Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,048 Bytes
8ffeacd b78c8ed 98b6f69 b78c8ed 8ffeacd b78c8ed 8ffeacd 98b6f69 b78c8ed 8ffeacd 9827b70 8ffeacd b78c8ed 8ffeacd 98b6f69 8ffeacd 98b6f69 8ffeacd 98b6f69 8ffeacd 98b6f69 b78c8ed 70ca747 b78c8ed 98b6f69 b78c8ed 70ca747 98b6f69 70ca747 98b6f69 70ca747 98b6f69 8ffeacd 98b6f69 b78c8ed 8ffeacd 98b6f69 8ffeacd 98b6f69 8ffeacd 98b6f69 8ffeacd 70ca747 b78c8ed 8ffeacd 98b6f69 b78c8ed 98b6f69 70ca747 bd14b9f b78c8ed bd14b9f 8ffeacd 70ca747 8ffeacd 70ca747 bd14b9f 70ca747 8ffeacd 70ca747 8ffeacd 98b6f69 70ca747 bd14b9f 98b6f69 70ca747 98b6f69 b78c8ed 70ca747 bd14b9f 70ca747 b78c8ed 70ca747 b78c8ed 8ffeacd 70ca747 b78c8ed 70ca747 b78c8ed 70ca747 b78c8ed 70ca747 98b6f69 70ca747 98b6f69 70ca747 98b6f69 70ca747 98b6f69 70ca747 bd14b9f 70ca747 bd14b9f 70ca747 846f790 bd14b9f 70ca747 bd14b9f 70ca747 98b6f69 b78c8ed 70ca747 98b6f69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import random
import gradio as gr
import numpy as np
import torch
import torchvision.transforms as transforms
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from transformers import CLIPModel, CLIPProcessor
from tools import synth
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "runwayml/stable-diffusion-v1-5"
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = synth.pipe_img(
model_path=model_path,
device=device,
use_torchcompile=False,
)
else:
pipe = synth.pipe_img(
model_path=model_path,
device=device,
apply_optimization=False,
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
# Input Validation
try:
assert num_interpolation_steps % 2 == 0
except AssertionError:
raise ValueError("num_interpolation_steps must be an even number")
try:
assert sample_mid_interpolation % 2 == 0
except AssertionError:
raise ValueError("sample_mid_interpolation must be an even number")
try:
assert remove_n_middle % 2 == 0
except AssertionError:
raise ValueError("remove_n_middle must be an even number")
try:
assert num_interpolation_steps >= sample_mid_interpolation
except AssertionError:
raise ValueError(
"num_interpolation_steps must be greater than or equal to sample_mid_interpolation"
)
try:
assert num_interpolation_steps >= 2 and sample_mid_interpolation >= 2
except AssertionError:
raise ValueError(
"num_interpolation_steps and sample_mid_interpolation must be greater than or equal to 2"
)
try:
assert sample_mid_interpolation - remove_n_middle >= 2
except AssertionError:
raise ValueError(
"sample_mid_interpolation must be greater than or equal to remove_n_middle + 2"
)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
prompts = [prompt1, prompt2]
generator = torch.Generator().manual_seed(seed)
interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
prompts,
pipe,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=remove_n_middle,
device=device,
)
negative_prompts = [negative_prompt, negative_prompt]
if negative_prompts != ["", ""]:
interpolated_negative_prompts_embeds, _ = synth.interpolatePrompts(
negative_prompts,
pipe,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=remove_n_middle,
device=device,
)
else:
interpolated_negative_prompts_embeds, _ = [None] * len(
interpolated_prompt_embeds
), None
latents = torch.randn(
(1, pipe.unet.config.in_channels, height // 8, width // 8),
generator=generator,
).to(device)
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
embed_pairs_list = list(embed_pairs)
print(len(embed_pairs_list))
# offset step by -1
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
preprocess_input = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((512, 512))]
)
input_img_tensor = preprocess_input(input_image).unsqueeze(0)
if negative_prompt_embeds is not None:
npe = negative_prompt_embeds[None, ...]
