Spaces:
Running
Running
Upload 33 files
Browse files- .gitattributes +8 -0
- GAN/.DS_Store +0 -0
- GAN/__pycache__/dataset.cpython-38.pyc +0 -0
- GAN/__pycache__/diffusion.cpython-311.pyc +0 -0
- GAN/__pycache__/gan.cpython-38.pyc +0 -0
- GAN/__pycache__/timegan.cpython-38.pyc +0 -0
- GAN/__pycache__/timevae.cpython-38.pyc +0 -0
- GAN/__pycache__/utils.cpython-311.pyc +0 -0
- GAN/__pycache__/utils.cpython-38.pyc +0 -0
- GAN/__pycache__/vae.cpython-38.pyc +0 -0
- GAN/__pycache__/zoo.cpython-38.pyc +0 -0
- GAN/diffusion.py +965 -0
- GAN/timegan.py +601 -0
- GAN/timevae.py +430 -0
- GAN/utils.py +315 -0
- GAN/zoo.py +517 -0
- app.py +226 -0
- app_examples/.DS_Store +0 -0
- app_examples/example1.npy +3 -0
- app_examples/example2.npy +3 -0
- app_examples/example3.npy +3 -0
- app_examples/example4.npy +3 -0
- checkpoint/checkpoint +2 -0
- checkpoint/cp.ckpt.data-00000-of-00001 +0 -0
- checkpoint/cp.ckpt.index +0 -0
- denoising_example_16.gif +3 -0
- denoising_example_25.gif +3 -0
- denoising_example_4.gif +3 -0
- denoising_example_9.gif +3 -0
- logo.webp +0 -0
- noising_example_16.gif +3 -0
- noising_example_25.gif +3 -0
- noising_example_4.gif +3 -0
- noising_example_9.gif +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
denoising_example_16.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
denoising_example_25.gif filter=lfs diff=lfs merge=lfs -text
|
38 |
+
denoising_example_4.gif filter=lfs diff=lfs merge=lfs -text
|
39 |
+
denoising_example_9.gif filter=lfs diff=lfs merge=lfs -text
|
40 |
+
noising_example_16.gif filter=lfs diff=lfs merge=lfs -text
|
41 |
+
noising_example_25.gif filter=lfs diff=lfs merge=lfs -text
|
42 |
+
noising_example_4.gif filter=lfs diff=lfs merge=lfs -text
|
43 |
+
noising_example_9.gif filter=lfs diff=lfs merge=lfs -text
|
GAN/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
GAN/__pycache__/dataset.cpython-38.pyc
ADDED
Binary file (5.91 kB). View file
|
|
GAN/__pycache__/diffusion.cpython-311.pyc
ADDED
Binary file (52 kB). View file
|
|
GAN/__pycache__/gan.cpython-38.pyc
ADDED
Binary file (4.97 kB). View file
|
|
GAN/__pycache__/timegan.cpython-38.pyc
ADDED
Binary file (14.9 kB). View file
|
|
GAN/__pycache__/timevae.cpython-38.pyc
ADDED
Binary file (14.7 kB). View file
|
|
GAN/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (18.1 kB). View file
|
|
GAN/__pycache__/utils.cpython-38.pyc
ADDED
Binary file (8.15 kB). View file
|
|
GAN/__pycache__/vae.cpython-38.pyc
ADDED
Binary file (3.93 kB). View file
|
|
GAN/__pycache__/zoo.cpython-38.pyc
ADDED
Binary file (13.9 kB). View file
|
|
GAN/diffusion.py
ADDED
@@ -0,0 +1,965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import shutil
|
3 |
+
import numpy as np
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow import keras
|
7 |
+
from tensorflow.keras import layers
|
8 |
+
from GAN.utils import linear_beta_schedule, cosine_beta_schedule
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import os
|
11 |
+
from GAN.utils import TSFeatureScaler
|
12 |
+
|
13 |
+
class GaussianDiffusion:
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
beta_schedule='cosine',
|
18 |
+
timesteps=10,
|
19 |
+
clip_min=-1.0,
|
20 |
+
clip_max=1.0,
|
21 |
+
):
|
22 |
+
|
23 |
+
self.timesteps = timesteps
|
24 |
+
self.clip_min = clip_min
|
25 |
