import logging
import gradio as gr
import pandas as pd
import torch
from GoogleNews import GoogleNews
from transformers import pipeline
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
SENTIMENT_ANALYSIS_MODEL = (
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")
def fetch_articles(query):
try:
logging.info(f"Fetching articles for query: '{query}'")
googlenews = GoogleNews(lang="en")
googlenews.search(query)
articles = googlenews.result()
logging.info(f"Fetched {len(articles)} articles")
return articles
except Exception as e:
logging.error(
f"Error while searching articles for query: '{query}'. Error: {e}"
)
raise gr.Error(
f"Unable to search articles for query: '{query}'. Try again later...",
duration=5,
)
def analyze_article_sentiment(article):
logging.info(f"Analyzing sentiment for article: {article['title']}")
sentiment = sentiment_analyzer(article["desc"])[0]
article["sentiment"] = sentiment
return article
def analyze_asset_sentiment(asset_name):
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
logging.info("Fetching articles")
articles = fetch_articles(asset_name)
logging.info("Analyzing sentiment of each article")
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
logging.info("Sentiment analysis completed")
return convert_to_dataframe(analyzed_articles)
def convert_to_dataframe(analyzed_articles):
df = pd.DataFrame(analyzed_articles)
df["Title"] = df.apply(
lambda row: f'{row["title"]}',
axis=1,
)
df["Description"] = df["desc"]
df["Date"] = df["date"]
def sentiment_badge(sentiment):
colors = {
"negative": "red",
"neutral": "gray",
"positive": "green",
}
color = colors.get(sentiment, "grey")
return f'{sentiment}'
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
return df[["Sentiment", "Title", "Description", "Date"]]
with gr.Blocks() as iface:
gr.Markdown("# Trading Asset Sentiment Analysis")
gr.Markdown(
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
)
with gr.Row():
input_asset = gr.Textbox(
label="Asset Name",
lines=1,
placeholder="Enter the name of the trading asset...",
)
with gr.Row():
analyze_button = gr.Button("Analyze Sentiment", size="sm")
gr.Examples(
examples=[
"Bitcoin",
"Tesla",
"Apple",
"Amazon",
],
inputs=input_asset,
)
with gr.Row():
with gr.Column():
with gr.Blocks():
gr.Markdown("## Articles and Sentiment Analysis")
articles_output = gr.Dataframe(
headers=["Sentiment", "Title", "Description", "Date"],
datatype=["markdown", "html", "markdown", "markdown"],
wrap=False,
)
analyze_button.click(
analyze_asset_sentiment,
inputs=[input_asset],
outputs=[articles_output],
)
logging.info("Launching Gradio interface")
iface.queue().launch()