Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
gr.
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
|
3 |
+
# gr.load("models/BAAI/bge-m3").launch()
|
4 |
+
|
5 |
+
import json
|
6 |
+
import faiss
|
7 |
+
import numpy as np
|
8 |
import gradio as gr
|
9 |
+
from FlagEmbedding import BGEM3FlagModel
|
10 |
+
|
11 |
+
# Define a function to load the ISCO taxonomy
|
12 |
+
def load_isco_taxonomy(file_path: str) -> list:
|
13 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
14 |
+
isco_data = [json.loads(line.strip()) for line in file]
|
15 |
+
return isco_data
|
16 |
+
|
17 |
+
# Define a function to create a FAISS index
|
18 |
+
def create_faiss_index(isco_taxonomy, model_name='BAAI/bge-m3'):
|
19 |
+
model = BGEM3FlagModel(model_name, use_fp16=True)
|
20 |
+
texts = [str(entry['ESCO_DESCRIPTION']) for entry in isco_taxonomy]
|
21 |
+
embeddings = model.encode(texts, batch_size=12, max_length=256)['dense_vecs']
|
22 |
+
embeddings = np.array(embeddings).astype('float32')
|
23 |
+
dimension = embeddings.shape[1]
|
24 |
+
index = faiss.IndexFlatL2(dimension)
|
25 |
+
index.add(embeddings)
|
26 |
+
faiss.write_index(index, 'isco_taxonomy.index')
|
27 |
+
with open('isco_taxonomy_mapping.json', 'w') as f:
|
28 |
+
json.dump({i: entry for i, entry in enumerate(isco_taxonomy)}, f)
|
29 |
+
|
30 |
+
# Define a function to retrieve and rerank using FAISS
|
31 |
+
def retrieve_and_rerank_faiss(job_duties, model_name="BAAI/bge-m3", top_k=4):
|
32 |
+
# Check if isco_taxonomy.index exists, if not, create it with create_faiss_index
|
33 |
+
if not os.path.exists("isco_taxonomy.index"):
|
34 |
+
isco_taxonomy = load_isco_taxonomy('isco_taxonomy.jsonl')
|
35 |
+
create_faiss_index(isco_taxonomy)
|
36 |
+
index = faiss.read_index("isco_taxonomy.index")
|
37 |
+
with open("isco_taxonomy_mapping.json", "r") as f:
|
38 |
+
isco_taxonomy = json.load(f)
|
39 |
+
model = BGEM3FlagModel(model_name, use_fp16=True)
|
40 |
+
query_embedding = model.encode([job_duties], max_length=256)["dense_vecs"]
|
41 |
+
query_embedding = np.array(query_embedding).astype("float32")
|
42 |
+
distances, indices = index.search(query_embedding, top_k)
|
43 |
+
results = [
|
44 |
+
(isco_taxonomy[str(idx)]["ESCO_DESCRIPTION"], distances[0][i])
|
45 |
+
for i, idx in enumerate(indices[0])
|
46 |
+
]
|
47 |
+
return results
|
48 |
+
|
49 |
+
# Load data and create index (should be done once and then commented out or moved to a setup script)
|
50 |
+
# isco_taxonomy = load_isco_taxonomy('isco_taxonomy.jsonl')
|
51 |
+
# create_faiss_index(isco_taxonomy)
|
52 |
+
|
53 |
+
# Gradio Interface
|
54 |
+
def gradio_interface(job_duties):
|
55 |
+
results = retrieve_and_rerank_faiss(job_duties)
|
56 |
+
return [f"Description: {desc}, Distance: {dist}" for desc, dist in results]
|
57 |
|
58 |
+
iface = gr.Interface(fn=gradio_interface, inputs="text", outputs="text", title="Job Duties to ISCO Descriptions")
|
59 |
+
iface.launch()
|