File size: 35,556 Bytes
8ffeacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3da643f
 
8ffeacd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
"""
Helper scripts for generating synthetic images using diffusion model.

Functions:
    - get_top_misclassified
    - get_class_list
    - generateClassPairs
    - outputDirectory
    - pipe_img
    - createPrompts
    - interpolatePrompts
        - slerp
        - get_middle_elements
        - remove_middle
    - genClassImg
    - getMetadata
    - groupbyInterpolation
    - ungroupInterpolation
    - groupAllbyInterpolation
    - getPairIndices
    - generateImagesFromDataset
    - generateTrace
"""

import json
import os

import numpy as np
import pandas as pd
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import (
    LMSDiscreteScheduler,
    StableDiffusionImg2ImgPipeline,
)
from torch import nn
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from torchvision import transforms


def get_top_misclassified(val_classifier_json):
    """
    Retrieves the top misclassified classes from a validation classifier JSON file.

    Args:
        val_classifier_json (str): The path to the validation classifier JSON file.

    Returns:
        dict: A dictionary containing the top misclassified classes, where the keys are the class names
              and the values are the number of misclassifications.
    """
    with open(val_classifier_json) as f:
        val_output = json.load(f)
    val_metrics_df = pd.DataFrame.from_dict(
        val_output["val_metrics_details"], orient="index"
    )
    class_dict = dict()
    for k, v in val_metrics_df["top_n_classes"].items():
        class_dict[k] = v
    return class_dict


def get_class_list(val_classifier_json):
    """
    Retrieves the list of classes from the given validation classifier JSON file.

    Args:
        val_classifier_json (str): The path to the validation classifier JSON file.

    Returns:
        list: A sorted list of class names extracted from the JSON file.
    """
    with open(val_classifier_json, "r") as f:
        data = json.load(f)
    return sorted(list(data["val_metrics_details"].keys()))


def generateClassPairs(val_classifier_json):
    """
    Generate pairs of misclassified classes from the given validation classifier JSON.

    Args:
        val_classifier_json (str): The path to the validation classifier JSON file.

    Returns:
        list: A sorted list of pairs of misclassified classes.
    """
    pairs = set()
    misclassified_classes = get_top_misclassified(val_classifier_json)
    for key, value in misclassified_classes.items():
        for v in value:
            pairs.add(tuple(sorted([key, v])))
    return sorted(list(pairs))


def outputDirectory(class_pairs, synth_path, metadata_path):
    """
    Creates the output directory structure for the synthesized data.

    Args:
        class_pairs (list): A list of class pairs.
        synth_path (str): The path to the directory where the synthesized data will be stored.
        metadata_path (str): The path to the directory where the metadata will be stored.

    Returns:
        None
    """
    for id in class_pairs:
        class_folder = f"{synth_path}/{id}"
        if not (os.path.exists(class_folder)):
            os.makedirs(class_folder)
    if not (os.path.exists(metadata_path)):
        os.makedirs(metadata_path)
    print("Info: Output directory ready.")


def pipe_img(
    model_path,
    device="cuda",
    apply_optimization=True,
    use_torchcompile=False,
    ci_cb=(5, 1),
    use_safetensors=None,
    cpu_offload=False,
    scheduler=None,
):
    """
    Creates and returns an image-to-image pipeline for stable diffusion.

    Args:
        model_path (str): The path to the pretrained model.
        device (str, optional): The device to use for computation. Defaults to "cuda".
        apply_optimization (bool, optional): Whether to apply optimization techniques. Defaults to True.
        use_torchcompile (bool, optional): Whether to use torchcompile for model compilation. Defaults to False.
        ci_cb (tuple, optional): A tuple containing the cache interval and cache branch ID. Defaults to (5, 1).
        use_safetensors (bool, optional): Whether to use safetensors. Defaults to None.
        cpu_offload (bool, optional): Whether to enable CPU offloading. Defaults to False.
        scheduler (LMSDiscreteScheduler, optional): The scheduler for the pipeline. Defaults to None.

