Spaces:
Running
on
Zero
Running
on
Zero
File size: 35,556 Bytes
8ffeacd 3da643f 8ffeacd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
"""
Helper scripts for generating synthetic images using diffusion model.
Functions:
- get_top_misclassified
- get_class_list
- generateClassPairs
- outputDirectory
- pipe_img
- createPrompts
- interpolatePrompts
- slerp
- get_middle_elements
- remove_middle
- genClassImg
- getMetadata
- groupbyInterpolation
- ungroupInterpolation
- groupAllbyInterpolation
- getPairIndices
- generateImagesFromDataset
- generateTrace
"""
import json
import os
import numpy as np
import pandas as pd
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import (
LMSDiscreteScheduler,
StableDiffusionImg2ImgPipeline,
)
from torch import nn
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from torchvision import transforms
def get_top_misclassified(val_classifier_json):
"""
Retrieves the top misclassified classes from a validation classifier JSON file.
Args:
val_classifier_json (str): The path to the validation classifier JSON file.
Returns:
dict: A dictionary containing the top misclassified classes, where the keys are the class names
and the values are the number of misclassifications.
"""
with open(val_classifier_json) as f:
val_output = json.load(f)
val_metrics_df = pd.DataFrame.from_dict(
val_output["val_metrics_details"], orient="index"
)
class_dict = dict()
for k, v in val_metrics_df["top_n_classes"].items():
class_dict[k] = v
return class_dict
def get_class_list(val_classifier_json):
"""
Retrieves the list of classes from the given validation classifier JSON file.
Args:
val_classifier_json (str): The path to the validation classifier JSON file.
Returns:
list: A sorted list of class names extracted from the JSON file.
"""
with open(val_classifier_json, "r") as f:
data = json.load(f)
return sorted(list(data["val_metrics_details"].keys()))
def generateClassPairs(val_classifier_json):
"""
Generate pairs of misclassified classes from the given validation classifier JSON.
Args:
val_classifier_json (str): The path to the validation classifier JSON file.
Returns:
list: A sorted list of pairs of misclassified classes.
"""
pairs = set()
misclassified_classes = get_top_misclassified(val_classifier_json)
for key, value in misclassified_classes.items():
for v in value:
pairs.add(tuple(sorted([key, v])))
return sorted(list(pairs))
def outputDirectory(class_pairs, synth_path, metadata_path):
"""
Creates the output directory structure for the synthesized data.
Args:
class_pairs (list): A list of class pairs.
synth_path (str): The path to the directory where the synthesized data will be stored.
metadata_path (str): The path to the directory where the metadata will be stored.
Returns:
None
"""
for id in class_pairs:
class_folder = f"{synth_path}/{id}"
if not (os.path.exists(class_folder)):
os.makedirs(class_folder)
if not (os.path.exists(metadata_path)):
os.makedirs(metadata_path)
print("Info: Output directory ready.")
def pipe_img(
model_path,
device="cuda",
apply_optimization=True,
use_torchcompile=False,
ci_cb=(5, 1),
use_safetensors=None,
cpu_offload=False,
scheduler=None,
):
"""
Creates and returns an image-to-image pipeline for stable diffusion.
Args:
model_path (str): The path to the pretrained model.
device (str, optional): The device to use for computation. Defaults to "cuda".
apply_optimization (bool, optional): Whether to apply optimization techniques. Defaults to True.
use_torchcompile (bool, optional): Whether to use torchcompile for model compilation. Defaults to False.
ci_cb (tuple, optional): A tuple containing the cache interval and cache branch ID. Defaults to (5, 1).
use_safetensors (bool, optional): Whether to use safetensors. Defaults to None.
cpu_offload (bool, optional): Whether to enable CPU offloading. Defaults to False.
scheduler (LMSDiscreteScheduler, optional): The scheduler for the pipeline. Defaults to None.
Returns:
StableDiffusionImg2ImgPipeline: The image-to-image pipeline for stable diffusion.
