danicafisher commited on
Commit
5ab24a7
·
verified ·
1 Parent(s): 38ff98d

Delete aimakerspace

Browse files
aimakerspace/__init__.py DELETED
File without changes
aimakerspace/__pycache__/__init__.cpython-311.pyc DELETED
Binary file (185 Bytes)
 
aimakerspace/__pycache__/text_utils.cpython-311.pyc DELETED
Binary file (8.18 kB)
 
aimakerspace/__pycache__/vectordatabase.cpython-311.pyc DELETED
Binary file (6.65 kB)
 
aimakerspace/openai_utils/__init__.py DELETED
File without changes
aimakerspace/openai_utils/__pycache__/__init__.cpython-311.pyc DELETED
Binary file (198 Bytes)
 
aimakerspace/openai_utils/__pycache__/chatmodel.cpython-311.pyc DELETED
Binary file (1.73 kB)
 
aimakerspace/openai_utils/__pycache__/embedding.cpython-311.pyc DELETED
Binary file (5.43 kB)
 
aimakerspace/openai_utils/__pycache__/prompts.cpython-311.pyc DELETED
Binary file (5.52 kB)
 
aimakerspace/openai_utils/chatmodel.py DELETED
@@ -1,47 +0,0 @@
1
- from openai import OpenAI, AsyncOpenAI
2
- from dotenv import load_dotenv
3
- import os
4
-
5
- load_dotenv()
6
-
7
-
8
- class ChatOpenAI:
9
- def __init__(self, model_name: str = "gpt-4o-mini"):
10
- self.model_name = model_name
11
- self.openai_api_key = os.getenv("OPENAI_API_KEY")
12
- if self.openai_api_key is None:
13
- raise ValueError("OPENAI_API_KEY is not set")
14
-
15
- def run(self, messages, text_only: bool = True, **kwargs):
16
- if not isinstance(messages, list):
17
- raise ValueError("messages must be a list")
18
-
19
- client = OpenAI()
20
- response = client.chat.completions.create(
21
- model=self.model_name, messages=messages, **kwargs
22
- )
23
-
24
- if text_only:
25
- return response.choices[0].message.content
26
-
27
- return response
28
-
29
- async def astream(self, messages, **kwargs):
30
- if not isinstance(messages, list):
31
- raise ValueError("messages must be a list")
32
-
33
- client = AsyncOpenAI()
34
-
35
- stream = await client.chat.completions.create(
36
- model=self.model_name,
37
- messages=messages,
38
- stream=True,
39
- **kwargs
40
- )
41
-
42
- async for chunk in stream:
43
- content = chunk.choices[0].delta.content
44
- if content is not None:
45
- yield content
46
-
47
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/openai_utils/embedding.py DELETED
@@ -1,68 +0,0 @@
1
- from dotenv import load_dotenv
2
- from openai import AsyncOpenAI, OpenAI
3
- import openai
4
- from typing import List
5
- import os
6
- import asyncio
7
-
8
-
9
- class EmbeddingModel:
10
- def __init__(self, embeddings_model_name: str = "text-embedding-3-small"):
11
- load_dotenv()
12
- self.openai_api_key = os.getenv("OPENAI_API_KEY")
13
- self.async_client = AsyncOpenAI()
14
- self.client = OpenAI()
15
-
16
- if self.openai_api_key is None:
17
- raise ValueError(
18
- "OPENAI_API_KEY environment variable is not set. Please set it to your OpenAI API key."
19
- )
20
- openai.api_key = self.openai_api_key
21
- self.embeddings_model_name = embeddings_model_name
22
-
23
- async def async_get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
24
- batch_size = 1024
25
- batches = [list_of_text[i:i + batch_size] for i in range(0, len(list_of_text), batch_size)]
26
-
27
- async def process_batch(batch):
28
- embedding_response = await self.async_client.embeddings.create(
29
- input=batch, model=self.embeddings_model_name
30
- )
31
- return [embeddings.embedding for embeddings in embedding_response.data]
32
-
33
- # Use asyncio.gather to process all batches concurrently
34
