Spaces:
Runtime error
Runtime error
initial commit
Browse files- .gitignore +4 -0
- app.py +97 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
photos/
|
2 |
+
.venv/
|
3 |
+
.vscode/
|
4 |
+
unsplash*
|
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util
|
2 |
+
from PIL import Image
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
+
import gradio as gr
|
6 |
+
import zipfile
|
7 |
+
|
8 |
+
# Load CLIP model
|
9 |
+
text_model = SentenceTransformer("clip-ViT-B-32-multilingual-v1")
|
10 |
+
|
11 |
+
image_model = SentenceTransformer("clip-ViT-B-32")
|
12 |
+
image_model.parallel_tokenization = False
|
13 |
+
|
14 |
+
img_folder = ".\\photos\\"
|
15 |
+
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
|
16 |
+
os.makedirs(img_folder, exist_ok=True)
|
17 |
+
|
18 |
+
photo_filename = "unsplash-25k-photos.zip"
|
19 |
+
if not os.path.exists(photo_filename):
|
20 |
+
util.http_get("http://sbert.net/datasets/" +
|
21 |
+
photo_filename, photo_filename)
|
22 |
+
|
23 |
+
# Extract all images
|
24 |
+
with zipfile.ZipFile(photo_filename, "r") as zf:
|
25 |
+
for member in zf.infolist():
|
26 |
+
zf.extract(member, img_folder)
|
27 |
+
|
28 |
+
|
29 |
+
emb_filename = ".\\unsplash-25k-photos-embeddings.pkl"
|
30 |
+
if not os.path.exists(emb_filename):
|
31 |
+
util.http_get(
|
32 |
+
"http://sbert.net/datasets/unsplash-25k-photos-embeddings.pkl", emb_filename
|
33 |
+
)
|
34 |
+
|
35 |
+
with open(emb_filename, "rb") as fIn:
|
36 |
+
img_names, img_emb = pickle.load(fIn)
|
37 |
+
|
38 |
+
|
39 |
+
img_folder = ".\\photos\\"
|
40 |
+
duplicates = util.paraphrase_mining_embeddings(img_emb)
|
41 |
+
|
42 |
+
|
43 |
+
def search_text(query, top_k=1):
|
44 |
+
""" " Search an image based on the text query.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
query ([string]): [query you want search for]
|
48 |
+
top_k (int, optional): [Amount of images o return]. Defaults to 1.
|
49 |
+
Returns:
|
50 |
+
[list]: [list of images that are related to the query.]
|
51 |
+
"""
|
52 |
+
# First, we encode the query.
|
53 |
+
query_emb = text_model.encode([query])
|
54 |
+
|
55 |
+
# Then, we use the util.semantic_search function, which computes the cosine-similarity
|
56 |
+
# between the query embedding and all image embeddings.
|
57 |
+
# It then returns the top_k highest ranked images, which we output
|
58 |
+
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
|
59 |
+
|
60 |
+
image = []
|
61 |
+
for hit in hits:
|
62 |
+
object = Image.open(os.path.join(
|
63 |
+
".\\photos\\", img_names[hit["corpus_id"]]))
|
64 |
+
image.append((object, img_names[hit["corpus_id"]]))
|
65 |
+
|
66 |
+
return image
|
67 |
+
|
68 |
+
|
69 |
+
iface_search = gr.Interface(
|
70 |
+
title="Семантический поиск по картинке - d8a.ai",
|
71 |
+
description="""Демо-версия семантического поиска изображений, использующая
|
72 |
+
современные алгоритмы искусственного интеллекта для получения высокоточных
|
73 |
+
результатов поиска. Пользователи могут искать изображения с помощью запросов
|
74 |
+
на естественном языке, просматривать и предварительно просматривать результаты.
|
75 |
+
Это приложение идеально подходит для создателей контента, маркетологов и менеджеров
|
76 |
+
социальных сетей и обеспечивает более интеллектуальный и интуитивно понятный
|
77 |
+
способ поиска и управления визуальным контентом.""",
|
78 |
+
fn=search_text,
|
79 |
+
allow_flagging="never",
|
80 |
+
inputs=[
|
81 |
+
gr.inputs.Textbox(
|
82 |
+
lines=4,
|
83 |
+
label="Поисковый текст",
|
84 |
+
placeholder="Что вы хотите найти?",
|
85 |
+
default="Горы Кыргызстана",
|
86 |
+
),
|
87 |
+
gr.inputs.Slider(minimum=0, maximum=9, default=5,
|
88 |
+
step=1, label="Количество"),
|
89 |
+
],
|
90 |
+
outputs=gr.Gallery(
|
91 |
+
label="Найденные изображения", show_label=False, elem_id="gallery"
|
92 |
+
).style(grid=[5], height="auto"),
|
93 |
+
examples=[[("Горы Кыргызстана"), 5], [("Бишкек"), 5],
|
94 |
+
[("A boy with a ball"), 5]],
|
95 |
+
)
|
96 |
+
|
97 |
+
iface_search.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
sentence_transformers
|
2 |
+
Pillow
|