    Returns:
        StableDiffusionImg2ImgPipeline: The image-to-image pipeline for stable diffusion.
    """
    ###############################
    # Reference:
    # Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
    ###############################
    if scheduler is None:
        scheduler = LMSDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            steps_offset=1,
        )
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
        model_path,
        scheduler=scheduler,
        torch_dtype=torch.float32,
        use_safetensors=use_safetensors,
    ).to(device)
    if cpu_offload:
        pipe.enable_model_cpu_offload()
    if apply_optimization:
        # tomesd.apply_patch(pipe, ratio=0.5)
        helper = DeepCacheSDHelper(pipe=pipe)
        cache_interval, cache_branch_id = ci_cb
        helper.set_params(
            cache_interval=cache_interval, cache_branch_id=cache_branch_id
        )  # lower is faster but lower quality
        helper.enable()
        if torch.cuda.is_available():
            pipe.enable_xformers_memory_efficient_attention()
        if use_torchcompile:
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
    return pipe


def createPrompts(
    class_name_pairs,
    prompt_structure=None,
    use_default_negative_prompt=False,
    negative_prompt=None,
):
    """
    Create prompts for image generation.

    Args:
        class_name_pairs (list): A list of two class names.
        prompt_structure (str, optional): The structure of the prompt. Defaults to "a photo of a <class_name>".
        use_default_negative_prompt (bool, optional): Whether to use the default negative prompt. Defaults to False.
        negative_prompt (str, optional): The negative prompt to steer the generation away from certain features.

    Returns:
        tuple: A tuple containing two lists - prompts and negative_prompts.
            prompts (list): Text prompts that describe the desired output image.
            negative_prompts (list): Negative prompts that can be used to steer the generation away from certain features.
    """
    if prompt_structure is None:
        prompt_structure = "a photo of a <class_name>"
    elif "<class_name>" not in prompt_structure:
        raise ValueError(
            "The prompt structure must contain the <class_name> placeholder."
        )
    if use_default_negative_prompt:
        default_negative_prompt = (
            "blurry image, disfigured, deformed, distorted, cartoon, drawings"
        )
        negative_prompt = default_negative_prompt

    class1 = class_name_pairs[0]
    class2 = class_name_pairs[1]
    prompt1 = prompt_structure.replace("<class_name>", class1)
    prompt2 = prompt_structure.replace("<class_name>", class2)
    prompts = [prompt1, prompt2]
    if negative_prompt is None:
        print("Info: Negative prompt not provided, returning as None.")
        return prompts, None
    else:
        # Negative prompts that can be used to steer the generation away from certain features.
        negative_prompts = [negative_prompt] * len(prompts)
        return prompts, negative_prompts


def interpolatePrompts(
    prompts,
    pipeline,
    num_interpolation_steps,
    sample_mid_interpolation,
    remove_n_middle=0,
    device="cuda",
):
    """
    Interpolates prompts by generating intermediate embeddings between pairs of prompts.

    Args:
        prompts (List[str]): A list of prompts to be interpolated.
        pipeline: The pipeline object containing the tokenizer and text encoder.
        num_interpolation_steps (int): The number of interpolation steps between each pair of prompts.
        sample_mid_interpolation (int): The number of intermediate embeddings to sample from the middle of the interpolated prompts.
        remove_n_middle (int, optional): The number of middle embeddings to remove from the interpolated prompts. Defaults to 0.
        device (str, optional): The device to run the interpolation on. Defaults to "cuda".

    Returns:
        interpolated_prompt_embeds (torch.Tensor): The interpolated prompt embeddings.
        prompt_metadata (dict): Metadata about the interpolation process, including similarity scores and nearest class information.

    e.g. if num_interpolation_steps = 10, sample_mid_interpolation = 6, remove_n_middle = 2
    Interpolated: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    Sampled:            [2, 3, 4, 5, 6, 7]
    Removed:                   x  x
    Returns:            [2, 3,       6, 7]
    """

    ###############################
    # Reference:
    # Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
    ###############################

    def slerp(v0, v1, num, t0=0, t1=1):
        """
        Performs spherical linear interpolation between two vectors.

        Args:
            v0 (torch.Tensor): The starting vector.
            v1 (torch.Tensor): The ending vector.
            num (int): The number of interpolation points.
            t0 (float, optional): The starting time. Defaults to 0.
            t1 (float, optional): The ending time. Defaults to 1.

        Returns:
            torch.Tensor: The interpolated vectors.