"""
###############################
# Reference:
# Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
###############################
if scheduler is None:
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
steps_offset=1,
)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
model_path,
scheduler=scheduler,
torch_dtype=torch.float32,
use_safetensors=use_safetensors,
).to(device)
if cpu_offload:
pipe.enable_model_cpu_offload()
if apply_optimization:
# tomesd.apply_patch(pipe, ratio=0.5)
helper = DeepCacheSDHelper(pipe=pipe)
cache_interval, cache_branch_id = ci_cb
helper.set_params(
cache_interval=cache_interval, cache_branch_id=cache_branch_id
) # lower is faster but lower quality
helper.enable()
if torch.cuda.is_available():
pipe.enable_xformers_memory_efficient_attention()
if use_torchcompile:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
return pipe
def createPrompts(
class_name_pairs,
prompt_structure=None,
use_default_negative_prompt=False,
negative_prompt=None,
):
"""
Create prompts for image generation.
Args:
class_name_pairs (list): A list of two class names.
prompt_structure (str, optional): The structure of the prompt. Defaults to "a photo of a <class_name>".
use_default_negative_prompt (bool, optional): Whether to use the default negative prompt. Defaults to False.
negative_prompt (str, optional): The negative prompt to steer the generation away from certain features.
Returns:
tuple: A tuple containing two lists - prompts and negative_prompts.
prompts (list): Text prompts that describe the desired output image.
negative_prompts (list): Negative prompts that can be used to steer the generation away from certain features.
"""
if prompt_structure is None:
prompt_structure = "a photo of a <class_name>"
elif "<class_name>" not in prompt_structure:
raise ValueError(
"The prompt structure must contain the <class_name> placeholder."
)
if use_default_negative_prompt:
default_negative_prompt = (
"blurry image, disfigured, deformed, distorted, cartoon, drawings"
)
negative_prompt = default_negative_prompt
class1 = class_name_pairs[0]
class2 = class_name_pairs[1]
prompt1 = prompt_structure.replace("<class_name>", class1)
prompt2 = prompt_structure.replace("<class_name>", class2)
prompts = [prompt1, prompt2]
if negative_prompt is None:
print("Info: Negative prompt not provided, returning as None.")
return prompts, None
else:
# Negative prompts that can be used to steer the generation away from certain features.
negative_prompts = [negative_prompt] * len(prompts)
return prompts, negative_prompts
def interpolatePrompts(
prompts,
pipeline,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=0,
device="cuda",
):
"""
Interpolates prompts by generating intermediate embeddings between pairs of prompts.
Args:
prompts (List[str]): A list of prompts to be interpolated.
pipeline: The pipeline object containing the tokenizer and text encoder.
num_interpolation_steps (int): The number of interpolation steps between each pair of prompts.
sample_mid_interpolation (int): The number of intermediate embeddings to sample from the middle of the interpolated prompts.
remove_n_middle (int, optional): The number of middle embeddings to remove from the interpolated prompts. Defaults to 0.
device (str, optional): The device to run the interpolation on. Defaults to "cuda".
Returns:
interpolated_prompt_embeds (torch.Tensor): The interpolated prompt embeddings.
prompt_metadata (dict): Metadata about the interpolation process, including similarity scores and nearest class information.
e.g. if num_interpolation_steps = 10, sample_mid_interpolation = 6, remove_n_middle = 2
Interpolated: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Sampled: [2, 3, 4, 5, 6, 7]
Removed: x x
Returns: [2, 3, 6, 7]
"""
###############################
# Reference:
# Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
###############################
def slerp(v0, v1, num, t0=0, t1=1):
"""
Performs spherical linear interpolation between two vectors.
Args:
v0 (torch.Tensor): The starting vector.
v1 (torch.Tensor): The ending vector.
num (int): The number of interpolation points.
t0 (float, optional): The starting time. Defaults to 0.
t1 (float, optional): The ending time. Defaults to 1.
Returns:
torch.Tensor: The interpolated vectors.
"""
###############################
# Reference:
# Karpathy, A. (2022) hacky stablediffusion code for generating videos, Gist. Available at: https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355 (Accessed: 4 June 2024).
