import whisper import gradio as gr import os import warnings warnings.filterwarnings("ignore", category=FutureWarning, module="torch") from download_video import download_mp3_selenium # Function to download the audio, title, and thumbnail from YouTube def download_video_info(url): try: # Call the function to download video and get title, thumbnail, and logs title, thumbnail_url, logs_output = download_mp3_selenium(url) audio_file = "downloaded_video.mp4" # Path to the downloaded audio (MP4) return audio_file, title, thumbnail_url, logs_output except Exception as e: return None, None, None, str(e) # Function to transcribe the downloaded audio using Whisper def transcribe_audio(audio_path, model_size="base"): model = whisper.load_model(model_size) result = model.transcribe(audio_path) return result['text'] # Split logic: First fetch title, thumbnail, and logs, then transcribe def get_video_info_and_transcribe(youtube_url, model_size="base"): # Fetch title, thumbnail, and logs first audio_path, title, thumbnail_url, logs_output = download_video_info(youtube_url) # If fetching video info fails if not audio_path or not os.path.exists(audio_path): return gr.update(value=f"Error fetching video: {thumbnail_url}"), None, None, gr.update(value=logs_output) # Show title and thumbnail to the user while the transcription is happening title_output = gr.update(value=title) # Show the thumbnail if available if thumbnail_url: thumbnail_output = gr.update(value=thumbnail_url) else: thumbnail_output = gr.update(visible=False) # Hide if no thumbnail # Start transcription transcription = transcribe_audio(audio_path, model_size) return title_output, thumbnail_output, gr.update(value=transcription), gr.update(value=logs_output) # Gradio interface setup using gradio.components with gr.Blocks() as interface: with gr.Row(): youtube_url = gr.Textbox(label="YouTube Link", elem_id="yt_link", scale=5) model_size = gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], label="Model Size", value="base", scale=1) title_output = gr.Textbox(label="Video Title", interactive=False) with gr.Row(): thumbnail_output = gr.Image(label="Thumbnail", interactive=False, scale=1) transcription_output = gr.Textbox(label="Transcription", interactive=False, scale=1) logs_output = gr.Textbox(label="ChromeDriver Logs", interactive=False) transcribe_button = gr.Button("Transcribe") transcribe_button.click( get_video_info_and_transcribe, inputs=[youtube_url, model_size], outputs=[title_output, thumbnail_output, transcription_output, logs_output] ) # Launch the app if __name__ == "__main__": interface.launch(server_name="0.0.0.0", server_port=7860)