Spaces:
Runtime error
Runtime error
import os | |
import whisper | |
import gradio as gr | |
from download_video import download_mp3_yt_dlp | |
import warnings | |
warnings.filterwarnings("ignore", category=FutureWarning, module="torch") | |
# Function to download the audio, title, and thumbnail from YouTube | |
def download_video_info(url): | |
try: | |
# Call the function to download video and get title, thumbnail | |
title, thumbnail_url = download_mp3_yt_dlp(url) | |
audio_file = "downloaded_video.mp3" # Path to the downloaded audio (MP3) | |
return audio_file, title, thumbnail_url | |
except Exception as e: | |
return None, None, None, str(e) | |
# Function to transcribe the downloaded audio using Whisper | |
def transcribe_audio(audio_path, model_size="base", language="en"): | |
model = whisper.load_model(model_size) | |
result = model.transcribe(audio_path, language=language) | |
return result['text'] | |
# Split logic: First fetch title and thumbnail, then transcribe | |
def get_video_info_and_transcribe(youtube_url, model_size="base", language="en"): | |
# Fetch title and thumbnail first | |
audio_path, title, thumbnail_url = download_video_info(youtube_url) | |
# If fetching video info fails | |
if not audio_path or not os.path.exists(audio_path): | |
return gr.update(value="Error fetching video."), None, None | |
# Show title and thumbnail to the user while the transcription is happening | |
title_output = gr.update(value=title) | |
# Show the thumbnail if available | |
if thumbnail_url: | |
thumbnail_output = gr.update(value=thumbnail_url) | |
else: | |
thumbnail_output = gr.update(visible=False) # Hide if no thumbnail | |
# Start transcription | |
transcription = transcribe_audio(audio_path, model_size, language) | |
return title_output, thumbnail_output, gr.update(value=transcription) | |
# Gradio interface setup using gradio.components | |
with gr.Blocks() as demo: | |
title = "<center><h1>YouTube Whisper ⚡️ </h1></center>" | |
gr.HTML(title) | |
gr.Markdown( | |
""" | |
This tool lets you transcribe YouTube videos in multiple languages using **[Whisper](https://openai.com/research/whisper)**, an open-source speech recognition (ASR) model developed by OpenAI. | |
### Key Features: | |
- **Fast transcription**: Using the **base** model, transcribing a **3 minute** video takes approximately **30 seconds**. | |
- **Multiple language support**: Choose from **English**, **Spanish**, **French**, and more! | |
- **Simple workflow**: | |
1. Paste a YouTube link. | |
2. Select the model size and language. | |
3. Click "Transcribe" to get the text from the video. | |
_Transcription times may vary based on model size and video length._ | |
""") | |
with gr.Row(): | |
youtube_url = gr.Textbox(label="YouTube Link", elem_id="yt_link", scale=5) | |
model_size = gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], label="Model Size", value="base", scale=1) | |
language = gr.Dropdown(choices=["en", "es", "fr", "de", "it", "ja"], label="Language", value="en", scale=1) | |
title_output = gr.Textbox(label="Video Title", interactive=False) | |
with gr.Row(): | |
thumbnail_output = gr.Image(label="Thumbnail", interactive=False, scale=1) | |
transcription_output = gr.Textbox(label="Transcription", interactive=False, scale=1) | |
transcribe_button = gr.Button("Transcribe") | |
transcribe_button.click( | |
get_video_info_and_transcribe, | |
inputs=[youtube_url, model_size, language], | |
outputs=[title_output, thumbnail_output, transcription_output] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |