(dim, dim, bias=qkv_bias)
143
+ self.attn_drop = nn.Dropout(attn_drop)
144
+ self.proj = nn.Linear(dim, dim)
145
+ self.proj_drop = nn.Dropout(proj_drop)
146
+
147
+ self.rope = rope
148
+
149
+ def forward(self, query, key, value, qpos, kpos):
150
+ B, Nq, C = query.shape
151
+ Nk = key.shape[1]
152
+ Nv = value.shape[1]
153
+
154
+ q = self.projq(query).reshape(B,Nq,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3)
155
+ k = self.projk(key).reshape(B,Nk,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3)
156
+ v = self.projv(value).reshape(B,Nv,self.num_heads, C// self.num_heads).permute(0, 2, 1, 3)
157
+
158
+ if self.rope is not None:
159
+ q = self.rope(q, qpos)
160
+ k = self.rope(k, kpos)
161
+
162
+ attn = (q @ k.transpose(-2, -1)) * self.scale
163
+ attn = attn.softmax(dim=-1)
164
+ attn = self.attn_drop(attn)
165
+
166
+ x = (attn @ v).transpose(1, 2).reshape(B, Nq, C)
167
+ x = self.proj(x)
168
+ x = self.proj_drop(x)
169
+ return x
170
+
171
+ class DecoderBlock(nn.Module):
172
+
173
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
174
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_mem=True, rope=None):
175
+ super().__init__()
176
+ self.norm1 = norm_layer(dim)
177
+ self.attn = Attention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
178
+ self.cross_attn = CrossAttention(dim, rope=rope, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
179
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
180
+ self.norm2 = norm_layer(dim)
181
+ self.norm3 = norm_layer(dim)
182
+ mlp_hidden_dim = int(dim * mlp_ratio)
183
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
184
+ self.norm_y = norm_layer(dim) if norm_mem else nn.Identity()
185
+
186
+ def forward(self, x, y, xpos, ypos):
187
+ x = x + self.drop_path(self.attn(self.norm1(x), xpos))
188
+ y_ = self.norm_y(y)
189
+ x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos))
190
+ x = x + self.drop_path(self.mlp(self.norm3(x)))
191
+ return x, y
192
+
193
+
194
+ # patch embedding
195
+ class PositionGetter(object):
196
+ """ return positions of patches """
197
+
198
+ def __init__(self):
199
+ self.cache_positions = {}
200
+
201
+ def __call__(self, b, h, w, device):
202
+ if not (h,w) in self.cache_positions:
203
+ x = torch.arange(w, device=device)
204
+ y = torch.arange(h, device=device)
205
+ self.cache_positions[h,w] = torch.cartesian_prod(y, x) # (h, w, 2)
206
+ pos = self.cache_positions[h,w].view(1, h*w, 2).expand(b, -1, 2).clone()
207
+ return pos
208
+
209
+ class PatchEmbed(nn.Module):
210
+ """ just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed"""
211
+
212
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
213
+ super().__init__()
214
+ img_size = to_2tuple(img_size)
215
+ patch_size = to_2tuple(patch_size)
216
+ self.img_size = img_size
217
+ self.patch_size = patch_size
218
+ self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
219
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
220
+ self.flatten = flatten
221
+
222
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
223
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
224
+
225
+ self.position_getter = PositionGetter()
226
+
227
+ def forward(self, x):
228
+ B, C, H, W = x.shape
229
+ torch._assert(H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).")
230
+ torch._assert(W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).")
231
+ x = self.proj(x)
232
+ pos = self.position_getter(B, x.size(2), x.size(3), x.device)
233
+ if self.flatten:
234
+ x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
235
+ x = self.norm(x)
236
+ return x, pos
237
+
238
+ def _init_weights(self):
239
+ w = self.proj.weight.data
240
+ torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
241
+
croco/models/criterion.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+ #
4
+ # --------------------------------------------------------
5
+ # Criterion to train CroCo
6
+ # --------------------------------------------------------
7
+ # References:
8
+ # MAE: https://github.com/facebookresearch/mae
9
+ # --------------------------------------------------------
10
+
11
+ import torch
12
+
13
+ class MaskedMSE(torch.nn.Module):
14
+
15
+ def __init__(self, norm_pix_loss=False, masked=True):
16
+ """
17
+ norm_pix_loss: normalize each patch by their pixel mean and variance
18
+ masked: compute loss over the masked patches only
19
+ """
20
+ super().__init__()
21
+ self.norm_pix_loss = norm_pix_loss
22
+ self.masked = masked
23
+
24
+ def forward(self, pred, mask, target):
25
+
26
+ if self.norm_pix_loss:
27
+ mean = target.mean(dim=-1, keepdim=True)
28
+ var = target.var(dim=-1, keepdim=True)
29
+ target = (target - mean) / (var + 1.e-6)**.5
30
+
31
+ loss = (pred - target) ** 2
32
+ loss = loss.mean(dim=-1) # [N, L], mean loss per patch
33
+ if self.masked:
34
+ loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches
35
+ else:
36
+ loss = loss.mean() # mean loss
37
+ return loss
croco/models/croco.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+
5
+ # --------------------------------------------------------
6
+ # CroCo model during pretraining
7
+ # --------------------------------------------------------
8
+
9
+
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
14
+ from functools import partial
15
+
16
+ from models.blocks import Block, DecoderBlock, PatchEmbed
17
+ from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D
18
+ from models.masking import RandomMask
19
+
20
+
21