        """
        ###############################
        # Reference:
        # Karpathy, A. (2022) hacky stablediffusion code for generating videos, Gist. Available at: https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355 (Accessed: 4 June 2024).
        ###############################
        v0 = v0.detach().cpu().numpy()
        v1 = v1.detach().cpu().numpy()

        def interpolation(t, v0, v1, DOT_THRESHOLD=0.9995):
            """helper function to spherically interpolate two arrays v1 v2"""
            dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
            if np.abs(dot) > DOT_THRESHOLD:
                v2 = (1 - t) * v0 + t * v1
            else:
                theta_0 = np.arccos(dot)
                sin_theta_0 = np.sin(theta_0)
                theta_t = theta_0 * t
                sin_theta_t = np.sin(theta_t)
                s0 = np.sin(theta_0 - theta_t) / sin_theta_0
                s1 = sin_theta_t / sin_theta_0
                v2 = s0 * v0 + s1 * v1
            return v2

        t = np.linspace(t0, t1, num)

        v3 = torch.tensor(np.array([interpolation(t[i], v0, v1) for i in range(num)]))

        return v3

    def get_middle_elements(lst, n):
        """
        Returns a tuple containing a sublist of the middle elements of the given list `lst` and a range of indices of those elements.

        Args:
            lst (list): The list from which to extract the middle elements.
            n (int): The number of middle elements to extract.

        Returns:
            tuple: A tuple containing the sublist of middle elements and a range of indices.

        Raises:
            None

        Examples:
            lst = [1, 2, 3, 4, 5]
            get_middle_elements(lst, 3)
            ([2, 3, 4], range(2, 5))
        """
        if n % 2 == 0:  # Even number of elements
            middle_index = len(lst) // 2 - 1
            start = middle_index - n // 2 + 1
            end = middle_index + n // 2 + 1
            return lst[start:end], range(start, end)
        else:  # Odd number of elements
            middle_index = len(lst) // 2
            start = middle_index - n // 2
            end = middle_index + n // 2 + 1
            return lst[start:end], range(start, end)

    def remove_middle(data, n):
        """
        Remove the middle n elements from a list.

        Args:
            data (list): The input list.
            n (int): The number of elements to remove from the middle of the list.

        Returns:
            list: The modified list with the middle n elements removed.

        Raises:
            ValueError: If n is negative or greater than the length of the list.

        """
        if n < 0 or n > len(data):
            raise ValueError(
                "Invalid value for n. It should be non-negative and less than half the list length"
            )

        # Find the middle index
        middle = len(data) // 2

        # Create slices to exclude the middle n elements
        if n == 1:
            return data[:middle] + data[middle + 1 :]
        elif n % 2 == 0:
            return data[: middle - n // 2] + data[middle + n // 2 :]
        else:
            return data[: middle - n // 2] + data[middle + n // 2 + 1 :]

    batch_size = len(prompts)

    # Tokenizing and encoding prompts into embeddings.
    prompts_tokens = pipeline.tokenizer(
        prompts,
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    prompts_embeds = pipeline.text_encoder(prompts_tokens.input_ids.to(device))[0]

    # Interpolating between embeddings pairs for the given number of interpolation steps.
    interpolated_prompt_embeds = []

    for i in range(batch_size - 1):
        interpolated_prompt_embeds.append(
            slerp(prompts_embeds[i], prompts_embeds[i + 1], num_interpolation_steps)
        )

    full_interpolated_prompt_embeds = interpolated_prompt_embeds[:]
    interpolated_prompt_embeds[0], sample_range = get_middle_elements(
        interpolated_prompt_embeds[0], sample_mid_interpolation
    )

    if remove_n_middle > 0:
        interpolated_prompt_embeds[0] = remove_middle(
            interpolated_prompt_embeds[0], remove_n_middle
        )

    prompt_metadata = dict()
    similarity = nn.CosineSimilarity(dim=-1, eps=1e-6)
    for i in range(num_interpolation_steps):
        class1_sim = (
            similarity(
                full_interpolated_prompt_embeds[0][0],
                full_interpolated_prompt_embeds[0][i],
            )
            .mean()
            .item()
        )
        class2_sim = (
            similarity(
                full_interpolated_prompt_embeds[0][num_interpolation_steps - 1],
                full_interpolated_prompt_embeds[0][i],
            )
            .mean()
            .item()
        )
        relative_distance = class1_sim / (class1_sim + class2_sim)

        prompt_metadata[i] = {
            "selected": i in sample_range,
            "similarity": {
                "class1": class1_sim,
                "class2": class2_sim,
                "class1_relative_distance": relative_distance,
                "class2_relative_distance": 1 - relative_distance,
            },
            "nearest_class": int(relative_distance < 0.5),
        }

    interpolated_prompt_embeds = torch.cat(interpolated_prompt_embeds, dim=0).to(device)
    return interpolated_prompt_embeds, prompt_metadata


def genClassImg(
    pipeline,
    pos_embed,
    neg_embed,
    input_image,
    generator,
    latents,
    num_imgs=1,
    height=512,
    width=512,
    num_inference_steps=25,
    guidance_scale=7.5,
):
    """
    Generate class image using the given inputs.