+
self.clip_max = clip_max
|
26 |
+
|
27 |
+
if beta_schedule == 'linear':
|
28 |
+
betas = linear_beta_schedule(timesteps)
|
29 |
+
elif beta_schedule == 'cosine':
|
30 |
+
betas = cosine_beta_schedule(timesteps)
|
31 |
+
else:
|
32 |
+
raise ValueError(f'unknown beta schedule {beta_schedule}')
|
33 |
+
|
34 |
+
alphas = 1. - betas
|
35 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
36 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
37 |
+
|
38 |
+
self.betas = tf.constant(betas, dtype=tf.float32)
|
39 |
+
self.alphas_cumprod = tf.constant(alphas_cumprod, dtype=tf.float32)
|
40 |
+
self.alphas_cumprod_prev = tf.constant(alphas_cumprod_prev, dtype=tf.float32)
|
41 |
+
self.sqrt_recip_alphas = tf.constant(np.sqrt(1. / alphas), dtype=tf.float32)
|
42 |
+
|
43 |
+
self.sqrt_alphas_cumprod = tf.constant(np.sqrt(self.alphas_cumprod), dtype=tf.float32)
|
44 |
+
self.sqrt_one_minus_alphas_cumprod = tf.constant(np.sqrt(1.0 - self.alphas_cumprod), dtype=tf.float32)
|
45 |
+
self.log_one_minus_alphas_cumprod = tf.constant(np.log(1. - alphas_cumprod), dtype=tf.float32)
|
46 |
+
self.sqrt_recip_alphas_cumprod = tf.constant(np.sqrt(1. / alphas_cumprod), dtype=tf.float32)
|
47 |
+
self.sqrt_recipm1_alphas_cumprod = tf.constant(np.sqrt(1.0 / alphas_cumprod - 1), dtype=tf.float32)
|
48 |
+
self.posterior_variance = (betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod))
|
49 |
+
|
50 |
+
self.posterior_log_variance_clipped = tf.constant(
|
51 |
+
np.log(np.maximum(self.posterior_variance, 1e-20)), dtype=tf.float32
|
52 |
+
)
|
53 |
+
|
54 |
+
self.posterior_mean_coef1 = tf.constant(
|
55 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod),
|
56 |
+
dtype=tf.float32,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.posterior_mean_coef2 = tf.constant(
|
60 |
+
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod),
|
61 |
+
dtype=tf.float32,
|
62 |
+
)
|
63 |
+
|
64 |
+
def _extract(self, a, t, x_shape):
|
65 |
+
|
66 |
+
batch_size = x_shape[0]
|
67 |
+
out = tf.gather(a, t)
|
68 |
+
return tf.reshape(out, [batch_size, 1, 1])
|
69 |
+
|
70 |
+
def q_sample(self, x_start, t):
|
71 |
+
|
72 |
+
x_start_shape = tf.shape(x_start)
|
73 |
+
samp = self._extract(self.sqrt_alphas_cumprod, t, x_start_shape) * x_start
|
74 |
+
noise = tf.random.normal(shape=tf.shape(x_start), dtype='float32')
|
75 |
+
weight_noise = self._extract(self.sqrt_one_minus_alphas_cumprod, t, x_start_shape) * noise * 0.5
|
76 |
+
# diffused_sample = self._extract(self.sqrt_alphas_cumprod, t, x_start_shape) * x_start + self._extract(
|
77 |
+
# self.sqrt_one_minus_alphas_cumprod, t, x_start_shape) * noise #* 0.1
|
78 |
+
diffused_sample = x_start + weight_noise
|
79 |
+
diffused_sample = tf.clip_by_value(diffused_sample , -0.99, 0.99)
|
80 |
+
weight_noise = diffused_sample - x_start
|
81 |
+
return samp, weight_noise, diffused_sample
|
82 |
+
|
83 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
84 |
+
|
85 |
+
x_t_shape = tf.shape(x_t)
|
86 |
+
return (
|
87 |
+
self._extract(self.sqrt_recip_alphas_cumprod, t, x_t_shape) * x_t
|
88 |
+
- self._extract(self.sqrt_recipm1_alphas_cumprod, t, x_t_shape) * noise
|
89 |
+
)
|
90 |
+
|
91 |
+
def q_posterior(self, x_start, x_t, t):
|
92 |
+
|
93 |
+
x_t_shape = tf.shape(x_t)
|
94 |
+
posterior_mean = (
