File size: 4,213 Bytes
9b3f2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
036f779
0d20107
036f779
 
9b3f2e9
0d20107
 
 
 
 
036f779
0d20107
 
 
 
 
9b3f2e9
036f779
 
 
 
 
 
 
 
 
 
9b3f2e9
036f779
9b3f2e9
036f779
 
9b3f2e9
036f779
9b3f2e9
036f779
 
9b3f2e9
 
036f779
9b3f2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cadb3a0
9b3f2e9
 
 
 
 
 
 
 
 
 
cadb3a0
 
 
9b3f2e9
cadb3a0
9b3f2e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, PDFFileLoader
from aimakerspace.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
    AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
import asyncio
import nest_asyncio
nest_asyncio.apply()
import langchain_community
from langchain_community.document_loaders import PyMuPDFLoader
import langchain
from langchain.prompts import ChatPromptTemplate

filepath_NIST = "data/NIST.AI.600-1.pdf"
filepath_Blueprint = "data/Blueprint-for-an-AI-Bill-of-Rights.pdf"

documents_NIST = PyMuPDFLoader(filepath_NIST).load()
documents_Blueprint = PyMuPDFLoader(filepath_Blueprint).load()
documents = documents_NIST + documents_Blueprint

# pdf_loader_NIST = PDFFileLoader("data/NIST.AI.600-1.pdf")
# pdf_loader_Blueprint = PDFFileLoader("data/Blueprint-for-an-AI-Bill-of-Rights.pdf")
# documents_NIST = pdf_loader_NIST.load_documents()
# documents_Blueprint = pdf_loader_Blueprint.load_documents()

# text_splitter = CharacterTextSplitter()
# split_documents_NIST = text_splitter.split_texts(documents_NIST)
# split_documents_Blueprint = text_splitter.split_texts(documents_Blueprint)

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 500,
    chunk_overlap = 50
)

rag_documents = text_splitter.split_documents(documents)

RAG_PROMPT = """\
Given a provided context and question, you must answer the question based only on context.

If you cannot answer the question based on the context - you must say "I don't know".

Context: {context}
Question: {question}
"""

rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)

USER_PROMPT_TEMPLATE = """ \
Context:
{context}

User Query:
{user_query}
"""

user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE)

class RetrievalAugmentedQAPipeline:
    def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
        self.llm = llm
        self.vector_db_retriever = vector_db_retriever

    async def arun_pipeline(self, user_query: str):
        context_list = self.vector_db_retriever.search_by_text(user_query, k=4)

        context_prompt = ""
        for context in context_list:
            context_prompt += context[0] + "\n"

        formatted_system_prompt = rag_prompt.create_message()

        formatted_user_prompt = user_prompt.create_message(user_query=user_query, context=context_prompt)

        async def generate_response():
            async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
                yield chunk

        return {"response": generate_response(), "context": context_list}


# ------------------------------------------------------------


@cl.on_chat_start  # marks a function that will be executed at the start of a user session
async def start_chat():
    # settings = {
    #     "model": "gpt-3.5-turbo",
    #     "temperature": 0,
    #     "max_tokens": 500,
    #     "top_p": 1,
    #     "frequency_penalty": 0,
    #     "presence_penalty": 0,
    # }

    # Create a dict vector store
    vector_db = VectorDatabase()
    vector_db = await vector_db.abuild_from_list(split_documents_NIST)
    vector_db = await vector_db.abuild_from_list(split_documents_Blueprint)
    
    chat_openai = ChatOpenAI()

    # Create a chain
    retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
        vector_db_retriever=vector_db,
        llm=chat_openai
    )

    # cl.user_session.set("settings", settings)
    cl.user_session.set("chain", retrieval_augmented_qa_pipeline)


@cl.on_message  # marks a function that should be run each time the chatbot receives a message from a user
async def main(message):
    chain = cl.user_session.get("chain")

    msg = cl.Message(content="")
    result = await chain.arun_pipeline(message.content)

    async for stream_resp in result["response"]:
        await msg.stream_token(stream_resp)

    await msg.send()