File size: 14,048 Bytes
8ffeacd
 
b78c8ed
 
 
98b6f69
 
 
b78c8ed
8ffeacd
 
b78c8ed
8ffeacd
98b6f69
 
b78c8ed
 
 
8ffeacd
 
 
 
 
 
 
 
 
9827b70
8ffeacd
b78c8ed
 
 
 
8ffeacd
 
 
98b6f69
 
8ffeacd
 
 
 
 
 
98b6f69
8ffeacd
98b6f69
 
 
8ffeacd
98b6f69
b78c8ed
70ca747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78c8ed
 
98b6f69
b78c8ed
70ca747
98b6f69
 
 
 
 
 
 
 
 
 
70ca747
 
 
 
 
 
 
98b6f69
 
70ca747
98b6f69
 
8ffeacd
98b6f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78c8ed
8ffeacd
98b6f69
 
 
 
 
 
8ffeacd
98b6f69
 
8ffeacd
98b6f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ffeacd
70ca747
b78c8ed
8ffeacd
98b6f69
 
 
 
 
 
 
b78c8ed
 
98b6f69
 
 
 
 
 
 
70ca747
 
 
 
 
 
bd14b9f
 
 
 
b78c8ed
 
 
 
 
bd14b9f
8ffeacd
70ca747
8ffeacd
70ca747
bd14b9f
70ca747
 
 
 
8ffeacd
70ca747
8ffeacd
98b6f69
70ca747
bd14b9f
98b6f69
 
70ca747
98b6f69
 
b78c8ed
70ca747
bd14b9f
70ca747
 
 
 
b78c8ed
 
70ca747
 
 
 
 
b78c8ed
8ffeacd
70ca747
 
 
b78c8ed
70ca747
b78c8ed
70ca747
b78c8ed
70ca747
 
98b6f69
70ca747
98b6f69
 
 
70ca747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b6f69
70ca747
 
98b6f69
 
70ca747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd14b9f
 
 
 
 
 
 
 
 
 
70ca747
bd14b9f
 
 
 
 
 
70ca747
 
 
 
 
 
 
 
 
 
 
846f790
 
 
 
 
 
 
 
 
 
 
 
 
bd14b9f
 
 
70ca747
bd14b9f
 
 
70ca747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b6f69
b78c8ed
70ca747
98b6f69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import random

import gradio as gr
import numpy as np
import torch
import torchvision.transforms as transforms
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from transformers import CLIPModel, CLIPProcessor

from tools import synth

device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "runwayml/stable-diffusion-v1-5"
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = synth.pipe_img(
        model_path=model_path,
        device=device,
        use_torchcompile=False,
    )
else:
    pipe = synth.pipe_img(
        model_path=model_path,
        device=device,
        apply_optimization=False,
    )

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


def infer(
    input_image,
    prompt1,
    prompt2,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    interpolation_step,
    num_inference_steps,
    num_interpolation_steps,
    sample_mid_interpolation,
    remove_n_middle,
):
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Input Validation
    try:
        assert num_interpolation_steps % 2 == 0
    except AssertionError:
        raise ValueError("num_interpolation_steps must be an even number")
    try:
        assert sample_mid_interpolation % 2 == 0
    except AssertionError:
        raise ValueError("sample_mid_interpolation must be an even number")
    try:
        assert remove_n_middle % 2 == 0
    except AssertionError:
        raise ValueError("remove_n_middle must be an even number")
    try:
        assert num_interpolation_steps >= sample_mid_interpolation
    except AssertionError:
        raise ValueError(
            "num_interpolation_steps must be greater than or equal to sample_mid_interpolation"
        )
    try:
        assert num_interpolation_steps >= 2 and sample_mid_interpolation >= 2
    except AssertionError:
        raise ValueError(
            "num_interpolation_steps and sample_mid_interpolation must be greater than or equal to 2"
        )
    try:
        assert sample_mid_interpolation - remove_n_middle >= 2
    except AssertionError:
        raise ValueError(
            "sample_mid_interpolation must be greater than or equal to remove_n_middle + 2"
        )

