Spaces:
Runtime error
Runtime error
Delete aimakerspace
Browse files- aimakerspace/__init__.py +0 -0
- aimakerspace/__pycache__/__init__.cpython-311.pyc +0 -0
- aimakerspace/__pycache__/text_utils.cpython-311.pyc +0 -0
- aimakerspace/__pycache__/vectordatabase.cpython-311.pyc +0 -0
- aimakerspace/openai_utils/__init__.py +0 -0
- aimakerspace/openai_utils/__pycache__/__init__.cpython-311.pyc +0 -0
- aimakerspace/openai_utils/__pycache__/chatmodel.cpython-311.pyc +0 -0
- aimakerspace/openai_utils/__pycache__/embedding.cpython-311.pyc +0 -0
- aimakerspace/openai_utils/__pycache__/prompts.cpython-311.pyc +0 -0
- aimakerspace/openai_utils/chatmodel.py +0 -47
- aimakerspace/openai_utils/embedding.py +0 -68
- aimakerspace/openai_utils/prompts.py +0 -78
- aimakerspace/text_utils.py +0 -116
- aimakerspace/vectordatabase.py +0 -91
aimakerspace/__init__.py
DELETED
File without changes
|
aimakerspace/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (185 Bytes)
|
|
aimakerspace/__pycache__/text_utils.cpython-311.pyc
DELETED
Binary file (8.18 kB)
|
|
aimakerspace/__pycache__/vectordatabase.cpython-311.pyc
DELETED
Binary file (6.65 kB)
|
|
aimakerspace/openai_utils/__init__.py
DELETED
File without changes
|
aimakerspace/openai_utils/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (198 Bytes)
|
|
aimakerspace/openai_utils/__pycache__/chatmodel.cpython-311.pyc
DELETED
Binary file (1.73 kB)
|
|
aimakerspace/openai_utils/__pycache__/embedding.cpython-311.pyc
DELETED
Binary file (5.43 kB)
|
|
aimakerspace/openai_utils/__pycache__/prompts.cpython-311.pyc
DELETED
Binary file (5.52 kB)
|
|
aimakerspace/openai_utils/chatmodel.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
from openai import OpenAI, AsyncOpenAI
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
import os
|
4 |
-
|
5 |
-
load_dotenv()
|
6 |
-
|
7 |
-
|
8 |
-
class ChatOpenAI:
|
9 |
-
def __init__(self, model_name: str = "gpt-4o-mini"):
|
10 |
-
self.model_name = model_name
|
11 |
-
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
12 |
-
if self.openai_api_key is None:
|
13 |
-
raise ValueError("OPENAI_API_KEY is not set")
|
14 |
-
|
15 |
-
def run(self, messages, text_only: bool = True, **kwargs):
|
16 |
-
if not isinstance(messages, list):
|
17 |
-
raise ValueError("messages must be a list")
|
18 |
-
|
19 |
-
client = OpenAI()
|
20 |
-
response = client.chat.completions.create(
|
21 |
-
model=self.model_name, messages=messages, **kwargs
|
22 |
-
)
|
23 |
-
|
24 |
-
if text_only:
|
25 |
-
return response.choices[0].message.content
|
26 |
-
|
27 |
-
return response
|
28 |
-
|
29 |
-
async def astream(self, messages, **kwargs):
|
30 |
-
if not isinstance(messages, list):
|
31 |
-
raise ValueError("messages must be a list")
|
32 |
-
|
33 |
-
client = AsyncOpenAI()
|
34 |
-
|
35 |
-
stream = await client.chat.completions.create(
|
36 |
-
model=self.model_name,
|
37 |
-
messages=messages,
|
38 |
-
stream=True,
|
39 |
-
**kwargs
|
40 |
-
)
|
41 |
-
|
42 |
-
async for chunk in stream:
|
43 |
-
content = chunk.choices[0].delta.content
|
44 |
-
if content is not None:
|
45 |
-
yield content
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aimakerspace/openai_utils/embedding.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
from openai import AsyncOpenAI, OpenAI
|
3 |
-
import openai
|
4 |
-
from typing import List
|
5 |
-
import os
|
6 |
-
import asyncio
|
7 |
-
|
8 |
-
|
9 |
-
class EmbeddingModel:
|
10 |
-
def __init__(self, embeddings_model_name: str = "text-embedding-3-small"):
|
11 |
-
load_dotenv()
|
12 |
-
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
13 |
-
self.async_client = AsyncOpenAI()
|
14 |
-
self.client = OpenAI()
|
15 |
-
|
16 |
-
if self.openai_api_key is None:
|
17 |
-
raise ValueError(
|
18 |
-
"OPENAI_API_KEY environment variable is not set. Please set it to your OpenAI API key."