- results = await asyncio.gather(*[process_batch(batch) for batch in batches])
35
-
36
- # Flatten the results
37
- return [embedding for batch_result in results for embedding in batch_result]
38
-
39
- async def async_get_embedding(self, text: str) -> List[float]:
40
- embedding = await self.async_client.embeddings.create(
41
- input=text, model=self.embeddings_model_name
42
- )
43
-
44
- return embedding.data[0].embedding
45
-
46
- def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
47
- embedding_response = self.client.embeddings.create(
48
- input=list_of_text, model=self.embeddings_model_name
49
- )
50
-
51
- return [embeddings.embedding for embeddings in embedding_response.data]
52
-
53
- def get_embedding(self, text: str) -> List[float]:
54
- embedding = self.client.embeddings.create(
55
- input=text, model=self.embeddings_model_name
56
- )
57
-
58
- return embedding.data[0].embedding
59
-
60
-
61
- if __name__ == "__main__":
62
- embedding_model = EmbeddingModel()
63
- print(asyncio.run(embedding_model.async_get_embedding("Hello, world!")))
64
- print(
65
- asyncio.run(
66
- embedding_model.async_get_embeddings(["Hello, world!", "Goodbye, world!"])
67
- )
68
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/openai_utils/prompts.py DELETED
@@ -1,78 +0,0 @@
1
- import re
2
-
3
-
4
- class BasePrompt:
5
- def __init__(self, prompt):
6
- """
7
- Initializes the BasePrompt object with a prompt template.
8
-
9
- :param prompt: A string that can contain placeholders within curly braces
10
- """
11
- self.prompt = prompt
12
- self._pattern = re.compile(r"\{([^}]+)\}")
13
-
14
- def format_prompt(self, **kwargs):
15
- """
16
- Formats the prompt string using the keyword arguments provided.
17
-
18
- :param kwargs: The values to substitute into the prompt string
19
- :return: The formatted prompt string
20
- """
21
- matches = self._pattern.findall(self.prompt)
22
- return self.prompt.format(**{match: kwargs.get(match, "") for match in matches})
23
-
24
- def get_input_variables(self):
25
- """
26
- Gets the list of input variable names from the prompt string.
27
-
28
- :return: List of input variable names
29
- """
30
- return self._pattern.findall(self.prompt)
31
-
32
-
33
- class RolePrompt(BasePrompt):
34
- def __init__(self, prompt, role: str):
35
- """
36
- Initializes the RolePrompt object with a prompt template and a role.
37
-
38
- :param prompt: A string that can contain placeholders within curly braces
39
- :param role: The role for the message ('system', 'user', or 'assistant')
40
- """
41
- super().__init__(prompt)
42
- self.role = role
43
-
44
- def create_message(self, format=True, **kwargs):
45
- """
46
- Creates a message dictionary with a role and a formatted message.
47
-
48
- :param kwargs: The values to substitute into the prompt string
49
- :return: Dictionary containing the role and the formatted message
50
- """
51
- if format:
52
- return {"role": self.role, "content": self.format_prompt(**kwargs)}
53
-
54
- return {"role": self.role, "content": self.prompt}
55
-
56
-
57
- class SystemRolePrompt(RolePrompt):
58
- def __init__(self, prompt: str):
59
- super().__init__(prompt, "system")
60
-
61
-
62
- class UserRolePrompt(RolePrompt):
63
- def __init__(self, prompt: str):
64
- super().__init__(prompt, "user")
65
-
66
-
67
- class AssistantRolePrompt(RolePrompt):
68
- def __init__(self, prompt: str):
69
- super().__init__(prompt, "assistant")
70
-
71
-
72
- if __name__ == "__main__":
73