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    prompts = [prompt1, prompt2]
    generator = torch.Generator().manual_seed(seed)

    interpolated_prompt_embeds, prompt_metadata = synth.interpolatePrompts(
        prompts,
        pipe,
        num_interpolation_steps,
        sample_mid_interpolation,
        remove_n_middle=remove_n_middle,
        device=device,
    )
    negative_prompts = [negative_prompt, negative_prompt]
    if negative_prompts != ["", ""]:
        interpolated_negative_prompts_embeds, _ = synth.interpolatePrompts(
            negative_prompts,
            pipe,
            num_interpolation_steps,
            sample_mid_interpolation,
            remove_n_middle=remove_n_middle,
            device=device,
        )
    else:
        interpolated_negative_prompts_embeds, _ = [None] * len(
            interpolated_prompt_embeds
        ), None

    latents = torch.randn(
        (1, pipe.unet.config.in_channels, height // 8, width // 8),
        generator=generator,
    ).to(device)
    embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
    embed_pairs_list = list(embed_pairs)
    print(len(embed_pairs_list))
    # offset step by -1
    prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
    preprocess_input = transforms.Compose(
        [transforms.ToTensor(), transforms.Resize((512, 512))]
    )
    input_img_tensor = preprocess_input(input_image).unsqueeze(0)
    if negative_prompt_embeds is not None:
        npe = negative_prompt_embeds[None, ...]
    else:
        npe = None
    image = pipe(
        height=height,
        width=width,
        num_images_per_prompt=1,
        prompt_embeds=prompt_embeds[None, ...],
        negative_prompt_embeds=npe,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=generator,
        latents=latents,
        image=input_img_tensor,
    ).images[0]
    pred_image = transforms.ToTensor()(image).unsqueeze(0)
    ssim_score = ssim(pred_image, input_img_tensor).item()
    real_inputs = clip_processor(
        text=prompts, padding=True, images=input_image, return_tensors="pt"
    ).to(device)
    real_output = clip_model(**real_inputs)
    synth_inputs = clip_processor(
        text=prompts, padding=True, images=image, return_tensors="pt"
    ).to(device)
    synth_output = clip_model(**synth_inputs)
    cos_sim = torch.nn.CosineSimilarity(dim=1)
    cosine_sim = (
        cos_sim(real_output.image_embeds, synth_output.image_embeds)
        .detach()
        .cpu()
        .numpy()
        .squeeze()
        * 100
    )

    return image, seed, round(ssim_score, 4), round(cosine_sim, 2)


examples1 = [
    "A photo of a chain saw, chainsaw",
    "A photo of a Shih-Tzu, a type of dog",
]
examples2 = [
    "A photo of a golf ball",
    "A photo of a beagle, a type of dog",
]


def update_steps(total_steps, interpolation_step):
    if interpolation_step > total_steps:
        return gr.update(maximum=total_steps // 2, value=total_steps)
    return gr.update(maximum=total_steps // 2)


def update_sampling_steps(total_steps, sample_steps):
    # if sample_steps > total_steps:
    #     return gr.update(value=total_steps)
    return gr.update(value=total_steps)


def update_format(image_format):
    return gr.update(format=image_format)


if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(title="Generative Date Augmentation Demo") as demo:

    gr.Markdown(
        """
    # Data Augmentation with Image-to-Image Diffusion Models via Prompt Interpolation.
    Main GitHub Repo: [Generative Data Augmentation](https://github.com/zhulinchng/generative-data-augmentation) | Image Classification Demo: [Generative Augmented Classifiers](https://huggingface.co/spaces/czl/generative-augmented-classifiers).
    """
    )
    with gr.Row():
        with gr.Column():

            input_image = gr.Image(type="pil", label="Image to Augment")