+ class CroCoNet(nn.Module):
22
+
23
+ def __init__(self,
24
+ img_size=224, # input image size
25
+ patch_size=16, # patch_size
26
+ mask_ratio=0.9, # ratios of masked tokens
27
+ enc_embed_dim=768, # encoder feature dimension
28
+ enc_depth=12, # encoder depth
29
+ enc_num_heads=12, # encoder number of heads in the transformer block
30
+ dec_embed_dim=512, # decoder feature dimension
31
+ dec_depth=8, # decoder depth
32
+ dec_num_heads=16, # decoder number of heads in the transformer block
33
+ mlp_ratio=4,
34
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
35
+ norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder
36
+ pos_embed='cosine', # positional embedding (either cosine or RoPE100)
37
+ ):
38
+
39
+ super(CroCoNet, self).__init__()
40
+
41
+ self.enc_depth = enc_depth
42
+ self.enc_embed_dim = enc_embed_dim
43
+ self.dec_depth = dec_depth
44
+ self.dec_embed_dim = dec_embed_dim
45
+ # patch embeddings (with initialization done as in MAE)
46
+ self._set_patch_embed(img_size, patch_size, enc_embed_dim)
47
+
48
+ # mask generations
49
+ self._set_mask_generator(self.patch_embed.num_patches, mask_ratio)
50
+
51
+ self.pos_embed = pos_embed
52
+ if pos_embed=='cosine':
53
+ # positional embedding of the encoder
54
+ enc_pos_embed = get_2d_sincos_pos_embed(enc_embed_dim, self.patch_embed.grid_size, n_cls_token=0)
55
+ self.register_buffer('enc_pos_embed', torch.from_numpy(enc_pos_embed).float())
56
+ # positional embedding of the decoder
57
+ dec_pos_embed = get_2d_sincos_pos_embed(dec_embed_dim, self.patch_embed.grid_size, n_cls_token=0)
58
+ self.register_buffer('dec_pos_embed', torch.from_numpy(dec_pos_embed).float())
59
+ # pos embedding in each block
60
+ self.rope = None # nothing for cosine
61
+ elif pos_embed.startswith('RoPE'): # eg RoPE100
62
+ self.enc_pos_embed = None # nothing to add in the encoder with RoPE
63
+ self.dec_pos_embed = None # nothing to add in the decoder with RoPE
64
+ if RoPE2D is None: raise ImportError("Cannot find cuRoPE2D, please install it following the README instructions")
65
+ freq = float(pos_embed[len('RoPE'):])
66
+ self.rope = RoPE2D(freq=freq)
67
+ else:
68
+ raise NotImplementedError('Unknown pos_embed '+pos_embed)
69
+
70
+ # transformer for the encoder
71
+
72
+ self.enc_blocks = nn.ModuleList([
73
+ Block(enc_embed_dim, enc_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope)
74
+ for i in range(enc_depth)])
75
+ self.enc_norm = norm_layer(enc_embed_dim)
76
+
77
+
78
+ self.dec_blocks_pc = nn.ModuleList([
79
+ Block(dec_embed_dim, dec_num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer, rope=self.rope)
80
+ for i in range(dec_depth//2-2)])
81
+ # masked tokens
82
+ self._set_mask_token(dec_embed_dim)
83
+
84
+ # decoder
85
+ self._set_decoder(enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec)
86
+
87
+ # prediction head
88
+ self._set_prediction_head(dec_embed_dim, patch_size)
89
+
90
+ # initializer weights
91
+ self.initialize_weights()
92
+
93
+ def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
94
+ self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim)
95
+
96
+ def _set_mask_generator(self, num_patches, mask_ratio):
97
+ self.mask_generator = RandomMask(num_patches, mask_ratio)
98
+
99
+ def _set_mask_token(self, dec_embed_dim):
100
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim))
101
+
102
+ def _set_decoder(self, enc_embed_dim, dec_embed_dim, dec_num_heads, dec_depth, mlp_ratio, norm_layer, norm_im2_in_dec):
103
+ self.dec_depth = dec_depth
104
+ self.dec_embed_dim = dec_embed_dim
105
+ # transfer from encoder to decoder
106
+ self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True)
107
+ # transformer for the decoder
108
+ self.dec_blocks = nn.ModuleList([
109
+ DecoderBlock(dec_embed_dim, dec_num_heads, mlp_ratio=mlp_ratio, qkv_bias=True, norm_layer=norm_layer, norm_mem=norm_im2_in_dec, rope=self.rope)
110
+ for i in range(dec_depth)])
111
+ # final norm layer
112
+ self.dec_norm = norm_layer(dec_embed_dim)
113
+
114
+ def _set_prediction_head(self, dec_embed_dim, patch_size):
115
+ self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True)
116
+
117
+
118
+ def initialize_weights(self):
119
+ # patch embed
120
+ self.patch_embed._init_weights()
121
+ # mask tokens
122
+ if self.mask_token is not None: torch.nn.init.normal_(self.mask_token, std=.02)
123
+ # linears and layer norms
124
+ self.apply(self._init_weights)
125
+
126
+ def _init_weights(self, m):
127
+ if isinstance(m, nn.Linear):
128
+ # we use xavier_uniform following official JAX ViT:
129
+ torch.nn.init.xavier_uniform_(m.weight)
130
+ if isinstance(m, nn.Linear) and m.bias is not None:
131
+ nn.init.constant_(m.bias, 0)
132
+ elif isinstance(m, nn.LayerNorm):
133
+ nn.init.constant_(m.bias, 0)
134
+ nn.init.constant_(m.weight, 1.0)
135
+
136
+ def _encode_image(self, image, do_mask=False, return_all_blocks=False):
137
+ """
138
+ image has B x 3 x img_size x img_size
139
+ do_mask: whether to perform masking or not
140
+ return_all_blocks: if True, return the features at the end of every block
141
+ instead of just the features from the last block (eg for some prediction heads)
142
+ """
143
+ # embed the image into patches (x has size B x Npatches x C)
144
+ # and get position if each return patch (pos has size B x Npatches x 2)
145
+ x, pos = self.patch_embed(image)
146
+ # add positional embedding without cls token
147
+ if self.enc_pos_embed is not None:
148
+ x = x + self.enc_pos_embed[None,...]