|
19 |
-
)
|
20 |
-
openai.api_key = self.openai_api_key
|
21 |
-
self.embeddings_model_name = embeddings_model_name
|
22 |
-
|
23 |
-
async def async_get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
|
24 |
-
batch_size = 1024
|
25 |
-
batches = [list_of_text[i:i + batch_size] for i in range(0, len(list_of_text), batch_size)]
|
26 |
-
|
27 |
-
async def process_batch(batch):
|
28 |
-
embedding_response = await self.async_client.embeddings.create(
|
29 |
-
input=batch, model=self.embeddings_model_name
|
30 |
-
)
|
31 |
-
return [embeddings.embedding for embeddings in embedding_response.data]
|
32 |
-
|
33 |
-
# Use asyncio.gather to process all batches concurrently
|
34 |
-
results = await asyncio.gather(*[process_batch(batch) for batch in batches])
|
35 |
-
|
36 |
-
# Flatten the results
|
37 |
-
return [embedding for batch_result in results for embedding in batch_result]
|
38 |
-
|
39 |
-
async def async_get_embedding(self, text: str) -> List[float]:
|
40 |
-
embedding = await self.async_client.embeddings.create(
|
41 |
-
input=text, model=self.embeddings_model_name
|
42 |
-
)
|
43 |
-
|
44 |
-
return embedding.data[0].embedding
|
45 |
-
|
46 |
-
def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
|
47 |
-
embedding_response = self.client.embeddings.create(
|
48 |
-
input=list_of_text, model=self.embeddings_model_name
|
49 |
-
)
|
50 |
-
|
51 |
-
return [embeddings.embedding for embeddings in embedding_response.data]
|
52 |
-
|
53 |
-
def get_embedding(self, text: str) -> List[float]:
|
54 |
-
embedding = self.client.embeddings.create(
|
55 |
-
input=text, model=self.embeddings_model_name
|
56 |
-
)
|
57 |
-
|
58 |
-
return embedding.data[0].embedding
|
59 |
-
|
60 |
-
|
61 |
-
if __name__ == "__main__":
|
62 |
-
embedding_model = EmbeddingModel()
|
63 |
-
print(asyncio.run(embedding_model.async_get_embedding("Hello, world!")))
|
64 |
-
print(
|
65 |
-
asyncio.run(
|
66 |
-
embedding_model.async_get_embeddings(["Hello, world!", "Goodbye, world!"])
|
67 |
-
)
|
68 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aimakerspace/openai_utils/prompts.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
|
3 |
-
|
4 |
-
class BasePrompt:
|
5 |
-
def __init__(self, prompt):
|
6 |
-
"""
|
7 |
-
Initializes the BasePrompt object with a prompt template.
|
8 |
-
|
9 |
-
:param prompt: A string that can contain placeholders within curly braces
|
10 |
-
"""
|
11 |
-
self.prompt = prompt
|
12 |
-
self._pattern = re.compile(r"\{([^}]+)\}")
|
13 |
-
|
14 |
-
def format_prompt(self, **kwargs):
|
15 |
-
"""
|
16 |
-
Formats the prompt string using the keyword arguments provided.
|
17 |
-
|
18 |
-
:param kwargs: The values to substitute into the prompt string
|
19 |
-
:return: The formatted prompt string
|
20 |
-
"""
|
21 |
-
matches = self._pattern.findall(self.prompt)
|
22 |
-
return self.prompt.format(**{match: kwargs.get(match, "") for match in matches})
|
23 |
-
|
24 |
-
def get_input_variables(self):
|
25 |
-
"""
|
26 |
-
Gets the list of input variable names from the prompt string.