    Args:
        pipeline: The pipeline object used for image generation.
        pos_embed: The positive embedding for the class.
        neg_embed: The negative embedding for the class (optional).
        input_image: The input image for guidance (optional).
        generator: The generator model used for image generation.
        latents: The latent vectors used for image generation.
        num_imgs: The number of images to generate (default is 1).
        height: The height of the generated images (default is 512).
        width: The width of the generated images (default is 512).
        num_inference_steps: The number of inference steps for image generation (default is 25).
        guidance_scale: The scale factor for guidance (default is 7.5).

    Returns:
        The generated class image.
    """

    if neg_embed is not None:
        npe = neg_embed[None, ...]
    else:
        npe = None

    return pipeline(
        height=height,
        width=width,
        num_images_per_prompt=num_imgs,
        prompt_embeds=pos_embed[None, ...],
        negative_prompt_embeds=npe,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
        latents=latents,
        image=input_image,
    ).images[0]


def getMetadata(
    class_pairs,
    path,
    seed,
    guidance_scale,
    num_inference_steps,
    num_interpolation_steps,
    sample_mid_interpolation,
    height,
    width,
    prompts,
    negative_prompts,
    pipeline,
    prompt_metadata,
    negative_prompt_metadata,
    ssim_metadata=None,
    save_json=True,
    save_path=".",
):
    """
    Generate metadata for the given parameters.

    Args:
        class_pairs (list): List of class pairs.
        path (str): Path to the data.
        seed (int): Seed value for randomization.
        guidance_scale (float): Scale factor for guidance.
        num_inference_steps (int): Number of inference steps.
        num_interpolation_steps (int): Number of interpolation steps.
        sample_mid_interpolation (bool): Flag to sample mid-interpolation.
        height (int): Height of the image.
        width (int): Width of the image.
        prompts (list): List of prompts.
        negative_prompts (list): List of negative prompts.
        pipeline (object): Pipeline object.
        prompt_metadata (dict): Metadata for prompts.
        negative_prompt_metadata (dict): Metadata for negative prompts.
        ssim_metadata (dict, optional): SSIM scores metadata. Defaults to None.
        save_json (bool, optional): Flag to save metadata as JSON. Defaults to True.
        save_path (str, optional): Path to save the JSON file. Defaults to ".".

    Returns:
        dict: Generated metadata.
    """

    metadata = dict()

    metadata["class_pairs"] = class_pairs
    metadata["path"] = path
    metadata["seed"] = seed
    metadata["params"] = {
        "CFG": guidance_scale,
        "inferenceSteps": num_inference_steps,
        "interpolationSteps": num_interpolation_steps,
        "sampleMidInterpolation": sample_mid_interpolation,
        "height": height,
        "width": width,
    }
    for i in range(len(prompts)):
        metadata[f"prompt_text_{i}"] = prompts[i]
        if negative_prompts is not None:
            metadata[f"negative_prompt_text_{i}"] = negative_prompts[i]
    metadata["pipe_config"] = dict(pipeline.config)
    metadata["prompt_embed_similarity"] = prompt_metadata
    metadata["negative_prompt_embed_similarity"] = negative_prompt_metadata
    if ssim_metadata is not None:
        print("Info: SSIM scores are available.")
        metadata["ssim_scores"] = ssim_metadata
    if save_json:
        with open(
            os.path.join(save_path, f"{'_'.join(i for i in class_pairs)}_{seed}.json"),
            "w",
        ) as f:
            json.dump(metadata, f, indent=4)
    return metadata


def groupbyInterpolation(dir_to_classfolder):
    """
    Group files in a directory by interpolation step.

    Args:
        dir_to_classfolder (str): The path to the directory containing the files.