|
95 |
+
self._extract(self.posterior_mean_coef1, t, x_t_shape) * x_start
|
96 |
+
+ self._extract(self.posterior_mean_coef2, t, x_t_shape) * x_t
|
97 |
+
)
|
98 |
+
posterior_variance = self._extract(self.posterior_variance, t, x_t_shape)
|
99 |
+
posterior_log_variance_clipped = self._extract(
|
100 |
+
self.posterior_log_variance_clipped, t, x_t_shape
|
101 |
+
)
|
102 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
103 |
+
|
104 |
+
def p_mean_variance(self, pred_noise, x, t, clip_denoised=False):
|
105 |
+
|
106 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=pred_noise)
|
107 |
+
|
108 |
+
if clip_denoised:
|
109 |
+
x_recon = tf.clip_by_value(x_recon, self.clip_min, self.clip_max)
|
110 |
+
|
111 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
|
112 |
+
x_start=x_recon, x_t=x, t=t
|
113 |
+
)
|
114 |
+
return model_mean, posterior_variance, posterior_log_variance
|
115 |
+
|
116 |
+
def p_sample(self, pred_noise, x, t, clip_denoised=False):
|
117 |
+
|
118 |
+
model_mean, _, model_log_variance = self.p_mean_variance(
|
119 |
+
pred_noise, x=x, t=t, clip_denoised=clip_denoised
|
120 |
+
)
|
121 |
+
variance_term = tf.exp(0.5 * model_log_variance)
|
122 |
+
noise = tf.random.normal(shape=tf.shape(x), dtype=x.dtype)
|
123 |
+
nonzero_mask = tf.reshape(
|
124 |
+
1 - tf.cast(tf.equal(t, 0), tf.float32), [tf.shape(x)[0], 1, 1]
|
125 |
+
)
|
126 |
+
noise_term = variance_term * nonzero_mask * noise
|
127 |
+
sample = model_mean + noise_term
|
128 |
+
return sample
|
129 |
+
|
130 |
+
|
131 |
+
class TimeEmbedding(layers.Layer):
|
132 |
+
def __init__(self, dim, **kwargs):
|
133 |
+
super().__init__(**kwargs)
|
134 |
+
self.dim = dim
|
135 |
+
self.half_dim = dim // 2
|
136 |
+
self.emb = math.log(10000) / (self.half_dim - 1)
|
137 |
+
self.emb = tf.exp(tf.range(self.half_dim, dtype=tf.float32) * -self.emb)
|
138 |
+
|
139 |
+
def call(self, inputs):
|
140 |
+
inputs = tf.cast(inputs, dtype=tf.float32)
|
141 |
+
emb = inputs[:, None] * self.emb[None, :]
|
142 |
+
emb = tf.concat([tf.sin(emb), tf.cos(emb)], axis=-1)
|
143 |
+
return emb
|
144 |
+
|
145 |
+
def TimeMLP(units, activation_fn=keras.activations.swish):
|
146 |
+
def apply(inputs):
|
147 |
+
temb = layers.Dense(
|
148 |
+
units, activation=activation_fn, kernel_initializer=kernel_init(1.0)
|
149 |
+
)(inputs)
|
150 |
+
# temb = layers.Dense(units, kernel_initializer=kernel_init(1.0))(temb)
|
151 |
+
return temb
|
152 |
+
|
153 |
+
return apply
|
154 |
+
|
155 |
+
# Kernel initializer to use
|
156 |
+
def kernel_init(scale):
|
157 |
+
scale = max(scale, 1e-10)
|
158 |
+
return keras.initializers.VarianceScaling(
|
159 |
+
scale, mode="fan_avg", distribution="uniform"
|
160 |
+
)
|
161 |
+
|
162 |
+
def build_encoder_time(embed_dim=16, num_heads=2, ff_dim=32):
|
163 |
+
def apply(inputs):
|
164 |
+
x, t = inputs
|
165 |
+
position_embedding_layer = layers.Embedding(x.shape[1], embed_dim)
|
166 |
+
pos_encoding = position_embedding_layer(tf.range(x.shape[1]))
|
167 |
+
embeddings = x + pos_encoding + t
|
168 |
+
|
169 |
+
# Encoder blocks
|
170 |
+
for _ in range(2): # Repeat twice
|
171 |
+
# Multi-head self-attention mechanism
|
172 |
+
attention_output, attention_score = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)(
|
173 |
+