###############################
v0 = v0.detach().cpu().numpy()
v1 = v1.detach().cpu().numpy()
def interpolation(t, v0, v1, DOT_THRESHOLD=0.9995):
"""helper function to spherically interpolate two arrays v1 v2"""
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
if np.abs(dot) > DOT_THRESHOLD:
v2 = (1 - t) * v0 + t * v1
else:
theta_0 = np.arccos(dot)
sin_theta_0 = np.sin(theta_0)
theta_t = theta_0 * t
sin_theta_t = np.sin(theta_t)
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
s1 = sin_theta_t / sin_theta_0
v2 = s0 * v0 + s1 * v1
return v2
t = np.linspace(t0, t1, num)
v3 = torch.tensor(np.array([interpolation(t[i], v0, v1) for i in range(num)]))
return v3
def get_middle_elements(lst, n):
"""
Returns a tuple containing a sublist of the middle elements of the given list `lst` and a range of indices of those elements.
Args:
lst (list): The list from which to extract the middle elements.
n (int): The number of middle elements to extract.
Returns:
tuple: A tuple containing the sublist of middle elements and a range of indices.
Raises:
None
Examples:
lst = [1, 2, 3, 4, 5]
get_middle_elements(lst, 3)
([2, 3, 4], range(2, 5))
"""
if n % 2 == 0: # Even number of elements
middle_index = len(lst) // 2 - 1
start = middle_index - n // 2 + 1
end = middle_index + n // 2 + 1
return lst[start:end], range(start, end)
else: # Odd number of elements
middle_index = len(lst) // 2
start = middle_index - n // 2
end = middle_index + n // 2 + 1
return lst[start:end], range(start, end)
def remove_middle(data, n):
"""
Remove the middle n elements from a list.
Args:
data (list): The input list.
n (int): The number of elements to remove from the middle of the list.
Returns:
list: The modified list with the middle n elements removed.
Raises:
ValueError: If n is negative or greater than the length of the list.
"""
if n < 0 or n > len(data):
raise ValueError(
"Invalid value for n. It should be non-negative and less than half the list length"
)
# Find the middle index
middle = len(data) // 2
# Create slices to exclude the middle n elements
if n == 1:
return data[:middle] + data[middle + 1 :]
elif n % 2 == 0:
return data[: middle - n // 2] + data[middle + n // 2 :]
else:
return data[: middle - n // 2] + data[middle + n // 2 + 1 :]
batch_size = len(prompts)
# Tokenizing and encoding prompts into embeddings.
prompts_tokens = pipeline.tokenizer(
prompts,
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
prompts_embeds = pipeline.text_encoder(prompts_tokens.input_ids.to(device))[0]
# Interpolating between embeddings pairs for the given number of interpolation steps.
interpolated_prompt_embeds = []
for i in range(batch_size - 1):
interpolated_prompt_embeds.append(
slerp(prompts_embeds[i], prompts_embeds[i + 1], num_interpolation_steps)
)
full_interpolated_prompt_embeds = interpolated_prompt_embeds[:]
interpolated_prompt_embeds[0], sample_range = get_middle_elements(
interpolated_prompt_embeds[0], sample_mid_interpolation
)
if remove_n_middle > 0:
interpolated_prompt_embeds[0] = remove_middle(
interpolated_prompt_embeds[0], remove_n_middle
)
prompt_metadata = dict()
similarity = nn.CosineSimilarity(dim=-1, eps=1e-6)
for i in range(num_interpolation_steps):
class1_sim = (
similarity(
full_interpolated_prompt_embeds[0][0],
full_interpolated_prompt_embeds[0][i],
)
.mean()
.item()
)
class2_sim = (
similarity(
full_interpolated_prompt_embeds[0][num_interpolation_steps - 1],
full_interpolated_prompt_embeds[0][i],
)
.mean()
.item()
)
relative_distance = class1_sim / (class1_sim + class2_sim)
prompt_metadata[i] = {
"selected": i in sample_range,
"similarity": {
"class1": class1_sim,
"class2": class2_sim,
"class1_relative_distance": relative_distance,
"class2_relative_distance": 1 - relative_distance,
},
"nearest_class": int(relative_distance < 0.5),
}
interpolated_prompt_embeds = torch.cat(interpolated_prompt_embeds, dim=0).to(device)
return interpolated_prompt_embeds, prompt_metadata
def genClassImg(
pipeline,
pos_embed,
neg_embed,
input_image,
generator,
latents,
num_imgs=1,
height=512,
width=512,
num_inference_steps=25,
guidance_scale=7.5,
):
"""
Generate class image using the given inputs.
