from fastai.vision.all import * import gradio as gr learn = load_learner("classifier.pkl") labels = learn.dls.vocab examples = ['dolphin.jpg', 'shark.jpg', 'whale.jpg'] def predict(img_file): img = PILImage.create(img_file) pred, idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), examples=examples).launch(share=True, debug=False)