embeddings, embeddings, return_attention_scores=True)
|
174 |
+
|
175 |
+
# Add residual connection and layer normalization
|
176 |
+
x = layers.Add()([embeddings, attention_output])
|
177 |
+
x = layers.LayerNormalization(epsilon=1e-6)(x)
|
178 |
+
|
179 |
+
# Feed-forward network
|
180 |
+
ff_output = layers.Dense(ff_dim, activation="relu")(x)
|
181 |
+
ff_output = layers.Dense(embed_dim)(ff_output)
|
182 |
+
|
183 |
+
# Add residual connection and layer normalization
|
184 |
+
x = layers.Add()([x, ff_output])
|
185 |
+
x = layers.LayerNormalization(epsilon=1e-6)(x)
|
186 |
+
|
187 |
+
return x, attention_score
|
188 |
+
|
189 |
+
return apply
|
190 |
+
|
191 |
+
def build_encoder_variales(embed_dim=16, num_heads=2, ff_dim=32):
|
192 |
+
def apply(inputs):
|
193 |
+
x, t = inputs
|
194 |
+
x = layers.Conv1D(16, kernel_size=3, padding='same')(x)
|
195 |
+
embeddings = x + t
|
196 |
+
|
197 |
+
# Encoder blocks
|
198 |
+
for _ in range(2): # Repeat twice
|
199 |
+
# Multi-head self-attention mechanism
|
200 |
+
attention_output, attention_score = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)(
|
201 |
+
embeddings, embeddings, return_attention_scores=True)
|
202 |
+
|
203 |
+
# Add residual connection and layer normalization
|
204 |
+
x = layers.Add()([embeddings, attention_output])
|
205 |
+
x = layers.LayerNormalization(epsilon=1e-6)(x)
|
206 |
+
|
207 |
+
# Feed-forward network
|
208 |
+
ff_output = layers.Dense(ff_dim, activation="relu")(x)
|
209 |
+
ff_output = layers.Dense(embed_dim)(ff_output)
|
210 |
+
|
211 |
+
# Add residual connection and layer normalization
|
212 |
+
x = layers.Add()([x, ff_output])
|
213 |
+
x = layers.LayerNormalization(epsilon=1e-6)(x)
|
214 |
+
|
215 |
+
return x, attention_score
|
216 |
+
|
217 |
+
return apply
|
218 |
+
|
219 |
+
def build_decoder(embed_dim=16, num_heads=2, ff_dim=32):
|
220 |
+
def apply(inputs):
|
221 |
+
encoder_outputs, t = inputs
|
222 |
+
position_embedding_layer = layers.Embedding(encoder_outputs.shape[1], embed_dim)
|
223 |
+
pos_encoding = position_embedding_layer(tf.range(encoder_outputs.shape[1]))
|
224 |
+
dec_embeddings = encoder_outputs + pos_encoding + t
|
225 |
+
|
226 |
+
# Decoder blocks
|
227 |
+
dec_output = dec_embeddings
|
228 |
+
for _ in range(2): # Repeat twice
|
229 |
+
|
230 |
+
# Multi-head attention over encoder outputs
|
231 |
+
attention2_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)(
|
232 |
+
dec_output, encoder_outputs)
|
233 |
+
|
234 |
+
# Add residual connection and layer normalization
|
235 |
+
dec_output = layers.Add()([dec_output, attention2_output])
|
236 |
+
dec_output = layers.LayerNormalization(epsilon=1e-6)(dec_output)
|
237 |
+
|
238 |
+
# Feed-forward network
|
239 |
+
ff_output = layers.Dense(ff_dim, activation="relu")(dec_output)
|
240 |
+
ff_output = layers.Dense(embed_dim)(ff_output)
|
241 |
+
|
242 |
+
# Add residual connection and layer normalization
|
243 |
+
dec_output = layers.Add()([dec_output, ff_output])
|
244 |
+
dec_output = layers.LayerNormalization(epsilon=1e-6)(dec_output)
|
245 |
+
|
246 |
+
return dec_output
|
247 |
+
|
248 |
+
return apply
|
249 |
+
|
250 |
+
def build_model(time_len, fea_num, d_model=16, n_heads=2, encoder_type='dual'):
|
251 |
+
"""
|
252 |
+
Build the transformer-based diffusion model.