Args:
pipeline: The pipeline object used for image generation.
pos_embed: The positive embedding for the class.
neg_embed: The negative embedding for the class (optional).
input_image: The input image for guidance (optional).
generator: The generator model used for image generation.
latents: The latent vectors used for image generation.
num_imgs: The number of images to generate (default is 1).
height: The height of the generated images (default is 512).
width: The width of the generated images (default is 512).
num_inference_steps: The number of inference steps for image generation (default is 25).
guidance_scale: The scale factor for guidance (default is 7.5).
Returns:
The generated class image.
"""
if neg_embed is not None:
npe = neg_embed[None, ...]
else:
npe = None
return pipeline(
height=height,
width=width,
num_images_per_prompt=num_imgs,
prompt_embeds=pos_embed[None, ...],
negative_prompt_embeds=npe,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents,
image=input_image,
).images[0]
def getMetadata(
class_pairs,
path,
seed,
guidance_scale,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
height,
width,
prompts,
negative_prompts,
pipeline,
prompt_metadata,
negative_prompt_metadata,
ssim_metadata=None,
save_json=True,
save_path=".",
):
"""
Generate metadata for the given parameters.
Args:
class_pairs (list): List of class pairs.
path (str): Path to the data.
seed (int): Seed value for randomization.
guidance_scale (float): Scale factor for guidance.
num_inference_steps (int): Number of inference steps.
num_interpolation_steps (int): Number of interpolation steps.
sample_mid_interpolation (bool): Flag to sample mid-interpolation.
height (int): Height of the image.
width (int): Width of the image.
prompts (list): List of prompts.
negative_prompts (list): List of negative prompts.
pipeline (object): Pipeline object.
prompt_metadata (dict): Metadata for prompts.
negative_prompt_metadata (dict): Metadata for negative prompts.
ssim_metadata (dict, optional): SSIM scores metadata. Defaults to None.
save_json (bool, optional): Flag to save metadata as JSON. Defaults to True.
save_path (str, optional): Path to save the JSON file. Defaults to ".".
Returns:
dict: Generated metadata.
"""
metadata = dict()
metadata["class_pairs"] = class_pairs
metadata["path"] = path
metadata["seed"] = seed
metadata["params"] = {
"CFG": guidance_scale,
"inferenceSteps": num_inference_steps,
"interpolationSteps": num_interpolation_steps,
"sampleMidInterpolation": sample_mid_interpolation,
"height": height,
"width": width,
}
for i in range(len(prompts)):
metadata[f"prompt_text_{i}"] = prompts[i]
if negative_prompts is not None:
metadata[f"negative_prompt_text_{i}"] = negative_prompts[i]
metadata["pipe_config"] = dict(pipeline.config)
metadata["prompt_embed_similarity"] = prompt_metadata
metadata["negative_prompt_embed_similarity"] = negative_prompt_metadata
if ssim_metadata is not None:
print("Info: SSIM scores are available.")
metadata["ssim_scores"] = ssim_metadata
if save_json:
with open(
os.path.join(save_path, f"{'_'.join(i for i in class_pairs)}_{seed}.json"),
"w",
) as f:
json.dump(metadata, f, indent=4)
return metadata
def groupbyInterpolation(dir_to_classfolder):
"""
Group files in a directory by interpolation step.
Args:
dir_to_classfolder (str): The path to the directory containing the files.