            with gr.Row():
                prompt1 = gr.Text(
                    label="Prompt for the image to synthesize. (Actual class)",
                    show_label=True,
                    max_lines=1,
                    placeholder="Enter your first prompt",
                    container=False,
                )
            with gr.Row():
                prompt2 = gr.Text(
                    label="Prompt to augment against. (Confusing class)",
                    show_label=True,
                    max_lines=1,
                    placeholder="Enter your second prompt",
                    container=False,
                )
            with gr.Row():
                gr.Examples(
                    examples=examples1, inputs=[prompt1], label="Example for Prompt 1"
                )
                gr.Examples(
                    examples=examples2, inputs=[prompt2], label="Example for Prompt 2"
                )

            with gr.Row():
                interpolation_step = gr.Slider(
                    label="Specific Interpolation Step",
                    minimum=1,
                    maximum=8,
                    step=1,
                    value=8,
                )
                num_interpolation_steps = gr.Slider(
                    label="Total interpolation steps",
                    minimum=2,
                    maximum=32,
                    step=2,
                    value=16,
                )
                num_interpolation_steps.change(
                    fn=update_steps,
                    inputs=[num_interpolation_steps, interpolation_step],
                    outputs=[interpolation_step],
                )
                run_button = gr.Button("Run", scale=0)
            with gr.Accordion("Advanced Settings", open=True):
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=False,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                gr.Markdown("Negative Prompt: ")
                with gr.Row():
                    negative_prompt = gr.Text(
                        label="Negative Prompt",
                        show_label=True,
                        max_lines=1,
                        value="blurry image, disfigured, deformed, distorted, cartoon, drawings",
                        container=False,
                    )
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=512,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=512,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=8.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=80,
                        step=1,
                        value=25,
                    )
                with gr.Row():
                    sample_mid_interpolation = gr.Slider(
                        label="Number of sampling steps in the middle of interpolation",
                        minimum=2,
                        maximum=80,
                        step=2,
                        value=16,
                    )
                    num_interpolation_steps.change(
                        fn=update_sampling_steps,
                        inputs=[num_interpolation_steps, sample_mid_interpolation],
                        outputs=[sample_mid_interpolation],
                    )
                with gr.Row():
                    remove_n_middle = gr.Slider(
                        label="Number of middle steps to remove from interpolation",
                        minimum=0,
                        maximum=80,
                        step=2,
                        value=0,
                    )
                with gr.Row():
                    image_type = gr.Radio(
                        choices=[
                            "webp",
                            "png",
                            "jpeg",
                        ],
                        label="Download Image Format",
                        value="jpeg",
                    )
        with gr.Column():
            result = gr.Image(label="Result", show_label=False, format="jpeg")
            image_type.change(
                fn=update_format,
                inputs=[image_type],
                outputs=[result],
            )
            gr.Markdown(
                """
                Metadata:
                """
            )
            with gr.Row():
                show_seed = gr.Label(label="Seed:", value="Randomized seed")
                ssim_score = gr.Label(
                    label="SSIM Score:", value="Generate to see score"
                )
                cos_sim = gr.Label(label="CLIP Score:", value="Generate to see score")
            if power_device == "GPU":
                gr.Markdown(
                    f"""
Currently running on {power_device}.
                    """
                )
            else:
                gr.Markdown(
                    f"""
Currently running on {power_device}.
Note: Running on CPU will take longer (approx. 6 minutes with default settings).
                    """
                )
            gr.Markdown(
                """
This demo is created as part of the 'Investigating the Effectiveness of Generative Diffusion Models in Synthesizing Images for Data Augmentation in Image Classification' dissertation.

The user can augment an image by interpolating between two prompts, and specify the number of interpolation steps and the specific step to generate the image.
            """
            )
        run_button.click(
            fn=infer,
            inputs=[
                input_image,
                prompt1,
                prompt2,
                negative_prompt,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                interpolation_step,
                num_inference_steps,
                num_interpolation_steps,
                sample_mid_interpolation,
                remove_n_middle,
            ],
            outputs=[result, show_seed, ssim_score, cos_sim],
        )

demo.queue().launch(show_error=True)

"""
    input_image,
    prompt1,
    prompt2,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    interpolation_step,
    num_inference_steps,
    num_interpolation_steps,
    sample_mid_interpolation,
    remove_n_middle,
    """