|
27 |
-
|
28 |
-
:return: List of input variable names
|
29 |
-
"""
|
30 |
-
return self._pattern.findall(self.prompt)
|
31 |
-
|
32 |
-
|
33 |
-
class RolePrompt(BasePrompt):
|
34 |
-
def __init__(self, prompt, role: str):
|
35 |
-
"""
|
36 |
-
Initializes the RolePrompt object with a prompt template and a role.
|
37 |
-
|
38 |
-
:param prompt: A string that can contain placeholders within curly braces
|
39 |
-
:param role: The role for the message ('system', 'user', or 'assistant')
|
40 |
-
"""
|
41 |
-
super().__init__(prompt)
|
42 |
-
self.role = role
|
43 |
-
|
44 |
-
def create_message(self, format=True, **kwargs):
|
45 |
-
"""
|
46 |
-
Creates a message dictionary with a role and a formatted message.
|
47 |
-
|
48 |
-
:param kwargs: The values to substitute into the prompt string
|
49 |
-
:return: Dictionary containing the role and the formatted message
|
50 |
-
"""
|
51 |
-
if format:
|
52 |
-
return {"role": self.role, "content": self.format_prompt(**kwargs)}
|
53 |
-
|
54 |
-
return {"role": self.role, "content": self.prompt}
|
55 |
-
|
56 |
-
|
57 |
-
class SystemRolePrompt(RolePrompt):
|
58 |
-
def __init__(self, prompt: str):
|
59 |
-
super().__init__(prompt, "system")
|
60 |
-
|
61 |
-
|
62 |
-
class UserRolePrompt(RolePrompt):
|
63 |
-
def __init__(self, prompt: str):
|
64 |
-
super().__init__(prompt, "user")
|
65 |
-
|
66 |
-
|
67 |
-
class AssistantRolePrompt(RolePrompt):
|
68 |
-
def __init__(self, prompt: str):
|
69 |
-
super().__init__(prompt, "assistant")
|
70 |
-
|
71 |
-
|
72 |
-
if __name__ == "__main__":
|
73 |
-
prompt = BasePrompt("Hello {name}, you are {age} years old")
|
74 |
-
print(prompt.format_prompt(name="John", age=30))
|
75 |
-
|
76 |
-
prompt = SystemRolePrompt("Hello {name}, you are {age} years old")
|
77 |
-
print(prompt.create_message(name="John", age=30))
|
78 |
-
print(prompt.get_input_variables())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aimakerspace/text_utils.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List
|
3 |
-
from PyPDF2 import PdfReader
|
4 |
-
|
5 |
-
|
6 |
-
class TextFileLoader:
|
7 |
-
def __init__(self, path: str, encoding: str = "utf-8"):
|
8 |
-
self.documents = []
|
9 |
-
self.path = path
|
10 |
-
self.encoding = encoding
|
11 |
-
|
12 |
-
def load(self):
|
13 |
-
if os.path.isdir(self.path):
|
14 |
-
self.load_directory()
|
15 |
-
elif os.path.isfile(self.path) and self.path.endswith(".txt"):
|
16 |
-
self.load_file()
|
17 |
-
else:
|
18 |
-
raise ValueError(
|
19 |
-
"Provided path is neither a valid directory nor a .txt file."
|
20 |
-
)
|
21 |
-
|
22 |
-
def load_file(self):
|
23 |
-
with open(self.path, "r", encoding=self.encoding) as f:
|
24 |
-
self.documents.append(f.read())
|
25 |
-
|
26 |
-
def load_directory(self):
|
27 |
-
for root, _, files in os.walk(self.path):
|
28 |
-
for file in files:
|
29 |
-
if file.endswith(".txt"):
|
30 |
-
with open(
|
31 |
-
os.path.join(root, file), "r", encoding=self.encoding
|
32 |
-
) as f:
|
33 |
-
self.documents.append(f.read())
|
34 |
-
|
35 |
-
def load_documents(self):
|
36 |
-
self.load()
|
37 |
-
return self.documents
|
38 |
-
|
39 |
-
class PDFFileLoader:
|
40 |
-
def __init__(self, path: str):
|
41 |
-
self.documents = []
|
42 |
-
self.path = path
|
43 |
-
|
44 |
-
def load(self):
|
45 |
-
if os.path.isdir(self.path):
|
46 |
-
self.load_directory()
|
47 |
-
elif os.path.isfile(self.path) and self.path.endswith(".pdf"):
|
48 |
-
self.load_file()
|
49 |
-
else:
|
50 |
-
raise ValueError(
|
51 |
-
"Provided path is neither a valid directory nor a .pdf file."