149
+ # apply masking
150
+ B,N,C = x.size()
151
+ if do_mask:
152
+ masks = self.mask_generator(x)
153
+ x = x[~masks].view(B, -1, C)
154
+ posvis = pos[~masks].view(B, -1, 2)
155
+ else:
156
+ B,N,C = x.size()
157
+ masks = torch.zeros((B,N), dtype=bool)
158
+ posvis = pos
159
+ # now apply the transformer encoder and normalization
160
+ if return_all_blocks:
161
+ out = []
162
+ for blk in self.enc_blocks:
163
+ x = blk(x, posvis)
164
+ out.append(x)
165
+ out[-1] = self.enc_norm(out[-1])
166
+ return out, pos, masks
167
+ else:
168
+ for blk in self.enc_blocks:
169
+ x = blk(x, posvis)
170
+ x = self.enc_norm(x)
171
+ return x, pos, masks
172
+
173
+ def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False):
174
+ """
175
+ return_all_blocks: if True, return the features at the end of every block
176
+ instead of just the features from the last block (eg for some prediction heads)
177
+
178
+ masks1 can be None => assume image1 fully visible
179
+ """
180
+ # encoder to decoder layer
181
+ visf1 = self.decoder_embed(feat1)
182
+ f2 = self.decoder_embed(feat2)
183
+ # append masked tokens to the sequence
184
+ B,Nenc,C = visf1.size()
185
+ if masks1 is None: # downstreams
186
+ f1_ = visf1
187
+ else: # pretraining
188
+ Ntotal = masks1.size(1)
189
+ f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype)
190
+ f1_[~masks1] = visf1.view(B * Nenc, C)
191
+ # add positional embedding
192
+ if self.dec_pos_embed is not None:
193
+ f1_ = f1_ + self.dec_pos_embed
194
+ f2 = f2 + self.dec_pos_embed
195
+ # apply Transformer blocks
196
+ out = f1_
197
+ out2 = f2
198
+ if return_all_blocks:
199
+ _out, out = out, []
200
+ for blk in self.dec_blocks:
201
+ _out, out2 = blk(_out, out2, pos1, pos2)
202
+ out.append(_out)
203
+ out[-1] = self.dec_norm(out[-1])
204
+ else:
205
+ for blk in self.dec_blocks:
206
+ out, out2 = blk(out, out2, pos1, pos2)
207
+ out = self.dec_norm(out)
208
+ return out
209
+
210
+ def patchify(self, imgs):
211
+ """
212
+ imgs: (B, 3, H, W)
213
+ x: (B, L, patch_size**2 *3)
214
+ """
215
+ p = self.patch_embed.patch_size[0]
216
+ assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
217
+
218
+ h = w = imgs.shape[2] // p
219
+ x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
220
+ x = torch.einsum('nchpwq->nhwpqc', x)
221
+ x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
222
+
223
+ return x
224
+
225
+ def unpatchify(self, x, channels=3):
226
+ """
227
+ x: (N, L, patch_size**2 *channels)
228
+ imgs: (N, 3, H, W)
229
+ """
230
+ patch_size = self.patch_embed.patch_size[0]
231
+ h = w = int(x.shape[1]**.5)
232
+ assert h * w == x.shape[1]
233
+ x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels))
234
+ x = torch.einsum('nhwpqc->nchpwq', x)
235
+ imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size))
236
+ return imgs
237
+
238
+ def forward(self, img1, img2):
239
+ """
240
+ img1: tensor of size B x 3 x img_size x img_size
241
+ img2: tensor of size B x 3 x img_size x img_size
242
+
243
+ out will be B x N x (3*patch_size*patch_size)
244
+ masks are also returned as B x N just in case
245
+ """
246
+ # encoder of the masked first image
247
+ feat1, pos1, mask1 = self._encode_image(img1, do_mask=True)
248
+ # encoder of the second image
249
+ feat2, pos2, _ = self._encode_image(img2, do_mask=False)
250
+ # decoder
251
+ decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2)
252
+ # prediction head
253
+ out = self.prediction_head(decfeat)
254
+ # get target
255
+ target = self.patchify(img1)
256
+ return out, mask1, target
croco/models/croco_downstream.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ # --------------------------------------------------------
5
+ # CroCo model for downstream tasks
6
+ # --------------------------------------------------------
7
+
8
+ import torch
9
+
10
+ from .croco import CroCoNet
11
+
12
+
13
+ def croco_args_from_ckpt(ckpt):
14
+ if 'croco_kwargs' in ckpt: # CroCo v2 released models
15
+ return ckpt['croco_kwargs']
16
+ elif 'args' in ckpt and hasattr(ckpt['args'], 'model'): # pretrained using the official code release
17
+ s = ckpt['args'].model # eg "CroCoNet(enc_embed_dim=1024, enc_num_heads=16, enc_depth=24)"
18
+ assert s.startswith('CroCoNet(')
19
+ return eval('dict'+s[len('CroCoNet'):]) # transform it into the string of a dictionary and evaluate it
20
+ else: # CroCo v1 released models
21
+ return dict()
22
+
23
+ class CroCoDownstreamMonocularEncoder(CroCoNet):
24
+
25
+ def __init__(self,
26
+ head,
27
+ **kwargs):
28
+ """ Build network for monocular downstream task, only using the encoder.
29
+ It takes an extra argument head, that is called with the features
30
+ and a dictionary img_info containing 'width' and 'height' keys
31
+ The head is setup with the croconet arguments in this init function
32
+ NOTE: It works by *calling super().__init__() but with redefined setters
33
+
34
+ """
35
+ super(CroCoDownstreamMonocularEncoder, self).__init__(**kwargs)
36
+ head.setup(self)
37
+ self.head = head
38
+
39
+ def _set_mask_generator(self, *args, **kwargs):
40
+ """ No mask generator """
41
+ return
42
+
43
+ def _set_mask_token(self, *args, **kwargs):
44
+ """ No mask token """
45
+ self.mask_token = None
46
+ return
47
+
48
+ def _set_decoder(self, *args, **kwargs):
49
+ """ No decoder """
50
+ return
51
+
52
+ def _set_prediction_head(self, *args, **kwargs):
53
+ """ No 'prediction head' for downstream tasks."""
54
+ return
55
+
56
+ def forward(self, img):
57
+ """
58
+ img if of size batch_size x 3 x h x w
59
+ """
60
+ B, C, H, W = img.size()
61
+ img_info = {'height': H, 'width': W}
62
+ need_all_layers = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks
63
+ out, _, _ = self._encode_image(img, do_mask=False, return_all_blocks=need_all_layers)
64
+ return self.head(out, img_info)
65
+
66
+
67
+ class CroCoDownstreamBinocular(CroCoNet):
68
+
69
+ def __init__(self,
70
+ head,
71
+ **kwargs):
72
+ """ Build network for binocular downstream task
73
+ It takes an extra argument head, that is called with the features
74
+ and a dictionary img_info containing 'width' and 'height' keys
75
+ The head is setup with the croconet arguments in this init function
76
+ """
77
+ super(CroCoDownstreamBinocular, self).__init__(**kwargs)
78
+ head.setup(self)
79
+ self.head = head
80
+
81
+ def _set_mask_generator(self, *args, **kwargs):
82
+ """ No mask generator """
83
+ return
84
+
85
+ def _set_mask_token(self, *args, **kwargs):
86
+ """ No mask token """
87
+ self.mask_token = None
88
+ return
89
+
90
+ def _set_prediction_head(self, *args, **kwargs):
91
+ """ No prediction head for downstream tasks, define your own head """
92
+ return
93
+
94
+ def encode_image_pairs(self, img1, img2, return_all_blocks=False):
95
+ """ run encoder for a pair of images
96
+ it is actually ~5% faster to concatenate the images along the batch dimension
97
+ than to encode them separately
98
+ """
99
+ ## the two commented lines below is the naive version with separate encoding
100
+ #out, pos, _ = self._encode_image(img1, do_mask=False, return_all_blocks=return_all_blocks)
101
+ #out2, pos2, _ = self._encode_image(img2, do_mask=False, return_all_blocks=False)
102
+ ## and now the faster version
103
+ out, pos, _ = self._encode_image( torch.cat( (img1,img2), dim=0), do_mask=False, return_all_blocks=return_all_blocks )
104
+ if return_all_blocks:
105
+ out,out2 = list(map(list, zip(*[o.chunk(2, dim=0) for o in out])))
106
+ out2 = out2[-1]
107
+ else:
108
+ out,out2 = out.chunk(2, dim=0)
109
+ pos,pos2 = pos.chunk(2, dim=0)
110
+ return out, out2, pos, pos2
111
+
112
+ def forward(self, img1, img2):
113
+ B, C, H, W = img1.size()
114
+ img_info = {'height': H, 'width': W}
115