else:
npe = None
image = pipe(
height=height,
width=width,
num_images_per_prompt=1,
prompt_embeds=prompt_embeds[None, ...],
negative_prompt_embeds=npe,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents,
image=input_img_tensor,
).images[0]
pred_image = transforms.ToTensor()(image).unsqueeze(0)
ssim_score = ssim(pred_image, input_img_tensor).item()
real_inputs = clip_processor(
text=prompts, padding=True, images=input_image, return_tensors="pt"
).to(device)
real_output = clip_model(**real_inputs)
synth_inputs = clip_processor(
text=prompts, padding=True, images=image, return_tensors="pt"
).to(device)
synth_output = clip_model(**synth_inputs)
cos_sim = torch.nn.CosineSimilarity(dim=1)
cosine_sim = (
cos_sim(real_output.image_embeds, synth_output.image_embeds)
.detach()
.cpu()
.numpy()
.squeeze()
* 100
)
return image, seed, round(ssim_score, 4), round(cosine_sim, 2)
examples1 = [
"A photo of a chain saw, chainsaw",
"A photo of a Shih-Tzu, a type of dog",
]
examples2 = [
"A photo of a golf ball",
"A photo of a beagle, a type of dog",
]
def update_steps(total_steps, interpolation_step):
if interpolation_step > total_steps:
return gr.update(maximum=total_steps // 2, value=total_steps)
return gr.update(maximum=total_steps // 2)
def update_sampling_steps(total_steps, sample_steps):
# if sample_steps > total_steps:
# return gr.update(value=total_steps)
return gr.update(value=total_steps)
def update_format(image_format):
return gr.update(format=image_format)
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(title="Generative Date Augmentation Demo") as demo:
gr.Markdown(
"""
# Data Augmentation with Image-to-Image Diffusion Models via Prompt Interpolation.
Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Image Classification Demo: [Generative Augmented Classifiers](https://huggingface.co/spaces/czl/generative-augmented-classifiers).
"""
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Image to Augment")
with gr.Row():
prompt1 = gr.Text(
label="Prompt for the image to synthesize. (Actual class)",
show_label=True,
max_lines=1,
placeholder="Enter your first prompt",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt to augment against. (Confusing class)",
show_label=True,
max_lines=1,
placeholder="Enter your second prompt",
container=False,
)
with gr.Row():
gr.Examples(
examples=examples1, inputs=[prompt1], label="Example for Prompt 1"
)
gr.Examples(
examples=examples2, inputs=[prompt2], label="Example for Prompt 2"
)
with gr.Row():
interpolation_step = gr.Slider(
label="Specific Interpolation Step",
minimum=1,
maximum=8,
step=1,
value=8,
)
num_interpolation_steps = gr.Slider(
label="Total interpolation steps",
minimum=2,
maximum=32,
step=2,
value=16,
)
num_interpolation_steps.change(
fn=update_steps,
inputs=[num_interpolation_steps, interpolation_step],
outputs=[interpolation_step],
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Markdown("Negative Prompt: ")
with gr.Row():
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=True,
max_lines=1,
value="blurry image, disfigured, deformed, distorted, cartoon, drawings",
container=False,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=80,
step=1,
value=25,
)
with gr.Row():
sample_mid_interpolation = gr.Slider(
label="Number of sampling steps in the middle of interpolation",
minimum=2,
maximum=80,
step=2,
value=16,
)
num_interpolation_steps.change(
fn=update_sampling_steps,
inputs=[num_interpolation_steps, sample_mid_interpolation],
outputs=[sample_mid_interpolation],
)
with gr.Row():
remove_n_middle = gr.Slider(
label="Number of middle steps to remove from interpolation",
minimum=0,
maximum=80,
step=2,
value=0,
)
with gr.Row():
image_type = gr.Radio(
choices=[
"webp",
"png",
"jpeg",
],
label="Download Image Format",
value="jpeg",
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, format="jpeg")
image_type.change(
fn=update_format,
inputs=[image_type],
outputs=[result],
)
gr.Markdown(
"""
Metadata:
"""
)
with gr.Row():
show_seed = gr.Label(label="Seed:", value="Randomized seed")
ssim_score = gr.Label(
label="SSIM Score:", value="Generate to see score"
)
cos_sim = gr.Label(label="CLIP Score:", value="Generate to see score")
if power_device == "GPU":
gr.Markdown(
f"""
Currently running on {power_device}.
"""
)
else:
gr.Markdown(
f"""
Currently running on {power_device}.
Note: Running on CPU will take longer (approx. 6 minutes with default settings).
"""
)
gr.Markdown(
"""
This demo is created as part of the 'Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.
The user can augment an image by interpolating between two prompts, and specify the number of interpolation steps and the specific step to generate the image.
"""
)
run_button.click(
fn=infer,
inputs=[
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle,
],
outputs=[result, show_seed, ssim_score, cos_sim],
)
demo.queue().launch(show_error=True)
"""
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle,
"""
|