Returns:
None
"""
files = [
(f.split(sep="_")[1].split(sep=".")[0], os.path.join(dir_to_classfolder, f))
for f in os.listdir(dir_to_classfolder)
]
# create a subfolder for each step of the interpolation
for interpolation_step, file_path in files:
new_dir = os.path.join(dir_to_classfolder, interpolation_step)
if not os.path.exists(new_dir):
os.makedirs(new_dir)
os.rename(file_path, os.path.join(new_dir, os.path.basename(file_path)))
def ungroupInterpolation(dir_to_classfolder):
"""
Moves all files from subdirectories within `dir_to_classfolder` to `dir_to_classfolder` itself,
and then removes the subdirectories.
Args:
dir_to_classfolder (str): The path to the directory containing the subdirectories.
Returns:
None
"""
for interpolation_step in os.listdir(dir_to_classfolder):
if os.path.isdir(os.path.join(dir_to_classfolder, interpolation_step)):
for f in os.listdir(os.path.join(dir_to_classfolder, interpolation_step)):
os.rename(
os.path.join(dir_to_classfolder, interpolation_step, f),
os.path.join(dir_to_classfolder, f),
)
os.rmdir(os.path.join(dir_to_classfolder, interpolation_step))
def groupAllbyInterpolation(
data_path,
group=True,
fn_group=groupbyInterpolation,
fn_ungroup=ungroupInterpolation,
):
"""
Group or ungroup all data classes by interpolation.
Args:
data_path (str): The path to the data.
group (bool, optional): Whether to group the data. Defaults to True.
fn_group (function, optional): The function to use for grouping. Defaults to groupbyInterpolation.
fn_ungroup (function, optional): The function to use for ungrouping. Defaults to ungroupInterpolation.
"""
data_classes = sorted(os.listdir(data_path))
if group:
fn = fn_group
else:
fn = fn_ungroup
for c in data_classes:
c_path = os.path.join(data_path, c)
if os.path.isdir(c_path):
fn(c_path)
print(f"Processed {c}")
def getPairIndices(subset_len, total_pair_count=1, seed=None):
"""
Generate pairs of indices for a given subset length.
Args:
subset_len (int): The length of the subset.
total_pair_count (int, optional): The total number of pairs to generate. Defaults to 1.
seed (int, optional): The seed value for the random number generator. Defaults to None.
Returns:
list: A list of pairs of indices.
"""
rng = np.random.default_rng(seed)
group_size = (subset_len + total_pair_count - 1) // total_pair_count
numbers = list(range(subset_len))
numbers_selection = list(range(subset_len))
rng.shuffle(numbers)
for i in range(group_size - subset_len % group_size):
numbers.append(numbers_selection[i])
numbers = np.array(numbers)
groups = numbers[: group_size * total_pair_count].reshape(-1, group_size)
return groups.tolist()
def generateImagesFromDataset(
img_subsets,
class_iterables,
pipeline,
interpolated_prompt_embeds,
interpolated_negative_prompts_embeds,
num_inference_steps,
guidance_scale,
height=512,
width=512,
seed=None,
save_path=".",
class_pairs=("0", "1"),
save_image=True,
image_type="jpg",
interpolate_range="full",
device="cuda",
return_images=False,
):
"""
Generates images from a dataset using the given parameters.
Args:
img_subsets (dict): A dictionary containing image subsets for each class.
class_iterables (dict): A dictionary containing iterable objects for each class.
pipeline (object): The pipeline object used for image generation.
interpolated_prompt_embeds (list): A list of interpolated prompt embeddings.
interpolated_negative_prompts_embeds (list): A list of interpolated negative prompt embeddings.
num_inference_steps (int): The number of inference steps for image generation.
guidance_scale (float): The scale factor for guidance loss during image generation.
height (int, optional): The height of the generated images. Defaults to 512.
width (int, optional): The width of the generated images. Defaults to 512.
seed (int, optional): The seed value for random number generation. Defaults to None.
save_path (str, optional): The path to save the generated images. Defaults to ".".
class_pairs (tuple, optional): A tuple containing pairs of class identifiers. Defaults to ("0", "1").
save_image (bool, optional): Whether to save the generated images. Defaults to True.
image_type (str, optional): The file format of the saved images. Defaults to "jpg".
interpolate_range (str, optional): The range of interpolation for prompt embeddings.