+ return_all_blocks = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks
116
+ out, out2, pos, pos2 = self.encode_image_pairs(img1, img2, return_all_blocks=return_all_blocks)
117
+ if return_all_blocks:
118
+ decout = self._decoder(out[-1], pos, None, out2, pos2, return_all_blocks=return_all_blocks)
119
+ decout = out+decout
120
+ else:
121
+ decout = self._decoder(out, pos, None, out2, pos2, return_all_blocks=return_all_blocks)
122
+ return self.head(decout, img_info)
croco/models/curope/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ from .curope2d import cuRoPE2D
croco/models/curope/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (253 Bytes). View file
 
croco/models/curope/__pycache__/curope2d.cpython-311.pyc ADDED
Binary file (2.67 kB). View file
 
croco/models/curope/build/lib.linux-x86_64-cpython-311/curope.cpython-311-x86_64-linux-gnu.so ADDED
Binary file (331 kB). View file
 
croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_deps ADDED
Binary file (630 kB). View file
 
croco/models/curope/build/temp.linux-x86_64-cpython-311/.ninja_log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # ninja log v5
2
+ 0 12275 1728651353555686417 /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o 46197fb3a2f9e5ab
3
+ 0 156505 1728651497679855739 /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o 5a65d5447ccdcd9c
croco/models/curope/build/temp.linux-x86_64-cpython-311/build.ninja ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ninja_required_version = 1.3
2
+ cxx = c++
3
+ nvcc = /usr/local/cuda/bin/nvcc
4
+
5
+ cflags = -pthread -B /home/lipeng/miniconda3/envs/dust3r/compiler_compat -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lipeng/miniconda3/envs/dust3r/include -fPIC -O2 -isystem /home/lipeng/miniconda3/envs/dust3r/include -fPIC -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/torch/csrc/api/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/TH -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lipeng/miniconda3/envs/dust3r/include/python3.11 -c
6
+ post_cflags = -O3 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=curope -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17
7
+ cuda_cflags = -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/torch/csrc/api/include -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/TH -I/home/lipeng/miniconda3/envs/dust3r/lib/python3.11/site-packages/torch/include/THC -I/usr/local/cuda/include -I/home/lipeng/miniconda3/envs/dust3r/include/python3.11 -c
8
+ cuda_post_cflags = -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 --ptxas-options=-v --use_fast_math -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_80,code=sm_80 -gencode arch=compute_86,code=sm_86 -gencode arch=compute_90,code=sm_90 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=curope -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17
9
+ cuda_dlink_post_cflags =
10
+ ldflags =
11
+
12
+ rule compile
13
+ command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags
14
+ depfile = $out.d
15
+ deps = gcc
16
+
17
+ rule cuda_compile
18
+ depfile = $out.d
19
+ deps = gcc
20
+ command = $nvcc --generate-dependencies-with-compile --dependency-output $out.d $cuda_cflags -c $in -o $out $cuda_post_cflags
21
+
22
+
23
+
24
+
25
+
26
+ build /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o: compile /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/curope.cpp
27
+ build /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o: cuda_compile /home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train/croco/models/curope/kernels.cu
28
+
29
+
30
+
31
+
32
+
33
+
croco/models/curope/build/temp.linux-x86_64-cpython-311/curope.o ADDED
Binary file (232 kB). View file
 
croco/models/curope/build/temp.linux-x86_64-cpython-311/kernels.o ADDED
Binary file (197 kB). View file
 
croco/models/curope/curope.cpp ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ Copyright (C) 2022-present Naver Corporation. All rights reserved.
3
+ Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
4
+ */
5
+
6
+ #include <torch/extension.h>
7
+
8
+ // forward declaration
9
+ void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd );
10
+
11
+ void rope_2d_cpu( torch::Tensor tokens, const torch::Tensor positions, const float base, const float fwd )
12
+ {
13
+ const int B = tokens.size(0);
14
+ const int N = tokens.size(1);
15
+ const int H = tokens.size(2);
16
+ const int D = tokens.size(3) / 4;
17
+
18
+ auto tok = tokens.accessor<float, 4>();
19
+ auto pos = positions.accessor<int64_t, 3>();
20
+
21
+ for (int b = 0; b < B; b++) {
22
+ for (int x = 0; x < 2; x++) { // y and then x (2d)
23
+ for (int n = 0; n < N; n++) {
24
+
25
+ // grab the token position
26
+ const int p = pos[b][n][x];
27
+
28
+ for (int h = 0; h < H; h++) {
29
+ for (int d = 0; d < D; d++) {
30
+ // grab the two values
31
+ float u = tok[b][n][h][d+0+x*2*D];
32
+ float v = tok[b][n][h][d+D+x*2*D];
33
+
34
+ // grab the cos,sin
35
+ const float inv_freq = fwd * p / powf(base, d/float(D));
36
+ float c = cosf(inv_freq);
37
+ float s = sinf(inv_freq);
38
+
39
+ // write the result
40
+ tok[b][n][h][d+0+x*2*D] = u*c - v*s;
41
+ tok[b][n][h][d+D+x*2*D] = v*c + u*s;
42
+ }
43
+ }
44
+ }
45
+ }
46
+ }
47
+ }
48
+
49
+ void rope_2d( torch::Tensor tokens, // B,N,H,D
50
+ const torch::Tensor positions, // B,N,2
51
+ const float base,
52
+ const float fwd )
53
+ {
54
+ TORCH_CHECK(tokens.dim() == 4, "tokens must have 4 dimensions");
55
+ TORCH_CHECK(positions.dim() == 3, "positions must have 3 dimensions");
56
+ TORCH_CHECK(tokens.size(0) == positions.size(0), "batch size differs between tokens & positions");
57
+ TORCH_CHECK(tokens.size(1) == positions.size(1), "seq_length differs between tokens & positions");
58
+ TORCH_CHECK(positions.size(2) == 2, "positions.shape[2] must be equal to 2");
59
+ TORCH_CHECK(tokens.is_cuda() == positions.is_cuda(), "tokens and positions are not on the same device" );
60
+
61
+ if (tokens.is_cuda())
62
+ rope_2d_cuda( tokens, positions, base, fwd );
63
+ else
64
+ rope_2d_cpu( tokens, positions, base, fwd );
65
+ }
66
+
67
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
68
+ m.def("rope_2d", &rope_2d, "RoPE 2d forward/backward");
69
+ }
croco/models/curope/curope.cpython-311-x86_64-linux-gnu.so ADDED
Binary file (331 kB). View file
 
croco/models/curope/curope2d.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ import torch
5
+
6
+ try:
7
+ import curope as _kernels # run `python setup.py install`
8
+ except ModuleNotFoundError:
9
+ from . import curope as _kernels # run `python setup.py build_ext --inplace`
10
+
11
+
12
+ class cuRoPE2D_func (torch.autograd.Function):
13
+
14
+ @staticmethod
15
+ def forward(ctx, tokens, positions, base, F0=1):
16
+ ctx.save_for_backward(positions)
17
+ ctx.saved_base = base
18
+ ctx.saved_F0 = F0
19
+ # tokens = tokens.clone() # uncomment this if inplace doesn't work
20
+ _kernels.rope_2d( tokens, positions, base, F0 )
21
+ ctx.mark_dirty(tokens)
22
+ return tokens
23
+
24
+ @staticmethod
25
+ def backward(ctx, grad_res):
26
+ positions, base, F0 = ctx.saved_tensors[0], ctx.saved_base, ctx.saved_F0
27
+ _kernels.rope_2d( grad_res, positions, base, -F0 )
28
+ ctx.mark_dirty(grad_res)
29
+ return grad_res, None, None, None
30
+
31
+
32
+ class cuRoPE2D(torch.nn.Module):
33
+ def __init__(self, freq=100.0, F0=1.0):
34
+ super().__init__()
35
+ self.base = freq
36
+ self.F0 = F0
37
+
38
+ def forward(self, tokens, positions):
39
+ cuRoPE2D_func.apply( tokens.transpose(1,2), positions, self.base, self.F0 )
40
+ return tokens
croco/models/curope/kernels.cu ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*
2
+ Copyright (C) 2022-present Naver Corporation. All rights reserved.