- prompt = BasePrompt("Hello {name}, you are {age} years old")
74
- print(prompt.format_prompt(name="John", age=30))
75
-
76
- prompt = SystemRolePrompt("Hello {name}, you are {age} years old")
77
- print(prompt.create_message(name="John", age=30))
78
- print(prompt.get_input_variables())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/text_utils.py DELETED
@@ -1,116 +0,0 @@
1
- import os
2
- from typing import List
3
- from PyPDF2 import PdfReader
4
-
5
-
6
- class TextFileLoader:
7
- def __init__(self, path: str, encoding: str = "utf-8"):
8
- self.documents = []
9
- self.path = path
10
- self.encoding = encoding
11
-
12
- def load(self):
13
- if os.path.isdir(self.path):
14
- self.load_directory()
15
- elif os.path.isfile(self.path) and self.path.endswith(".txt"):
16
- self.load_file()
17
- else:
18
- raise ValueError(
19
- "Provided path is neither a valid directory nor a .txt file."
20
- )
21
-
22
- def load_file(self):
23
- with open(self.path, "r", encoding=self.encoding) as f:
24
- self.documents.append(f.read())
25
-
26
- def load_directory(self):
27
- for root, _, files in os.walk(self.path):
28
- for file in files:
29
- if file.endswith(".txt"):
30
- with open(
31
- os.path.join(root, file), "r", encoding=self.encoding
32
- ) as f:
33
- self.documents.append(f.read())
34
-
35
- def load_documents(self):
36
- self.load()
37
- return self.documents
38
-
39
- class PDFFileLoader:
40
- def __init__(self, path: str):
41
- self.documents = []
42
- self.path = path
43
-
44
- def load(self):
45
- if os.path.isdir(self.path):
46
- self.load_directory()
47
- elif os.path.isfile(self.path) and self.path.endswith(".pdf"):
48
- self.load_file()
49
- else:
50
- raise ValueError(
51
- "Provided path is neither a valid directory nor a .pdf file."
52
- )
53
-
54
- def load_file(self):
55
- with open(self.path, "rb") as file:
56
- pdf_reader = PdfReader(file)
57
- text = ""
58
- for page in pdf_reader.pages:
59
- text += page.extract_text()
60
- self.documents.append(text)
61
-
62
- def load_directory(self):
63
- for root, _, files in os.walk(self.path):
64
- for file in files:
65
- if file.endswith(".pdf"):
66
- file_path = os.path.join(root, file)
67
- with open(file_path, "rb") as f:
68
- pdf_reader = PdfReader(f)
69
- text = ""
70
- for page in pdf_reader.pages:
71
- text += page.extract_text()
72
- self.documents.append(text)
73
-
74
- def load_documents(self):
75
- self.load()
76
- return self.documents
77
-
78
- class CharacterTextSplitter:
79
- def __init__(
80
- self,
81
- chunk_size: int = 1000,
82
- chunk_overlap: int = 200,
83
- ):
84
- assert (
85
- chunk_size > chunk_overlap
86
- ), "Chunk size must be greater than chunk overlap"
87
-
88
- self.chunk_size = chunk_size
89
- self.chunk_overlap = chunk_overlap
90
-
91
- def split(self, text: str) -> List[str]:
92
- chunks = []
93
- for i in range(0, len(text), self.chunk_size - self.chunk_overlap):
94
- chunks.append(text[i : i + self.chunk_size])
95
- return chunks
96
-
97
- def split_texts(self, texts: List[str]) -> List[str]:
98
- chunks = []
99
- for text in texts:
100
- chunks.extend(self.split(text))
101
- return chunks
102
-
103
-
104
- if __name__ == "__main__":
105
- loader = TextFileLoader("data/KingLear.txt")
106
- loader.load()
107
- splitter = CharacterTextSplitter()
108
- chunks = splitter.split_texts(loader.documents)
109
- print(len(chunks))
110
- print(chunks[0])
111
- print("--------")
112
- print(chunks[1])
113
- print("--------")
114
- print(chunks[-2])
115
- print("--------")
