File size: 3,914 Bytes
dc3659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23323a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3659d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import logging

import gradio as gr
import pandas as pd
import torch
from GoogleNews import GoogleNews
from transformers import pipeline

# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

SENTIMENT_ANALYSIS_MODEL = (
    "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")

logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
    "sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")


def fetch_articles(query):
    try:
        logging.info(f"Fetching articles for query: '{query}'")
        googlenews = GoogleNews(lang="en")
        googlenews.search(query)
        articles = googlenews.result()
        logging.info(f"Fetched {len(articles)} articles")
        return articles
    except Exception as e:
        logging.error(
            f"Error while searching articles for query: '{query}'. Error: {e}"
        )
        raise gr.Error(
            f"Unable to search articles for query: '{query}'. Try again later...",
            duration=5,
        )


def analyze_article_sentiment(article):
    logging.info(f"Analyzing sentiment for article: {article['title']}")
    sentiment = sentiment_analyzer(article["desc"])[0]
    article["sentiment"] = sentiment
    return article


def analyze_asset_sentiment(asset_name):
    logging.info(f"Starting sentiment analysis for asset: {asset_name}")

    logging.info("Fetching articles")
    articles = fetch_articles(asset_name)

    logging.info("Analyzing sentiment of each article")
    analyzed_articles = [analyze_article_sentiment(article) for article in articles]

    logging.info("Sentiment analysis completed")

    return convert_to_dataframe(analyzed_articles)


def convert_to_dataframe(analyzed_articles):
    df = pd.DataFrame(analyzed_articles)
    df["Title"] = df.apply(
        lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
        axis=1,
    )
    df["Description"] = df["desc"]
    df["Date"] = df["date"]

    def sentiment_badge(sentiment):
        colors = {
            "negative": "red",
            "neutral": "gray",
            "positive": "green",
        }
        color = colors.get(sentiment, "grey")
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'

    df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
    return df[["Sentiment", "Title", "Description", "Date"]]


with gr.Blocks() as iface:
    gr.Markdown("# Trading Asset Sentiment Analysis")
    gr.Markdown(
        "Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
    )

    with gr.Row():
        input_asset = gr.Textbox(
            label="Asset Name",
            lines=1,
            placeholder="Enter the name of the trading asset...",
        )

    with gr.Row():
        analyze_button = gr.Button("Analyze Sentiment", size="sm")

    gr.Examples(
        examples=[
            "Bitcoin",
            "Tesla",
            "Apple",
            "Amazon",
        ],
        inputs=input_asset,
    )

    with gr.Row():
        with gr.Column():
            with gr.Blocks():
                gr.Markdown("## Articles and Sentiment Analysis")
                articles_output = gr.Dataframe(
                    headers=["Sentiment", "Title", "Description", "Date"],
                    datatype=["markdown", "html", "markdown", "markdown"],
                    wrap=False,
                )

    analyze_button.click(
        analyze_asset_sentiment,
        inputs=[input_asset],
        outputs=[articles_output],
    )

logging.info("Launching Gradio interface")
iface.queue().launch()