|
253 |
+
"""
|
254 |
+
print(f"\nBuilding model with encoder type: {encoder_type}")
|
255 |
+
print(f"Input shape: time_len={time_len}, features={fea_num}, d_model={d_model}")
|
256 |
+
|
257 |
+
# Input layers
|
258 |
+
x_input = layers.Input(shape=(time_len, fea_num))
|
259 |
+
time_input = layers.Input(shape=())
|
260 |
+
|
261 |
+
# Time step embeddings
|
262 |
+
time_emb = get_time_embedding(time_input, d_model)
|
263 |
+
|
264 |
+
encoded_features = []
|
265 |
+
|
266 |
+
if encoder_type in ['time', 'dual']:
|
267 |
+
print("→ Using Time Transformer Encoder")
|
268 |
+
# Time Transformer
|
269 |
+
time_encoded = time_transformer_encoder(
|
270 |
+
x_input,
|
271 |
+
time_emb,
|
272 |
+
d_model=d_model,
|
273 |
+
n_heads=n_heads
|
274 |
+
)
|
275 |
+
print(f" Time encoder output shape: {time_encoded.shape}")
|
276 |
+
encoded_features.append(time_encoded)
|
277 |
+
|
278 |
+
if encoder_type in ['pairwise', 'dual']:
|
279 |
+
print("→ Using Pairwise Correlation Encoder")
|
280 |
+
# Pairwise Correlation Transformer
|
281 |
+
pairwise_encoded = pairwise_transformer_encoder(
|
282 |
+
x_input,
|
283 |
+
time_emb,
|
284 |
+
d_model=d_model,
|
285 |
+
n_heads=n_heads
|
286 |
+
)
|
287 |
+
print(f" Pairwise encoder output shape: {pairwise_encoded.shape}")
|
288 |
+
encoded_features.append(pairwise_encoded)
|
289 |
+
|
290 |
+
# Combine encodings based on encoder type
|
291 |
+
if encoder_type == 'dual':
|
292 |
+
print("→ Combining both encoders")
|
293 |
+
encoded = layers.Concatenate(axis=-1)(encoded_features)
|
294 |
+
print(f" Combined shape before projection: {encoded.shape}")
|
295 |
+
encoded = layers.Dense(d_model)(encoded)
|
296 |
+
print(f" Final encoded shape after projection: {encoded.shape}")
|
297 |
+
else:
|
298 |
+
encoded = encoded_features[0]
|
299 |
+
print(f"→ Using single encoder output shape: {encoded.shape}")
|
300 |
+
|
301 |
+
# Add residual connection
|
302 |
+
if encoder_type != 'dual':
|
303 |
+
print("→ Adding residual connection")
|
304 |
+
encoded = layers.Add()([encoded, layers.Dense(d_model)(x_input)])
|
305 |
+
|
306 |
+
# Decoder
|
307 |
+
decoded = decoder_module(encoded, time_emb)
|
308 |
+
print(f"→ Decoder output shape: {decoded.shape}")
|
309 |
+
|
310 |
+
# Final output layer
|
311 |
+
output = layers.Dense(fea_num)(decoded)
|
312 |
+
print(f"→ Final output shape: {output.shape}")
|
313 |
+
print("Model building completed!\n")
|
314 |
+
|
315 |
+
return keras.Model(inputs=[x_input, time_input], outputs=output)
|
316 |
+
|
317 |
+
