import torch from PIL import Image from torchvision import datasets, models, transforms import gradio as gr import os import torch.nn as nn #os.system("wget https://github.com/liuxiaoyuyuyu/vanGogh-and-Other-Artist/blob/main/artist_classes.txt") #os.system("wget https://github.com/liuxiaoyuyuyu/vanGogh-and-Other-Artist/blob/main/model_weights_mobilenet_v2_valp1trainp2.pth") #model = torch.hub.load('pytorch/vision:v0.9.0', 'mobilenet_v2', pretrained=False) #checkpoint = 'https://github.com/liuxiaoyuyuyu/vanGogh-and-Other-Artist/blob/main/model_weights_mobilenet_v2_valp1trainp2.pth' #model.load_state_dict(torch.hub.load_state_dict_from_url(checkpoint, progress=False)) model = models.efficientnet_b0() num_ftrs = model.classifier[1].in_features model.classifier[1] = nn.Linear(num_ftrs, 6) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = model.to(device) model.load_state_dict(torch.load('model_weights_EfficientNetB0_final.pth',map_location=device)) model = models.vgg16() num_ftrs = model.classifier[6].in_features model.classifier[6] = nn.Linear(num_ftrs, 6) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') #model = model.to(device) model.load_state_dict(torch.load('VGG16_weights_May28.pth',map_location=device)) #torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(260), transforms.CenterCrop(224), transforms.ToTensor(), #transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') else: model.to('cpu') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Read the categories categories = { 0:"vanGogh", 1:"Monet", 2:"Leonardo da Vinci", 3:"Rembrandt", 4:"Pablo Picasso", 5:"Salvador Dali" } # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 6) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i].item()]] = top5_prob[i].item() return result inputs = gr.Image(type='pil',label='Insert the image') outputs = gr.Label(type="confidences",num_top_classes=5,label='Prediction') title = "Artist Classifier" description = "The classifier is a demo classifier to predict the painter using fine-tuned EfficientNet. It allows you to identify the creator of a painting among Van Gogh, Claude Monet, Leonardo da Vinci, Rembrandt, Pablo Picasso, and Salvador Dali. Just upload the image to the left blank box and click the Submit button. A list of confidence will be displayed. Following the link below to find a related work that helps to create your own paintings following the style of painters" article = """

Style Transfer: Create your own stylish paintings

The app is based on EfficientNet

""" #examples = [ # ['dog.jpg'] #] #gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch() gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False).launch()