danielbaumel commited on
Commit
c658bfb
·
verified ·
1 Parent(s): 4b8eecf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -18
app.py CHANGED
@@ -2,13 +2,12 @@ import gradio as gr
2
  import torch
3
  from torchvision import transforms
4
  from PIL import Image
5
- import os
6
 
7
  # Define the lesion type mapping
8
  lesion_type_dict = {
9
  0: 'Actinic keratoses',
10
  1: 'Basal cell carcinoma',
11
- 2: 'Benign keratosis-like lesions',
12
  3: 'Dermatofibroma',
13
  4: 'Melanocytic nevi',
14
  5: 'Melanoma',
@@ -24,6 +23,7 @@ model = load_model() # Load the model onto CPU
24
 
25
  # Function to preprocess the image and predict the class
26
  def classify_img(img):
 
27
  preprocess = transforms.Compose([
28
  transforms.Resize((224, 224)), # Adjust as needed
29
  transforms.ToTensor(),
@@ -55,25 +55,25 @@ def classify_img(img):
55
 
56
  return output_text # Return formatted text as a single string
57
 
 
 
 
58
 
59
- # Nested list with each inner list containing image path and label
60
- example_images = [
61
- ["examples/Actinic keratoses.jpg", "Actinic keratoses"], # First image and its label
62
- ["examples/Basal cell carcinoma.jpg", "Basal cell carcinoma"], # Second image and its label
63
- ["examples/Benign keratosis-like lesions.jpg", "Benign keratosis-like lesions"], # And so on
64
- ["examples/Dermatofibroma.jpg", "Dermatofibroma"],
65
- ["examples/melanoma.jpg", "Melanoma"],
66
- ["examples/Melanocytic nevi.jpg", "Melanocytic nevi"],
67
- ["examples/Vascular lesions.jpg", "Vascular lesions"],
68
- ]
69
-
70
- # Set up Gradio interface with examples as a list of tuples
71
  iface = gr.Interface(
72
  fn=classify_img, # Prediction function
73
- inputs=gr.Image(), # Image input
74
- outputs=gr.Textbox(), # Output as formatted text
75
- examples=example_images, # List of tuples containing image paths and labels
 
 
 
 
 
 
 
 
76
  )
77
 
78
  # Launch the Gradio interface
79
- iface.launch() # Start the Gradio interface
 
2
  import torch
3
  from torchvision import transforms
4
  from PIL import Image
 
5
 
6
  # Define the lesion type mapping
7
  lesion_type_dict = {
8
  0: 'Actinic keratoses',
9
  1: 'Basal cell carcinoma',
10
+ 2: 'Benign keratosis-like lesions ',
11
  3: 'Dermatofibroma',
12
  4: 'Melanocytic nevi',
13
  5: 'Melanoma',
 
23
 
24
  # Function to preprocess the image and predict the class
25
  def classify_img(img):
26
+ # Preprocess the image
27
  preprocess = transforms.Compose([
28
  transforms.Resize((224, 224)), # Adjust as needed
29
  transforms.ToTensor(),
 
55
 
56
  return output_text # Return formatted text as a single string
57
 
58
+ # Gradio interface setup
59
+ image = gr.Image() # Input is an image
60
+ label = gr.Textbox() # Output as formatted text
61
 
62
+ # Set up Gradio interface
 
 
 
 
 
 
 
 
 
 
 
63
  iface = gr.Interface(
64
  fn=classify_img, # Prediction function
65
+ inputs=image, # Image input
66
+ outputs=label, # Output as formatted text
67
+ examples=[
68
+ ["examples/Actinic keratoses.jpg", "Actinic keratoses"], # First image and its label
69
+ ["examples/Basal cell carcinoma.jpg", "Basal cell carcinoma"], # Second image and its label
70
+ ["examples/Benign keratosis-like lesions.jpg", "Benign keratosis-like lesions"], # And so on
71
+ ["examples/Dermatofibroma.jpg", "Dermatofibroma"],
72
+ ["examples/melanoma.jpg", "Melanoma"],
73
+ ["examples/Melanocytic nevi.jpg", "Melanocytic nevi"],
74
+ ["examples/Vascular lesions.jpg", "Vascular lesions"],
75
+ ]
76
  )
77
 
78
  # Launch the Gradio interface
79
+ iface.launch() # Start the local Gradio server