    Returns:
        None
    """
    files = [
        (f.split(sep="_")[1].split(sep=".")[0], os.path.join(dir_to_classfolder, f))
        for f in os.listdir(dir_to_classfolder)
    ]
    # create a subfolder for each step of the interpolation
    for interpolation_step, file_path in files:
        new_dir = os.path.join(dir_to_classfolder, interpolation_step)
        if not os.path.exists(new_dir):
            os.makedirs(new_dir)
        os.rename(file_path, os.path.join(new_dir, os.path.basename(file_path)))


def ungroupInterpolation(dir_to_classfolder):
    """
    Moves all files from subdirectories within `dir_to_classfolder` to `dir_to_classfolder` itself,
    and then removes the subdirectories.

    Args:
        dir_to_classfolder (str): The path to the directory containing the subdirectories.

    Returns:
        None
    """
    for interpolation_step in os.listdir(dir_to_classfolder):
        if os.path.isdir(os.path.join(dir_to_classfolder, interpolation_step)):
            for f in os.listdir(os.path.join(dir_to_classfolder, interpolation_step)):
                os.rename(
                    os.path.join(dir_to_classfolder, interpolation_step, f),
                    os.path.join(dir_to_classfolder, f),
                )
            os.rmdir(os.path.join(dir_to_classfolder, interpolation_step))


def groupAllbyInterpolation(
    data_path,
    group=True,
    fn_group=groupbyInterpolation,
    fn_ungroup=ungroupInterpolation,
):
    """
    Group or ungroup all data classes by interpolation.

    Args:
        data_path (str): The path to the data.
        group (bool, optional): Whether to group the data. Defaults to True.
        fn_group (function, optional): The function to use for grouping. Defaults to groupbyInterpolation.
        fn_ungroup (function, optional): The function to use for ungrouping. Defaults to ungroupInterpolation.
    """
    data_classes = sorted(os.listdir(data_path))
    if group:
        fn = fn_group
    else:
        fn = fn_ungroup
    for c in data_classes:
        c_path = os.path.join(data_path, c)
        if os.path.isdir(c_path):
            fn(c_path)
            print(f"Processed {c}")


def getPairIndices(subset_len, total_pair_count=1, seed=None):
    """
    Generate pairs of indices for a given subset length.

    Args:
        subset_len (int): The length of the subset.
        total_pair_count (int, optional): The total number of pairs to generate. Defaults to 1.
        seed (int, optional): The seed value for the random number generator. Defaults to None.

    Returns:
        list: A list of pairs of indices.

    """
    rng = np.random.default_rng(seed)
    group_size = (subset_len + total_pair_count - 1) // total_pair_count
    numbers = list(range(subset_len))
    numbers_selection = list(range(subset_len))
    rng.shuffle(numbers)
    for i in range(group_size - subset_len % group_size):
        numbers.append(numbers_selection[i])
    numbers = np.array(numbers)
    groups = numbers[: group_size * total_pair_count].reshape(-1, group_size)
    return groups.tolist()


def generateImagesFromDataset(
    img_subsets,
    class_iterables,
    pipeline,
    interpolated_prompt_embeds,
    interpolated_negative_prompts_embeds,
    num_inference_steps,
    guidance_scale,
    height=512,
    width=512,
    seed=None,
    save_path=".",
    class_pairs=("0", "1"),
    save_image=True,
    image_type="jpg",
    interpolate_range="full",
    device="cuda",
    return_images=False,
):
    """
    Generates images from a dataset using the given parameters.

    Args:
        img_subsets (dict): A dictionary containing image subsets for each class.
        class_iterables (dict): A dictionary containing iterable objects for each class.
        pipeline (object): The pipeline object used for image generation.
        interpolated_prompt_embeds (list): A list of interpolated prompt embeddings.
        interpolated_negative_prompts_embeds (list): A list of interpolated negative prompt embeddings.
        num_inference_steps (int): The number of inference steps for image generation.
        guidance_scale (float): The scale factor for guidance loss during image generation.
        height (int, optional): The height of the generated images. Defaults to 512.
        width (int, optional): The width of the generated images. Defaults to 512.
        seed (int, optional): The seed value for random number generation. Defaults to None.
        save_path (str, optional): The path to save the generated images. Defaults to ".".
        class_pairs (tuple, optional): A tuple containing pairs of class identifiers. Defaults to ("0", "1").
        save_image (bool, optional): Whether to save the generated images. Defaults to True.
        image_type (str, optional): The file format of the saved images. Defaults to "jpg".
        interpolate_range (str, optional): The range of interpolation for prompt embeddings.
            Possible values are "full", "nearest", or "furthest". Defaults to "full".
        device (str, optional): The device to use for image generation. Defaults to "cuda".
        return_images (bool, optional): Whether to return the generated images. Defaults to False.