3
+ Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
4
+ */
5
+
6
+ #include <torch/extension.h>
7
+ #include <cuda.h>
8
+ #include <cuda_runtime.h>
9
+ #include <vector>
10
+
11
+ #define CHECK_CUDA(tensor) {\
12
+ TORCH_CHECK((tensor).is_cuda(), #tensor " is not in cuda memory"); \
13
+ TORCH_CHECK((tensor).is_contiguous(), #tensor " is not contiguous"); }
14
+ void CHECK_KERNEL() {auto error = cudaGetLastError(); TORCH_CHECK( error == cudaSuccess, cudaGetErrorString(error));}
15
+
16
+
17
+ template < typename scalar_t >
18
+ __global__ void rope_2d_cuda_kernel(
19
+ //scalar_t* __restrict__ tokens,
20
+ torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> tokens,
21
+ const int64_t* __restrict__ pos,
22
+ const float base,
23
+ const float fwd )
24
+ // const int N, const int H, const int D )
25
+ {
26
+ // tokens shape = (B, N, H, D)
27
+ const int N = tokens.size(1);
28
+ const int H = tokens.size(2);
29
+ const int D = tokens.size(3);
30
+
31
+ // each block update a single token, for all heads
32
+ // each thread takes care of a single output
33
+ extern __shared__ float shared[];
34
+ float* shared_inv_freq = shared + D;
35
+
36
+ const int b = blockIdx.x / N;
37
+ const int n = blockIdx.x % N;
38
+
39
+ const int Q = D / 4;
40
+ // one token = [0..Q : Q..2Q : 2Q..3Q : 3Q..D]
41
+ // u_Y v_Y u_X v_X
42
+
43
+ // shared memory: first, compute inv_freq
44
+ if (threadIdx.x < Q)
45
+ shared_inv_freq[threadIdx.x] = fwd / powf(base, threadIdx.x/float(Q));
46
+ __syncthreads();
47
+
48
+ // start of X or Y part
49
+ const int X = threadIdx.x < D/2 ? 0 : 1;
50
+ const int m = (X*D/2) + (threadIdx.x % Q); // index of u_Y or u_X
51
+
52
+ // grab the cos,sin appropriate for me
53
+ const float freq = pos[blockIdx.x*2+X] * shared_inv_freq[threadIdx.x % Q];
54
+ const float cos = cosf(freq);
55
+ const float sin = sinf(freq);
56
+ /*
57
+ float* shared_cos_sin = shared + D + D/4;
58
+ if ((threadIdx.x % (D/2)) < Q)
59
+ shared_cos_sin[m+0] = cosf(freq);
60
+ else
61
+ shared_cos_sin[m+Q] = sinf(freq);
62
+ __syncthreads();
63
+ const float cos = shared_cos_sin[m+0];
64
+ const float sin = shared_cos_sin[m+Q];
65
+ */
66
+
67
+ for (int h = 0; h < H; h++)
68
+ {
69
+ // then, load all the token for this head in shared memory
70
+ shared[threadIdx.x] = tokens[b][n][h][threadIdx.x];
71
+ __syncthreads();
72
+
73
+ const float u = shared[m];
74
+ const float v = shared[m+Q];
75
+
76
+ // write output
77
+ if ((threadIdx.x % (D/2)) < Q)
78
+ tokens[b][n][h][threadIdx.x] = u*cos - v*sin;
79
+ else
80
+ tokens[b][n][h][threadIdx.x] = v*cos + u*sin;
81
+ }
82
+ }
83
+
84
+ void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd )
85
+ {
86
+ const int B = tokens.size(0); // batch size
87
+ const int N = tokens.size(1); // sequence length
88
+ const int H = tokens.size(2); // number of heads
89
+ const int D = tokens.size(3); // dimension per head
90
+
91
+ TORCH_CHECK(tokens.stride(3) == 1 && tokens.stride(2) == D, "tokens are not contiguous");
92
+ TORCH_CHECK(pos.is_contiguous(), "positions are not contiguous");
93
+ TORCH_CHECK(pos.size(0) == B && pos.size(1) == N && pos.size(2) == 2, "bad pos.shape");
94
+ TORCH_CHECK(D % 4 == 0, "token dim must be multiple of 4");
95
+
96
+ // one block for each layer, one thread per local-max
97
+ const int THREADS_PER_BLOCK = D;
98
+ const int N_BLOCKS = B * N; // each block takes care of H*D values
99
+ const int SHARED_MEM = sizeof(float) * (D + D/4);
100
+
101
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(tokens.type(), "rope_2d_cuda", ([&] {
102
+ rope_2d_cuda_kernel<scalar_t> <<<N_BLOCKS, THREADS_PER_BLOCK, SHARED_MEM>>> (
103
+ //tokens.data_ptr<scalar_t>(),
104
+ tokens.packed_accessor32<scalar_t,4,torch::RestrictPtrTraits>(),
105
+ pos.data_ptr<int64_t>(),
106
+ base, fwd); //, N, H, D );
107
+ }));
108
+ }
croco/models/curope/setup.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ from setuptools import setup
5
+ from torch import cuda
6
+ from torch.utils.cpp_extension import BuildExtension, CUDAExtension
7
+
8
+ # compile for all possible CUDA architectures
9
+ all_cuda_archs = cuda.get_gencode_flags().replace('compute=','arch=').split()
10
+ # alternatively, you can list cuda archs that you want, eg:
11
+ # all_cuda_archs = [
12
+ # '-gencode', 'arch=compute_70,code=sm_70',
13
+ # '-gencode', 'arch=compute_75,code=sm_75',
14
+ # '-gencode', 'arch=compute_80,code=sm_80',
15
+ # '-gencode', 'arch=compute_86,code=sm_86'
16
+ # ]
17
+
18
+ setup(
19
+ name = 'curope',
20
+ ext_modules = [
21