Possible values are "full", "nearest", or "furthest". Defaults to "full".
device (str, optional): The device to use for image generation. Defaults to "cuda".
return_images (bool, optional): Whether to return the generated images. Defaults to False.
Returns:
dict or tuple: If return_images is True, returns a dictionary containing the generated images for each class and a dictionary containing the SSIM scores for each class and interpolation step.
If return_images is False, returns a dictionary containing the SSIM scores for each class and interpolation step.
"""
if interpolate_range == "nearest":
nearest_half = True
furthest_half = False
elif interpolate_range == "furthest":
nearest_half = False
furthest_half = True
else:
nearest_half = False
furthest_half = False
if seed is None:
seed = torch.Generator().seed()
generator = torch.manual_seed(seed)
rng = np.random.default_rng(seed)
# Generating initial U-Net latent vectors from a random normal distribution.
latents = torch.randn(
(1, pipeline.unet.config.in_channels, height // 8, width // 8),
generator=generator,
).to(device)
embed_len = len(interpolated_prompt_embeds)
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
embed_pairs_list = list(embed_pairs)
if return_images:
class_images = dict()
class_ssim = dict()
if nearest_half or furthest_half:
if nearest_half:
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
mutiplier = 2
elif furthest_half:
# uses opposite class of images of the text interpolation
steps_range = (range(embed_len // 2, embed_len), range(0, embed_len // 2))
mutiplier = 2
else:
steps_range = (range(embed_len), range(embed_len))
mutiplier = 1
for class_iter, class_id in enumerate(class_pairs):
if return_images:
class_images[class_id] = list()
class_ssim[class_id] = {
i: {"ssim_sum": 0, "ssim_count": 0, "ssim_avg": 0} for i in range(embed_len)
}
subset_len = len(img_subsets[class_id])
# to efficiently randomize the steps to interpolate for each image in the class, group_map is used
# group_map: index is the image id, element is the group id
# steps_range[class_iter] determines the range of steps to interpolate for the class,
# so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
# then the rest is to multiply the steps to cover the whole subset + remainder
group_map = (
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
)
rng.shuffle(
group_map
) # shuffle the steps to interpolate for each image, position in the group_map is mapped to the image id
iter_indices = class_iterables[class_id].pop()
# generate images for each image in the class, randomly selecting an interpolated step
for image_id in iter_indices:
img, trg = img_subsets[class_id][image_id]
input_image = img.unsqueeze(0)
interpolate_step = group_map[image_id]
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolate_step]
generated_image = genClassImg(
pipeline,
prompt_embeds,
negative_prompt_embeds,
input_image,
generator,
latents,
num_imgs=1,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
pred_image = transforms.ToTensor()(generated_image).unsqueeze(0)
ssim_score = ssim(pred_image, input_image).item()
class_ssim[class_id][interpolate_step]["ssim_sum"] += ssim_score
class_ssim[class_id][interpolate_step]["ssim_count"] += 1
if return_images:
class_images[class_id].append(generated_image)
if save_image:
if image_type == "jpg":
generated_image.save(
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}",
format="JPEG",
quality=95,
)
elif image_type == "png":
generated_image.save(
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}",
format="PNG",
)
else:
generated_image.save(
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
)
# calculate ssim avg for the class
for i_step in range(embed_len):
if class_ssim[class_id][i_step]["ssim_count"] > 0:
class_ssim[class_id][i_step]["ssim_avg"] = (
class_ssim[class_id][i_step]["ssim_sum"]
/ class_ssim[class_id][i_step]["ssim_count"]
)
if return_images:
return class_images, class_ssim
else:
return class_ssim
def generateTrace(
prompts,
img_subsets,
class_iterables,
interpolated_prompt_embeds,
interpolated_negative_prompts_embeds,
subset_indices,
seed=None,
save_path=".",
class_pairs=("0", "1"),
image_type="jpg",
interpolate_range="full",
save_prompt_embeds=False,
):
"""
Generate a trace dictionary containing information about the generated images.