    Returns:
        dict or tuple: If return_images is True, returns a dictionary containing the generated images for each class and a dictionary containing the SSIM scores for each class and interpolation step.
                       If return_images is False, returns a dictionary containing the SSIM scores for each class and interpolation step.
    """
    if interpolate_range == "nearest":
        nearest_half = True
        furthest_half = False
    elif interpolate_range == "furthest":
        nearest_half = False
        furthest_half = True
    else:
        nearest_half = False
        furthest_half = False

    if seed is None:
        seed = torch.Generator().seed()
    generator = torch.manual_seed(seed)
    rng = np.random.default_rng(seed)
    # Generating initial U-Net latent vectors from a random normal distribution.
    latents = torch.randn(
        (1, pipeline.unet.config.in_channels, height // 8, width // 8),
        generator=generator,
    ).to(device)

    embed_len = len(interpolated_prompt_embeds)
    embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
    embed_pairs_list = list(embed_pairs)
    if return_images:
        class_images = dict()
    class_ssim = dict()

    if nearest_half or furthest_half:
        if nearest_half:
            steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
            mutiplier = 2
        elif furthest_half:
            # uses opposite class of images of the text interpolation
            steps_range = (range(embed_len // 2, embed_len), range(0, embed_len // 2))
            mutiplier = 2
    else:
        steps_range = (range(embed_len), range(embed_len))
        mutiplier = 1

    for class_iter, class_id in enumerate(class_pairs):
        if return_images:
            class_images[class_id] = list()
        class_ssim[class_id] = {
            i: {"ssim_sum": 0, "ssim_count": 0, "ssim_avg": 0} for i in range(embed_len)
        }
        subset_len = len(img_subsets[class_id])
        # to efficiently randomize the steps to interpolate for each image in the class, group_map is used
        # group_map: index is the image id, element is the group id
        # steps_range[class_iter] determines the range of steps to interpolate for the class,
        # so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
        # then the rest is to multiply the steps to cover the whole subset + remainder
        group_map = (
            list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
        )
        rng.shuffle(
            group_map
        )  # shuffle the steps to interpolate for each image, position in the group_map is mapped to the image id

        iter_indices = class_iterables[class_id].pop()
        # generate images for each image in the class, randomly selecting an interpolated step
        for image_id in iter_indices:
            img, trg = img_subsets[class_id][image_id]
            input_image = img.unsqueeze(0)
            interpolate_step = group_map[image_id]
            prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolate_step]
            generated_image = genClassImg(
                pipeline,
                prompt_embeds,
                negative_prompt_embeds,
                input_image,
                generator,
                latents,
                num_imgs=1,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
            )
            pred_image = transforms.ToTensor()(generated_image).unsqueeze(0)
            ssim_score = ssim(pred_image, input_image).item()
            class_ssim[class_id][interpolate_step]["ssim_sum"] += ssim_score
            class_ssim[class_id][interpolate_step]["ssim_count"] += 1
            if return_images:
                class_images[class_id].append(generated_image)
            if save_image:
                if image_type == "jpg":
                    generated_image.save(
                        f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}",
                        format="JPEG",
                        quality=95,
                    )
                elif image_type == "png":
                    generated_image.save(
                        f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}",
                        format="PNG",
                    )
                else:
                    generated_image.save(
                        f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
                    )

        # calculate ssim avg for the class
        for i_step in range(embed_len):
            if class_ssim[class_id][i_step]["ssim_count"] > 0:
                class_ssim[class_id][i_step]["ssim_avg"] = (
                    class_ssim[class_id][i_step]["ssim_sum"]
                    / class_ssim[class_id][i_step]["ssim_count"]
                )

    if return_images:
        return class_images, class_ssim
    else:
        return class_ssim


def generateTrace(
    prompts,
    img_subsets,
    class_iterables,
    interpolated_prompt_embeds,
    interpolated_negative_prompts_embeds,
    subset_indices,
    seed=None,
    save_path=".",
    class_pairs=("0", "1"),
    image_type="jpg",
    interpolate_range="full",
    save_prompt_embeds=False,
):
    """
    Generate a trace dictionary containing information about the generated images.

