Spaces:
Runtime error
Runtime error
Create performance_system.py
Browse files- performance_system.py +238 -0
performance_system.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# performance_system.py
|
2 |
+
from datetime import datetime, timedelta
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from typing import Dict, List, Optional, Tuple
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
|
9 |
+
# Configuração de logging
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
13 |
+
)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
class PerformanceConstants:
|
17 |
+
"""Constantes para análise de desempenho"""
|
18 |
+
MINIMUM_STUDY_HOURS = 4.0
|
19 |
+
IDEAL_CONSISTENCY = 0.7
|
20 |
+
LOW_PERFORMANCE_THRESHOLD = 0.3
|
21 |
+
MEDIUM_PERFORMANCE_THRESHOLD = 0.6
|
22 |
+
MIN_DAYS_FOR_TREND = 7
|
23 |
+
MAX_DAYS_ANALYSIS = 30
|
24 |
+
|
25 |
+
class PerformanceAnalyzer:
|
26 |
+
# [O código existente permanece o mesmo]
|
27 |
+
|
28 |
+
def get_performance_metrics(self, user_id: str, days: int = 30) -> Dict:
|
29 |
+
"""Obtém métricas detalhadas de desempenho"""
|
30 |
+
try:
|
31 |
+
cursor = self.conn.cursor()
|
32 |
+
end_date = datetime.now().date()
|
33 |
+
start_date = end_date - timedelta(days=days)
|
34 |
+
|
35 |
+
cursor.execute('''
|
36 |
+
SELECT date, topic, horas_estudadas, performance_score
|
37 |
+
FROM study_progress
|
38 |
+
WHERE user_id = ? AND date BETWEEN ? AND ?
|
39 |
+
ORDER BY date
|
40 |
+
''', (user_id, start_date, end_date))
|
41 |
+
|
42 |
+
data = cursor.fetchall()
|
43 |
+
|
44 |
+
metrics = {
|
45 |
+
"daily_metrics": {},
|
46 |
+
"topic_metrics": {},
|
47 |
+
"overall_metrics": {
|
48 |
+
"total_hours": 0,
|
49 |
+
"avg_performance": 0,
|
50 |
+
"study_days": 0
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
for date, topic, hours, score in data:
|
55 |
+
# Métricas diárias
|
56 |
+
if date not in metrics["daily_metrics"]:
|
57 |
+
metrics["daily_metrics"][date] = {
|
58 |
+
"hours": 0,
|
59 |
+
"topics": set()
|
60 |
+
}
|
61 |
+
metrics["daily_metrics"][date]["hours"] += hours
|
62 |
+
metrics["daily_metrics"][date]["topics"].add(topic)
|
63 |
+
|
64 |
+
# Métricas por tópico
|
65 |
+
if topic not in metrics["topic_metrics"]:
|
66 |
+
metrics["topic_metrics"][topic] = {
|
67 |
+
"total_hours": 0,
|
68 |
+
"scores": [],
|
69 |
+
"last_study": None
|
70 |
+
}
|
71 |
+
metrics["topic_metrics"][topic]["total_hours"] += hours
|
72 |
+
metrics["topic_metrics"][topic]["scores"].append(score)
|
73 |
+
metrics["topic_metrics"][topic]["last_study"] = date
|
74 |
+
|
75 |
+
# Métricas gerais
|
76 |
+
metrics["overall_metrics"]["total_hours"] += hours
|
77 |
+
|
78 |
+
# Calcular médias e estatísticas
|
79 |
+
if data:
|
80 |
+
all_scores = [score for _, _, _, score in data]
|
81 |
+
metrics["overall_metrics"]["avg_performance"] = np.mean(all_scores)
|
82 |
+
metrics["overall_metrics"]["study_days"] = len(metrics["daily_metrics"])
|
83 |
+
|
84 |
+
return metrics
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
logger.error(f"Erro ao obter métricas de desempenho: {e}")
|
88 |
+
return None
|
89 |
+
|
90 |
+
class StudyMaterialGenerator:
|
91 |
+
# [O código existente permanece o mesmo]
|
92 |
+
|
93 |
+
def generate_daily_plan(self, user_id: str,
|
94 |
+
available_hours: float,
|
95 |
+
performance_data: Dict) -> Dict[str, any]:
|
96 |
+
"""Gera plano de estudos diário personalizado"""
|
97 |
+
try:
|
98 |
+
weak_areas = sorted(
|
99 |
+
performance_data["topic_metrics"].items(),
|
100 |
+
key=lambda x: np.mean(x[1]["scores"]) if x[1]["scores"] else 0
|
101 |
+
)
|
102 |
+
|
103 |
+
plan = {
|
104 |
+
"distribuicao_horas": {},
|
105 |
+
"prioridades": [],
|
106 |
+
"recursos_sugeridos": []
|
107 |
+
}
|
108 |
+
|
109 |
+
# Distribuir horas disponíveis
|
110 |
+
remaining_hours = available_hours
|
111 |
+
for area, metrics in weak_areas:
|
112 |
+
if remaining_hours <= 0:
|
113 |
+
break
|
114 |
+
|
115 |
+
# Áreas com desempenho mais baixo recebem mais tempo
|
116 |
+
weight = 1 - (np.mean(metrics["scores"]) if metrics["scores"] else 0)
|
117 |
+