+ CUDAExtension(
22
+ name='curope',
23
+ sources=[
24
+ "curope.cpp",
25
+ "kernels.cu",
26
+ ],
27
+ extra_compile_args = dict(
28
+ nvcc=['-O3','--ptxas-options=-v',"--use_fast_math"]+all_cuda_archs,
29
+ cxx=['-O3'])
30
+ )
31
+ ],
32
+ cmdclass = {
33
+ 'build_ext': BuildExtension
34
+ })
croco/models/dpt_block.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ # --------------------------------------------------------
5
+ # DPT head for ViTs
6
+ # --------------------------------------------------------
7
+ # References:
8
+ # https://github.com/isl-org/DPT
9
+ # https://github.com/EPFL-VILAB/MultiMAE/blob/main/multimae/output_adapters.py
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from einops import rearrange, repeat
15
+ from typing import Union, Tuple, Iterable, List, Optional, Dict
16
+
17
+ def pair(t):
18
+ return t if isinstance(t, tuple) else (t, t)
19
+
20
+ def make_scratch(in_shape, out_shape, groups=1, expand=False):
21
+ scratch = nn.Module()
22
+
23
+ out_shape1 = out_shape
24
+ out_shape2 = out_shape
25
+ out_shape3 = out_shape
26
+ out_shape4 = out_shape
27
+ if expand == True:
28
+ out_shape1 = out_shape
29
+ out_shape2 = out_shape * 2
30
+ out_shape3 = out_shape * 4
31
+ out_shape4 = out_shape * 8
32
+
33
+ scratch.layer1_rn = nn.Conv2d(
34
+ in_shape[0],
35
+ out_shape1,
36
+ kernel_size=3,
37
+ stride=1,
38
+ padding=1,
39
+ bias=False,
40
+ groups=groups,
41
+ )
42
+ scratch.layer2_rn = nn.Conv2d(
43
+ in_shape[1],
44
+ out_shape2,
45
+ kernel_size=3,
46
+ stride=1,
47
+ padding=1,
48
+ bias=False,
49
+ groups=groups,
50
+ )
51
+ scratch.layer3_rn = nn.Conv2d(
52
+ in_shape[2],
53
+ out_shape3,
54
+ kernel_size=3,
55
+ stride=1,
56
+ padding=1,
57
+ bias=False,
58
+ groups=groups,
59
+ )
60
+ scratch.layer4_rn = nn.Conv2d(
61
+ in_shape[3],
62
+ out_shape4,
63
+ kernel_size=3,
64
+ stride=1,
65
+ padding=1,
66
+ bias=False,
67
+ groups=groups,
68
+ )
69
+
70
+ scratch.layer_rn = nn.ModuleList([
71
+ scratch.layer1_rn,
72
+ scratch.layer2_rn,
73
+ scratch.layer3_rn,
74
+ scratch.layer4_rn,
75
+ ])
76
+
77
+ return scratch
78
+
79
+ class ResidualConvUnit_custom(nn.Module):
80
+ """Residual convolution module."""
81
+
82
+ def __init__(self, features, activation, bn):
83
+ """Init.
84
+ Args:
85
+ features (int): number of features
86
+ """
87
+ super().__init__()
88
+
89
+ self.bn = bn
90
+
91
+ self.groups = 1
92
+
93
+ self.conv1 = nn.Conv2d(
94
+ features,
95
+ features,
96
+ kernel_size=3,
97
+ stride=1,
98
+ padding=1,
99
+ bias=not self.bn,
100
+ groups=self.groups,
101
+ )
102
+
103
+ self.conv2 = nn.Conv2d(
104
+ features,
105
+ features,
106
+ kernel_size=3,
107
+ stride=1,
108
+ padding=1,
109
+ bias=not self.bn,
110
+ groups=self.groups,
111
+ )
112
+
113
+ if self.bn == True:
114
+ self.bn1 = nn.BatchNorm2d(features)
115
+ self.bn2 = nn.BatchNorm2d(features)
116
+
117
+ self.activation = activation
118
+
119
+ self.skip_add = nn.quantized.FloatFunctional()
120
+
121
+ def forward(self, x):
122
+ """Forward pass.
123
+ Args:
124
+ x (tensor): input
125
+ Returns:
126
+ tensor: output
127
+ """
128
+
129
+ out = self.activation(x)
130
+ out = self.conv1(out)
131
+ if self.bn == True:
132
+ out = self.bn1(out)
133
+
134
+ out = self.activation(out)
135
+ out = self.conv2(out)
136
+ if self.bn == True:
137
+ out = self.bn2(out)
138
+
139
+ if self.groups > 1:
140
+ out = self.conv_merge(out)
141
+
142
+ return self.skip_add.add(out, x)
143
+
144
+ class FeatureFusionBlock_custom(nn.Module):
145
+ """Feature fusion block."""
146
+
147
+ def __init__(
148
+ self,
149
+ features,
150
+ activation,
151
+ deconv=False,
152
+ bn=False,
153
+ expand=False,
154
+ align_corners=True,
155
+ width_ratio=1,
156
+ ):
157
+ """Init.
158
+ Args:
159
+ features (int): number of features
160
+ """
161
+ super(FeatureFusionBlock_custom, self).__init__()
162
+ self.width_ratio = width_ratio
163
+
164
+ self.deconv = deconv
165
+ self.align_corners = align_corners
166
+
167
+ self.groups = 1
168
+
169
+ self.expand = expand
170
+ out_features = features
171
+ if self.expand == True:
172
+ out_features = features // 2
173
+
174
+ self.out_conv = nn.Conv2d(
175
+ features,
176
+ out_features,
177
+ kernel_size=1,
178
+ stride=1,
179
+ padding=0,
180
+ bias=True,
181
+ groups=1,
182
+ )
183
+
184
+ self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
185
+ self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
186
+
187
+ self.skip_add = nn.quantized.FloatFunctional()
188
+
189
+ def forward(self, *xs):
190
+ """Forward pass.