|
52 |
-
)
|
53 |
-
|
54 |
-
def load_file(self):
|
55 |
-
with open(self.path, "rb") as file:
|
56 |
-
pdf_reader = PdfReader(file)
|
57 |
-
text = ""
|
58 |
-
for page in pdf_reader.pages:
|
59 |
-
text += page.extract_text()
|
60 |
-
self.documents.append(text)
|
61 |
-
|
62 |
-
def load_directory(self):
|
63 |
-
for root, _, files in os.walk(self.path):
|
64 |
-
for file in files:
|
65 |
-
if file.endswith(".pdf"):
|
66 |
-
file_path = os.path.join(root, file)
|
67 |
-
with open(file_path, "rb") as f:
|
68 |
-
pdf_reader = PdfReader(f)
|
69 |
-
text = ""
|
70 |
-
for page in pdf_reader.pages:
|
71 |
-
text += page.extract_text()
|
72 |
-
self.documents.append(text)
|
73 |
-
|
74 |
-
def load_documents(self):
|
75 |
-
self.load()
|
76 |
-
return self.documents
|
77 |
-
|
78 |
-
class CharacterTextSplitter:
|
79 |
-
def __init__(
|
80 |
-
self,
|
81 |
-
chunk_size: int = 1000,
|
82 |
-
chunk_overlap: int = 200,
|
83 |
-
):
|
84 |
-
assert (
|
85 |
-
chunk_size > chunk_overlap
|
86 |
-
), "Chunk size must be greater than chunk overlap"
|
87 |
-
|
88 |
-
self.chunk_size = chunk_size
|
89 |
-
self.chunk_overlap = chunk_overlap
|
90 |
-
|
91 |
-
def split(self, text: str) -> List[str]:
|
92 |
-
chunks = []
|
93 |
-
for i in range(0, len(text), self.chunk_size - self.chunk_overlap):
|
94 |
-
chunks.append(text[i : i + self.chunk_size])
|
95 |
-
return chunks
|
96 |
-
|
97 |
-
def split_texts(self, texts: List[str]) -> List[str]:
|
98 |
-
chunks = []
|
99 |
-
for text in texts:
|
100 |
-
chunks.extend(self.split(text))
|
101 |
-
return chunks
|
102 |
-
|
103 |
-
|
104 |
-
if __name__ == "__main__":
|
105 |
-
loader = TextFileLoader("data/KingLear.txt")
|
106 |
-
loader.load()
|
107 |
-
splitter = CharacterTextSplitter()
|
108 |
-
chunks = splitter.split_texts(loader.documents)
|
109 |
-
print(len(chunks))
|
110 |
-
print(chunks[0])
|
111 |
-
print("--------")
|
112 |
-
print(chunks[1])
|
113 |
-
print("--------")
|
114 |
-
print(chunks[-2])
|
115 |
-
print("--------")
|
116 |
-
print(chunks[-1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aimakerspace/vectordatabase.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from collections import defaultdict
|
3 |
-
from typing import List, Tuple, Callable
|
4 |
-
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
5 |
-
import asyncio
|
6 |
-
|
7 |
-
|
8 |
-
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
9 |
-
"""Computes the cosine similarity between two vectors."""