    Args:
        prompts (list): List of prompt texts.
        img_subsets (dict): Dictionary containing image subsets for each class.
        class_iterables (dict): Dictionary containing iterable objects for each class.
        interpolated_prompt_embeds (torch.Tensor): Tensor containing interpolated prompt embeddings.
        interpolated_negative_prompts_embeds (torch.Tensor): Tensor containing interpolated negative prompt embeddings.
        subset_indices (dict): Dictionary containing indices of subsets for each class.
        seed (int, optional): Seed value for random number generation. Defaults to None.
        save_path (str, optional): Path to save the generated images. Defaults to ".".
        class_pairs (tuple, optional): Tuple containing class pairs. Defaults to ("0", "1").
        image_type (str, optional): Type of the generated images. Defaults to "jpg".
        interpolate_range (str, optional): Range of interpolation. Defaults to "full".
        save_prompt_embeds (bool, optional): Flag to save prompt embeddings. Defaults to False.

    Returns:
        dict: Trace dictionary containing information about the generated images.
    """
    trace_dict = {
        "class_pairs": list(),
        "class_id": list(),
        "image_id": list(),
        "interpolation_step": list(),
        "embed_len": list(),
        "pos_prompt_text": list(),
        "neg_prompt_text": list(),
        "input_file_path": list(),
        "output_file_path": list(),
        "input_prompts_embed": list(),
    }

    if interpolate_range == "nearest":
        nearest_half = True
        furthest_half = False
    elif interpolate_range == "furthest":
        nearest_half = False
        furthest_half = True
    else:
        nearest_half = False
        furthest_half = False

    if seed is None:
        seed = torch.Generator().seed()
    rng = np.random.default_rng(seed)

    embed_len = len(interpolated_prompt_embeds)
    embed_pairs = zip(
        interpolated_prompt_embeds.cpu().numpy(),
        interpolated_negative_prompts_embeds.cpu().numpy(),
    )
    embed_pairs_list = list(embed_pairs)

    if nearest_half or furthest_half:
        if nearest_half:
            steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
            mutiplier = 2
        elif furthest_half:
            # uses opposite class of images of the text interpolation
            steps_range = (range(embed_len // 2, embed_len), range(0, embed_len // 2))
            mutiplier = 2
    else:
        steps_range = (range(embed_len), range(embed_len))
        mutiplier = 1

    for class_iter, class_id in enumerate(class_pairs):

        subset_len = len(img_subsets[class_id])
        # to efficiently randomize the steps to interpolate for each image in the class, group_map is used
        # group_map: index is the image id, element is the group id
        # steps_range[class_iter] determines the range of steps to interpolate for the class,
        # so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
        # then the rest is to multiply the steps to cover the whole subset + remainder
        group_map = (
            list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
        )
        rng.shuffle(
            group_map
        )  # shuffle the steps to interpolate for each image, position in the group_map is mapped to the image id

        iter_indices = class_iterables[class_id].pop()
        # generate images for each image in the class, randomly selecting an interpolated step
        for image_id in iter_indices:
            class_ds = img_subsets[class_id]
            interpolate_step = group_map[image_id]
            sample_count = subset_indices[class_id][0] + image_id
            input_file = os.path.normpath(class_ds.dataset.samples[sample_count][0])
            pos_prompt = prompts[0]
            neg_prompt = prompts[1]
            output_file = f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
            if save_prompt_embeds:
                input_prompts_embed = embed_pairs_list[interpolate_step]
            else:
                input_prompts_embed = None

            trace_dict["class_pairs"].append(class_pairs)
            trace_dict["class_id"].append(class_id)
            trace_dict["image_id"].append(image_id)
            trace_dict["interpolation_step"].append(interpolate_step)
            trace_dict["embed_len"].append(embed_len)
            trace_dict["pos_prompt_text"].append(pos_prompt)
            trace_dict["neg_prompt_text"].append(neg_prompt)
            trace_dict["input_file_path"].append(input_file)
            trace_dict["output_file_path"].append(output_file)
            trace_dict["input_prompts_embed"].append(input_prompts_embed)

    return trace_dict