191
+ Returns:
192
+ tensor: output
193
+ """
194
+ output = xs[0]
195
+
196
+ if len(xs) == 2:
197
+ res = self.resConfUnit1(xs[1])
198
+ if self.width_ratio != 1:
199
+ res = F.interpolate(res, size=(output.shape[2], output.shape[3]), mode='bilinear')
200
+
201
+ output = self.skip_add.add(output, res)
202
+ # output += res
203
+
204
+ output = self.resConfUnit2(output)
205
+
206
+ if self.width_ratio != 1:
207
+ # and output.shape[3] < self.width_ratio * output.shape[2]
208
+ #size=(image.shape[])
209
+ if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio:
210
+ shape = 3 * output.shape[3]
211
+ else:
212
+ shape = int(self.width_ratio * 2 * output.shape[2])
213
+ output = F.interpolate(output, size=(2* output.shape[2], shape), mode='bilinear')
214
+ else:
215
+ output = nn.functional.interpolate(output, scale_factor=2,
216
+ mode="bilinear", align_corners=self.align_corners)
217
+ output = self.out_conv(output)
218
+ return output
219
+
220
+ def make_fusion_block(features, use_bn, width_ratio=1):
221
+ return FeatureFusionBlock_custom(
222
+ features,
223
+ nn.ReLU(False),
224
+ deconv=False,
225
+ bn=use_bn,
226
+ expand=False,
227
+ align_corners=True,
228
+ width_ratio=width_ratio,
229
+ )
230
+
231
+ class Interpolate(nn.Module):
232
+ """Interpolation module."""
233
+
234
+ def __init__(self, scale_factor, mode, align_corners=False):
235
+ """Init.
236
+ Args:
237
+ scale_factor (float): scaling
238
+ mode (str): interpolation mode
239
+ """
240
+ super(Interpolate, self).__init__()
241
+
242
+ self.interp = nn.functional.interpolate
243
+ self.scale_factor = scale_factor
244
+ self.mode = mode
245
+ self.align_corners = align_corners
246
+
247
+ def forward(self, x):
248
+ """Forward pass.
249
+ Args:
250
+ x (tensor): input
251
+ Returns:
252
+ tensor: interpolated data
253
+ """
254
+
255
+ x = self.interp(
256
+ x,
257
+ scale_factor=self.scale_factor,
258
+ mode=self.mode,
259
+ align_corners=self.align_corners,
260
+ )
261
+
262
+ return x
263
+
264
+ class DPTOutputAdapter(nn.Module):
265
+ """DPT output adapter.
266
+
267
+ :param num_cahnnels: Number of output channels
268
+ :param stride_level: tride level compared to the full-sized image.
269
+ E.g. 4 for 1/4th the size of the image.
270
+ :param patch_size_full: Int or tuple of the patch size over the full image size.
271
+ Patch size for smaller inputs will be computed accordingly.
272
+ :param hooks: Index of intermediate layers
273
+ :param layer_dims: Dimension of intermediate layers
274
+ :param feature_dim: Feature dimension
275
+ :param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression
276
+ :param use_bn: If set to True, activates batch norm
277
+ :param dim_tokens_enc: Dimension of tokens coming from encoder
278
+ """
279
+
280
+ def __init__(self,
281
+ num_channels: int = 1,
282
+ stride_level: int = 1,
283
+ patch_size: Union[int, Tuple[int, int]] = 16,
284
+ main_tasks: Iterable[str] = ('rgb',),
285
+ hooks: List[int] = [2, 5, 8, 11],
286
+ layer_dims: List[int] = [96, 192, 384, 768],
287
+ feature_dim: int = 256,
288
+ last_dim: int = 32,
289
+ use_bn: bool = False,
290
+ dim_tokens_enc: Optional[int] = None,
291
+ head_type: str = 'regression',
292
+ output_width_ratio=1,
293
+ **kwargs):
294
+ super().__init__()
295
+ self.num_channels = num_channels
296
+ self.stride_level = stride_level
297
+ self.patch_size = pair(patch_size)
298
+ self.main_tasks = main_tasks
299
+ self.hooks = hooks
300
+ self.layer_dims = layer_dims
301
+ self.feature_dim = feature_dim
302
+ self.dim_tokens_enc = dim_tokens_enc * len(self.main_tasks) if dim_tokens_enc is not None else None
303
+ self.head_type = head_type
304
+
305
+ # Actual patch height and width, taking into account stride of input
306
+ self.P_H = max(1, self.patch_size[0] // stride_level)
307
+ self.P_W = max(1, self.patch_size[1] // stride_level)
308
+
309
+ self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False)
310
+
311
+ self.scratch.refinenet1 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
312
+ self.scratch.refinenet2 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
313
+ self.scratch.refinenet3 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
314
+ self.scratch.refinenet4 = make_fusion_block(feature_dim, use_bn, output_width_ratio)
315
+ # self.mask_head = nn.Sequential(
316
+ # nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False),
317
+ # nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(),
318
+ # nn.ReLU(True),
319
+ # nn.Dropout(0.1, False),
320
+ # nn.Conv2d(feature_dim, 1, kernel_size=1),
321
+ # Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
322
+ # )
323
+ if self.head_type == 'regression':
324
+ # The "DPTDepthModel" head
325
+ self.head = nn.Sequential(
326
+ nn.Conv2d(feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1),
327
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
328
+ nn.Conv2d(feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1),
329
+ nn.ReLU(True),
330
+ nn.Conv2d(last_dim, self.num_channels, kernel_size=1, stride=1, padding=0)
331
+ )
332
+ elif self.head_type == 'semseg':
333
+ # The "DPTSegmentationModel" head
334
+ self.head = nn.Sequential(
335
+ nn.Conv2d(feature_dim, feature_dim, kernel_size=3, padding=1, bias=False),
336
+ nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(),
337
+ nn.ReLU(True),
338
+ nn.Dropout(0.1, False),
339
+ nn.Conv2d(feature_dim, self.num_channels, kernel_size=1),
340
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
341
+ )
342
+ else:
343
+ raise ValueError('DPT head_type must be "regression" or "semseg".')
344
+
345
+ if self.dim_tokens_enc is not None:
346
+ self.init(dim_tokens_enc=dim_tokens_enc)
347
+
348
+ def init(self, dim_tokens_enc=768):
349
+ """
350
+ Initialize parts of decoder that are dependent on dimension of encoder tokens.
351
+ Should be called when setting up MultiMAE.
