File size: 1,609 Bytes
8b7a053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def ancestors(class_label, hierarchy):
    """Return all ancestors of a given class label, excluding the root."""
    if class_label not in hierarchy or not hierarchy[class_label]:
        return set()
    else:
        # Recursively get all ancestors for each parent
        anc = set(hierarchy[class_label])
        for parent in hierarchy[class_label]:
            anc.update(ancestors(parent, hierarchy))
        return anc


def extend_with_ancestors(class_labels, hierarchy):
    """Extend a set of class labels with their ancestors."""
    extended_set = set(class_labels)
    for label in class_labels:
        extended_set.update(ancestors(label, hierarchy))
    return extended_set


def hierarchical_precision_recall(true_labels, predicted_labels, hierarchy):
    """Calculate hierarchical precision and recall."""
    true_extended = [extend_with_ancestors(ci, hierarchy) for ci in true_labels]
    predicted_extended = [
        extend_with_ancestors(c_prime_i, hierarchy) for c_prime_i in predicted_labels
    ]

    intersect_sum = sum(
        len(ci & c_prime_i) for ci, c_prime_i in zip(true_extended, predicted_extended)
    )
    predicted_sum = sum(len(c_prime_i) for c_prime_i in predicted_extended)
    true_sum = sum(len(ci) for ci in true_extended)

    hP = intersect_sum / predicted_sum if predicted_sum > 0 else 0
    hR = intersect_sum / true_sum if true_sum > 0 else 0

    return hP, hR


def hierarchical_f_measure(hP, hR, beta=1.0):
    """Calculate the hierarchical F-measure."""
    if hP + hR == 0:
        return 0
    return (beta**2 + 1) * hP * hR / (beta**2 * hP + hR)