Args:
prompts (list): List of prompt texts.
img_subsets (dict): Dictionary containing image subsets for each class.
class_iterables (dict): Dictionary containing iterable objects for each class.
interpolated_prompt_embeds (torch.Tensor): Tensor containing interpolated prompt embeddings.
interpolated_negative_prompts_embeds (torch.Tensor): Tensor containing interpolated negative prompt embeddings.
subset_indices (dict): Dictionary containing indices of subsets for each class.
seed (int, optional): Seed value for random number generation. Defaults to None.
save_path (str, optional): Path to save the generated images. Defaults to ".".
class_pairs (tuple, optional): Tuple containing class pairs. Defaults to ("0", "1").
image_type (str, optional): Type of the generated images. Defaults to "jpg".
interpolate_range (str, optional): Range of interpolation. Defaults to "full".
save_prompt_embeds (bool, optional): Flag to save prompt embeddings. Defaults to False.
Returns:
dict: Trace dictionary containing information about the generated images.
"""
trace_dict = {
"class_pairs": list(),
"class_id": list(),
"image_id": list(),
"interpolation_step": list(),
"embed_len": list(),
"pos_prompt_text": list(),
"neg_prompt_text": list(),
"input_file_path": list(),
"output_file_path": list(),
"input_prompts_embed": list(),
}
if interpolate_range == "nearest":
nearest_half = True
furthest_half = False
elif interpolate_range == "furthest":
nearest_half = False
furthest_half = True
else:
nearest_half = False
furthest_half = False
if seed is None:
seed = torch.Generator().seed()
rng = np.random.default_rng(seed)
embed_len = len(interpolated_prompt_embeds)
embed_pairs = zip(
interpolated_prompt_embeds.cpu().numpy(),
interpolated_negative_prompts_embeds.cpu().numpy(),
)
embed_pairs_list = list(embed_pairs)
if nearest_half or furthest_half:
if nearest_half:
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
mutiplier = 2
elif furthest_half:
# uses opposite class of images of the text interpolation
steps_range = (range(embed_len // 2, embed_len), range(0, embed_len // 2))
mutiplier = 2
else:
steps_range = (range(embed_len), range(embed_len))
mutiplier = 1
for class_iter, class_id in enumerate(class_pairs):
subset_len = len(img_subsets[class_id])
# to efficiently randomize the steps to interpolate for each image in the class, group_map is used
# group_map: index is the image id, element is the group id
# steps_range[class_iter] determines the range of steps to interpolate for the class,
# so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
# then the rest is to multiply the steps to cover the whole subset + remainder
group_map = (
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
)
rng.shuffle(
group_map
) # shuffle the steps to interpolate for each image, position in the group_map is mapped to the image id
iter_indices = class_iterables[class_id].pop()
# generate images for each image in the class, randomly selecting an interpolated step
for image_id in iter_indices:
class_ds = img_subsets[class_id]
interpolate_step = group_map[image_id]
sample_count = subset_indices[class_id][0] + image_id
input_file = os.path.normpath(class_ds.dataset.samples[sample_count][0])
pos_prompt = prompts[0]
neg_prompt = prompts[1]
output_file = f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
if save_prompt_embeds:
input_prompts_embed = embed_pairs_list[interpolate_step]
else:
input_prompts_embed = None
trace_dict["class_pairs"].append(class_pairs)
trace_dict["class_id"].append(class_id)
trace_dict["image_id"].append(image_id)
trace_dict["interpolation_step"].append(interpolate_step)
trace_dict["embed_len"].append(embed_len)
trace_dict["pos_prompt_text"].append(pos_prompt)
trace_dict["neg_prompt_text"].append(neg_prompt)
trace_dict["input_file_path"].append(input_file)
trace_dict["output_file_path"].append(output_file)
trace_dict["input_prompts_embed"].append(input_prompts_embed)
return trace_dict
|