352
+
353
+ :param dim_tokens_enc: Dimension of tokens coming from encoder
354
+ """
355
+ #print(dim_tokens_enc)
356
+
357
+ # Set up activation postprocessing layers
358
+ if isinstance(dim_tokens_enc, int):
359
+ dim_tokens_enc = 4 * [dim_tokens_enc]
360
+
361
+ self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc]
362
+
363
+ self.act_1_postprocess = nn.Sequential(
364
+ nn.Conv2d(
365
+ in_channels=self.dim_tokens_enc[0],
366
+ out_channels=self.layer_dims[0],
367
+ kernel_size=1, stride=1, padding=0,
368
+ ),
369
+ nn.ConvTranspose2d(
370
+ in_channels=self.layer_dims[0],
371
+ out_channels=self.layer_dims[0],
372
+ kernel_size=4, stride=4, padding=0,
373
+ bias=True, dilation=1, groups=1,
374
+ )
375
+ )
376
+
377
+ self.act_2_postprocess = nn.Sequential(
378
+ nn.Conv2d(
379
+ in_channels=self.dim_tokens_enc[1],
380
+ out_channels=self.layer_dims[1],
381
+ kernel_size=1, stride=1, padding=0,
382
+ ),
383
+ nn.ConvTranspose2d(
384
+ in_channels=self.layer_dims[1],
385
+ out_channels=self.layer_dims[1],
386
+ kernel_size=2, stride=2, padding=0,
387
+ bias=True, dilation=1, groups=1,
388
+ )
389
+ )
390
+
391
+ self.act_3_postprocess = nn.Sequential(
392
+ nn.Conv2d(
393
+ in_channels=self.dim_tokens_enc[2],
394
+ out_channels=self.layer_dims[2],
395
+ kernel_size=1, stride=1, padding=0,
396
+ )
397
+ )
398
+
399
+ self.act_4_postprocess = nn.Sequential(
400
+ nn.Conv2d(
401
+ in_channels=self.dim_tokens_enc[3],
402
+ out_channels=self.layer_dims[3],
403
+ kernel_size=1, stride=1, padding=0,
404
+ ),
405
+ nn.Conv2d(
406
+ in_channels=self.layer_dims[3],
407
+ out_channels=self.layer_dims[3],
408
+ kernel_size=3, stride=2, padding=1,
409
+ )
410
+ )
411
+
412
+ self.act_postprocess = nn.ModuleList([
413
+ self.act_1_postprocess,
414
+ self.act_2_postprocess,
415
+ self.act_3_postprocess,
416
+ self.act_4_postprocess
417
+ ])
418
+
419
+ def adapt_tokens(self, encoder_tokens):
420
+ # Adapt tokens
421
+ x = []
422
+ x.append(encoder_tokens[:, :])
423
+ x = torch.cat(x, dim=-1)
424
+ return x
425
+
426
+ def forward(self, encoder_tokens: List[torch.Tensor], image_size):
427
+ #input_info: Dict):
428
+ assert self.dim_tokens_enc is not None, 'Need to call init(dim_tokens_enc) function first'
429
+ H, W = image_size
430
+
431
+ # Number of patches in height and width
432
+ N_H = H // (self.stride_level * self.P_H)
433
+ N_W = W // (self.stride_level * self.P_W)
434
+
435
+ # Hook decoder onto 4 layers from specified ViT layers
436
+ layers = [encoder_tokens[hook] for hook in self.hooks]
437
+
438
+ # Extract only task-relevant tokens and ignore global tokens.
439
+ layers = [self.adapt_tokens(l) for l in layers]
440
+
441
+ # Reshape tokens to spatial representation
442
+ layers = [rearrange(l, 'b (nh nw) c -> b c nh nw', nh=N_H, nw=N_W) for l in layers]
443
+
444
+ layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
445
+ # Project layers to chosen feature dim
446
+ layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)]
447
+
448
+ # Fuse layers using refinement stages
449
+ path_4 = self.scratch.refinenet4(layers[3])
450
+ path_3 = self.scratch.refinenet3(path_4, layers[2])
451
+ path_2 = self.scratch.refinenet2(path_3, layers[1])
452
+ path_1 = self.scratch.refinenet1(path_2, layers[0])
453
+
454
+ # Output head
455
+ out = self.head(path_1)
456
+
457
+ return out
croco/models/head_downstream.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+
4
+ # --------------------------------------------------------
5
+ # Heads for downstream tasks
6
+ # --------------------------------------------------------
7
+
8
+ """
9
+ A head is a module where the __init__ defines only the head hyperparameters.
10
+ A method setup(croconet) takes a CroCoNet and set all layers according to the head and croconet attributes.
11
+ The forward takes the features as well as a dictionary img_info containing the keys 'width' and 'height'
12
+ """
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ from .dpt_block import DPTOutputAdapter
17
+
18
+
19
+ class PixelwiseTaskWithDPT(nn.Module):
20
+ """ DPT module for CroCo.
21
+ by default, hooks_idx will be equal to:
22
+ * for encoder-only: 4 equally spread layers
23
+ * for encoder+decoder: last encoder + 3 equally spread layers of the decoder
24
+ """
25
+
26
+ def __init__(self, *, hooks_idx=None, layer_dims=[96,192,384,768],
27
+ output_width_ratio=1, num_channels=1, postprocess=None, **kwargs):
28
+ super(PixelwiseTaskWithDPT, self).__init__()
29
+ self.return_all_blocks = True # backbone needs to return all layers
30
+ self.postprocess = postprocess
31
+ self.output_width_ratio = output_width_ratio
32
+ self.num_channels = num_channels
33
+ self.hooks_idx = hooks_idx
34
+ self.layer_dims = layer_dims
35
+
36
+ def setup(self, croconet):
37
+ dpt_args = {'output_width_ratio': self.output_width_ratio, 'num_channels': self.num_channels}
38
+ if self.hooks_idx is None:
39
+ if hasattr(croconet, 'dec_blocks'): # encoder + decoder
40
+ step = {8: 3, 12: 4, 24: 8}[croconet.dec_depth]
41
+ hooks_idx = [croconet.dec_depth+croconet.enc_depth-1-i*step for i in range(3,-1,-1)]
42
+ else: # encoder only
43
+ step = croconet.enc_depth//4
44
+ hooks_idx = [croconet.enc_depth-1-i*step for i in range(3,-1,-1)]
45
+ self.hooks_idx = hooks_idx
46
+ print(f' PixelwiseTaskWithDPT: automatically setting hook_idxs={self.hooks_idx}')
47
+ dpt_args['hooks'] = self.hooks_idx
48
+ dpt_args['layer_dims'] = self.layer_dims
49
+ self.dpt = DPTOutputAdapter(**dpt_args)
50
+ dim_tokens = [croconet.enc_embed_dim if hook<croconet.enc_depth else croconet.dec_embed_dim for hook in self.hooks_idx]
51
+ dpt_init_args = {'dim_tokens_enc': dim_tokens}
52
+ self.dpt.init(**dpt_init_args)
53
+
54
+
55
+ def forward(self, x, img_info):
56
+ out = self.dpt(x, image_size=(img_info['height'],img_info['width']))
57
+ if self.postprocess: out = self.postprocess(out)
58
+ return out