116
- print(chunks[-1])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aimakerspace/vectordatabase.py DELETED
@@ -1,91 +0,0 @@
1
- import numpy as np
2
- from collections import defaultdict
3
- from typing import List, Tuple, Callable
4
- from aimakerspace.openai_utils.embedding import EmbeddingModel
5
- import asyncio
6
-
7
-
8
- def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
9
- """Computes the cosine similarity between two vectors."""
10
- dot_product = np.dot(vector_a, vector_b)
11
- norm_a = np.linalg.norm(vector_a)
12
- norm_b = np.linalg.norm(vector_b)
13
- return dot_product / (norm_a * norm_b)
14
-
15
- def jaccard_binary(vector_a: np.array, vector_b: np.array):
16
- """A function for finding the similarity between two binary vectors"""
17
- intersection = len(list(set(vector_a).intersection(vector_b)))
18
- union = (len(vector_a) + len(vector_b)) - intersection
19
- return float(intersection) / union
20
-
21
- def euclidean_distance(vector_a: np.array, vector_b: np.array) -> float:
22
- """Computes the euclidean distance between two vectors."""
23
- return np.linalg.norm(vector_a - vector_b)
24
-
25
-
26
- class VectorDatabase:
27
- def __init__(self, embedding_model: EmbeddingModel = None):
28
- self.vectors = defaultdict(np.array)
29
- self.embedding_model = embedding_model or EmbeddingModel()
30
-
31
- def insert(self, key: str, vector: np.array) -> None:
32
- self.vectors[key] = vector
33
-
34
- def search(
35
- self,
36
- query_vector: np.array,
37
- k: int,
38
- distance_measure: Callable = cosine_similarity,
39
- ) -> List[Tuple[str, float]]:
40
- scores = [
41
- (key, distance_measure(query_vector, vector))
42
- for key, vector in self.vectors.items()
43
- ]
44
- return sorted(scores, key=lambda x: x[1], reverse=True)[:k]
45
-
46
- def search_by_text(
47
- self,
48
- query_text: str,
49
- k: int,
50
- distance_measure: Callable = cosine_similarity,
51
- return_as_text: bool = False,
52
- ) -> List[Tuple[str, float]]:
53
- query_vector = self.embedding_model.get_embedding(query_text)
54
- results = self.search(query_vector, k, distance_measure)
55
- return [result[0] for result in results] if return_as_text else results
56
-
57
- def retrieve_from_key(self, key: str) -> np.array:
58
- return self.vectors.get(key, None)
59
-
60
- async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
61
- embeddings = await self.embedding_model.async_get_embeddings(list_of_text)
62
- for text, embedding in zip(list_of_text, embeddings):
63
- self.insert(text, np.array(embedding))
64
- return self
65
-
66
-
67
- if __name__ == "__main__":
68
- list_of_text = [
69
- "I like to eat broccoli and bananas.",
70
- "I ate a banana and spinach smoothie for breakfast.",
71
- "Chinchillas and kittens are cute.",
72
- "My sister adopted a kitten yesterday.",
73
- "Look at this cute hamster munching on a piece of broccoli.",
74
- ]
75
-
76
- vector_db = VectorDatabase()
77
- vector_db = asyncio.run(vector_db.abuild_from_list(list_of_text))
78
- k = 2
79
-
80
- searched_vector = vector_db.search_by_text("I think fruit is awesome!", k=k)
81
- print(f"Closest {k} vector(s):", searched_vector)
82
-
83
- retrieved_vector = vector_db.retrieve_from_key(
84
- "I like to eat broccoli and bananas."
85
- )
86
- print("Retrieved vector:", retrieved_vector)
87
-
88
- relevant_texts = vector_db.search_by_text(
89
- "I think fruit is awesome!", k=k, return_as_text=True
90
- )
91
- print(f"Closest {k} text(s):", relevant_texts)