hours_allocated = min(remaining_hours, available_hours * weight)
|
118 |
+
|
119 |
+
plan["distribuicao_horas"][area] = round(hours_allocated, 1)
|
120 |
+
remaining_hours -= hours_allocated
|
121 |
+
|
122 |
+
# Adicionar recursos recomendados
|
123 |
+
plan["recursos_sugeridos"].extend(
|
124 |
+
self.get_recommended_resources(area, metrics)
|
125 |
+
)
|
126 |
+
|
127 |
+
return plan
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
logger.error(f"Erro ao gerar plano diário: {e}")
|
131 |
+
return None
|
132 |
+
|
133 |
+
def get_recommended_resources(self, area: str,
|
134 |
+
metrics: Dict) -> List[str]:
|
135 |
+
"""Retorna recursos recomendados baseados no desempenho"""
|
136 |
+
resources = []
|
137 |
+
avg_score = np.mean(metrics["scores"]) if metrics["scores"] else 0
|
138 |
+
|
139 |
+
if avg_score < 0.3:
|
140 |
+
resources.extend([
|
141 |
+
"📚 Material básico teórico",
|
142 |
+
"📝 Resumos esquematizados",
|
143 |
+
"🎥 Vídeo-aulas introdutórias"
|
144 |
+
])
|
145 |
+
elif avg_score < 0.6:
|
146 |
+
resources.extend([
|
147 |
+
"📋 Questões comentadas",
|
148 |
+
"🏥 Casos clínicos simples",
|
149 |
+
"📊 Mapas mentais avançados"
|
150 |
+
])
|
151 |
+
else:
|
152 |
+
resources.extend([
|
153 |
+
"🎯 Questões complexas",
|
154 |
+
"🏥 Casos clínicos avançados",
|
155 |
+
"📑 Artigos científicos"
|
156 |
+
])
|
157 |
+
|
158 |
+
return resources
|
159 |
+
|
160 |
+
class ProgressTracker:
|
161 |
+
# [O código existente permanece o mesmo]
|
162 |
+
|
163 |
+
def calculate_study_streak(self, user_id: str) -> Dict[str, any]:
|
164 |
+
"""Calcula sequência atual de estudos"""
|
165 |
+
try:
|
166 |
+
cursor = self.conn.cursor()
|
167 |
+
cursor.execute('''
|
168 |
+
SELECT DISTINCT date
|
169 |
+
FROM study_progress
|
170 |
+
WHERE user_id = ?
|
171 |
+
ORDER BY date DESC
|
172 |
+
''', (user_id,))
|
173 |
+
|
174 |
+
dates = [row[0] for row in cursor.fetchall()]
|
175 |
+
|
176 |
+
if not dates:
|
177 |
+
return {
|
178 |
+
"current_streak": 0,
|
179 |
+
"longest_streak": 0,
|
180 |
+
"last_study_date": None
|
181 |
+
}
|
182 |
+
|
183 |
+
current_streak = 1
|
184 |
+
longest_streak = 1
|
185 |
+
current_date = datetime.strptime(dates[0], '%Y-%m-%d').date()
|
186 |
+
|
187 |
+
for i in range(1, len(dates)):
|
188 |
+
date = datetime.strptime(dates[i], '%Y-%m-%d').date()
|
189 |
+
if (current_date - date).days == 1:
|
190 |
+
current_streak += 1
|
191 |
+
longest_streak = max(longest_streak, current_streak)
|
192 |
+
else:
|
193 |
+
break
|
194 |
+
current_date = date
|
195 |
+
|
196 |
+
return {
|
197 |
+
"current_streak": current_streak,
|
198 |
+
"longest_streak": longest_streak,
|
199 |
+
"last_study_date": dates[0]
|
200 |
+
}
|
201 |
+
|
202 |
+
except Exception as e:
|
203 |
+
logger.error(f"Erro ao calcular sequência de estudos: {e}")
|
204 |
+
return None
|
205 |
+
|
206 |
+
def initialize_performance_system(db_connection) -> Tuple[PerformanceAnalyzer,
|
207 |
+
StudyMaterialGenerator,
|
208 |
+
ProgressTracker]:
|
209 |
+
"""Inicializa o sistema de performance completo"""
|
210 |
+
try:
|
211 |
+
analyzer = PerformanceAnalyzer(db_connection)
|
212 |
+
material_gen = StudyMaterialGenerator(db_connection)
|
213 |
+
tracker = ProgressTracker(db_connection)
|
214 |
+
|
215 |
+
return analyzer, material_gen, tracker
|
216 |
+
|
217 |
+
except Exception as e:
|
218 |
+
logger.error(f"Erro ao inicializar sistema de performance: {e}")
|
219 |
+
return None, None, None
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
# Código para testes
|
223 |
+
import sqlite3
|
224 |
+
|
225 |
+
try:
|
226 |
+
conn = sqlite3.connect('revalida.db')
|
227 |
+
analyzer, material_gen, tracker = initialize_performance_system(conn)
|
228 |
+
|
229 |
+
# Teste básico
|
230 |
+
test_user = "test_user_1"
|
231 |
+
metrics = analyzer.get_performance_metrics(test_user)
|
232 |
+
if metrics:
|
233 |
+
print("Sistema funcionando corretamente")
|
234 |
+
print(f"Métricas obtidas: {json.dumps(metrics, indent=2)}")
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Erro nos testes: {e}")
|
237 |
+
finally:
|
238 |
+
conn.close()
|