|
10 |
-
dot_product = np.dot(vector_a, vector_b)
|
11 |
-
norm_a = np.linalg.norm(vector_a)
|
12 |
-
norm_b = np.linalg.norm(vector_b)
|
13 |
-
return dot_product / (norm_a * norm_b)
|
14 |
-
|
15 |
-
def jaccard_binary(vector_a: np.array, vector_b: np.array):
|
16 |
-
"""A function for finding the similarity between two binary vectors"""
|
17 |
-
intersection = len(list(set(vector_a).intersection(vector_b)))
|
18 |
-
union = (len(vector_a) + len(vector_b)) - intersection
|
19 |
-
return float(intersection) / union
|
20 |
-
|
21 |
-
def euclidean_distance(vector_a: np.array, vector_b: np.array) -> float:
|
22 |
-
"""Computes the euclidean distance between two vectors."""
|
23 |
-
return np.linalg.norm(vector_a - vector_b)
|
24 |
-
|
25 |
-
|
26 |
-
class VectorDatabase:
|
27 |
-
def __init__(self, embedding_model: EmbeddingModel = None):
|
28 |
-
self.vectors = defaultdict(np.array)
|
29 |
-
self.embedding_model = embedding_model or EmbeddingModel()
|
30 |
-
|
31 |
-
def insert(self, key: str, vector: np.array) -> None:
|
32 |
-
self.vectors[key] = vector
|
33 |
-
|
34 |
-
def search(
|
35 |
-
self,
|
36 |
-
query_vector: np.array,
|
37 |
-
k: int,
|
38 |
-
distance_measure: Callable = cosine_similarity,
|
39 |
-
) -> List[Tuple[str, float]]:
|
40 |
-
scores = [
|
41 |
-
(key, distance_measure(query_vector, vector))
|
42 |
-
for key, vector in self.vectors.items()
|
43 |
-
]
|
44 |
-
return sorted(scores, key=lambda x: x[1], reverse=True)[:k]
|
45 |
-
|
46 |
-
def search_by_text(
|
47 |
-
self,
|
48 |
-
query_text: str,
|
49 |
-
k: int,
|
50 |
-
distance_measure: Callable = cosine_similarity,
|
51 |
-
return_as_text: bool = False,
|
52 |
-
) -> List[Tuple[str, float]]:
|
53 |
-
query_vector = self.embedding_model.get_embedding(query_text)
|
54 |
-
results = self.search(query_vector, k, distance_measure)
|
55 |
-
return [result[0] for result in results] if return_as_text else results
|
56 |
-
|
57 |
-
def retrieve_from_key(self, key: str) -> np.array:
|
58 |
-
return self.vectors.get(key, None)
|
59 |
-
|
60 |
-
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
|
61 |
-
embeddings = await self.embedding_model.async_get_embeddings(list_of_text)
|
62 |
-
for text, embedding in zip(list_of_text, embeddings):
|
63 |
-
self.insert(text, np.array(embedding))
|
64 |
-
return self
|
65 |
-
|
66 |
-
|
67 |
-
if __name__ == "__main__":
|
68 |
-
list_of_text = [
|
69 |
-
"I like to eat broccoli and bananas.",
|
70 |
-
"I ate a banana and spinach smoothie for breakfast.",
|
71 |
-
"Chinchillas and kittens are cute.",
|
72 |
-
"My sister adopted a kitten yesterday.",
|
73 |
-
"Look at this cute hamster munching on a piece of broccoli.",
|
74 |
-
]
|
75 |
-
|
76 |
-
vector_db = VectorDatabase()
|
77 |
-
vector_db = asyncio.run(vector_db.abuild_from_list(list_of_text))
|
78 |
-
k = 2
|
79 |
-
|
80 |
-
searched_vector = vector_db.search_by_text("I think fruit is awesome!", k=k)
|
81 |
-
print(f"Closest {k} vector(s):", searched_vector)
|
82 |
-
|
83 |
-
retrieved_vector = vector_db.retrieve_from_key(
|
84 |
-
"I like to eat broccoli and bananas."
|
85 |
-
)
|
86 |
-
print("Retrieved vector:", retrieved_vector)
|
87 |
-
|
88 |
-
relevant_texts = vector_db.search_by_text(
|
89 |
-
"I think fruit is awesome!", k=k, return_as_text=True
|
90 |
-
)
|
91 |
-
print(f"Closest {k} text(s):", relevant_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|