def pairwise_transformer_encoder(x, time_emb, d_model=16, n_heads=2):
|
318 |
+
"""Pairwise Correlation Transformer encoder implementation"""
|
319 |
+
# Get input shape
|
320 |
+
input_shape = x.shape
|
321 |
+
time_len = input_shape[1]
|
322 |
+
|
323 |
+
# Transpose input to treat features as sequence
|
324 |
+
x_transposed = tf.transpose(x, perm=[0, 2, 1]) # [batch, features, time]
|
325 |
+
|
326 |
+
# Project input
|
327 |
+
x_proj = layers.Dense(d_model)(x_transposed)
|
328 |
+
|
329 |
+
# Expand time embeddings
|
330 |
+
time_emb = tf.expand_dims(time_emb, 1)
|
331 |
+
time_emb = tf.tile(time_emb, [1, tf.shape(x_proj)[1], 1])
|
332 |
+
|
333 |
+
# Add time embeddings
|
334 |
+
x = x_proj + time_emb
|
335 |
+
|
336 |
+
# Transformer encoder layers
|
337 |
+
for _ in range(2):
|
338 |
+
x = transformer_encoder_layer(x, d_model, n_heads)
|
339 |
+
|
340 |
+
# Project to correct time dimension and transpose back
|
341 |
+
x = layers.Dense(time_len)(x) # Project to original time dimension
|
342 |
+
x = tf.transpose(x, perm=[0, 2, 1]) # [batch, time, features]
|
343 |
+
|
344 |
+
# Final projection to match d_model dimension
|
345 |
+
x = layers.Dense(d_model)(x) # [batch, time_len, d_model]
|
346 |
+
|
347 |
+
return x
|
348 |
+
|
349 |
+
def time_transformer_encoder(x, time_emb, d_model=16, n_heads=2):
|
350 |
+
"""Time Transformer encoder implementation"""
|
351 |
+
# Position embeddings
|
352 |
+
pos_emb = get_positional_embedding(tf.shape(x)[1], d_model)
|
353 |
+
|
354 |
+
# Project input
|
355 |
+
x = layers.Dense(d_model)(x)
|
356 |
+
|
357 |
+
# Expand time embeddings
|
358 |
+
time_emb = tf.expand_dims(time_emb, 1)
|
359 |
+
time_emb = tf.tile(time_emb, [1, tf.shape(x)[1], 1])
|
360 |
+
|
361 |
+
# Add embeddings
|
362 |
+
x = x + pos_emb + time_emb
|
363 |
+
|
364 |
+
# Transformer encoder layers
|
365 |
+
for _ in range(2):
|
366 |
+
x = transformer_encoder_layer(x, d_model, n_heads)
|
367 |
+
|
368 |
+
return x # [batch, time_len, d_model]
|
369 |
+
|
370 |
+
def transformer_encoder_layer(x, d_model, n_heads):
|
371 |
+
"""Single transformer encoder layer with multi-head attention"""
|
372 |
+
# Multi-head self attention
|
373 |
+
attention_output = layers.MultiHeadAttention(
|
374 |
+
num_heads=n_heads,
|
375 |
+
key_dim=d_model // n_heads
|
376 |
+
)(x, x)
|
377 |
+
|
378 |
+
# Add & Norm
|
379 |
+
x = layers.Add()([x, attention_output])
|
380 |
+
x = layers.LayerNormalization()(x)
|
381 |
+
|
382 |
+
# Feed Forward Network
|
383 |
+
ffn_output = layers.Dense(d_model * 4, activation='relu')(x)
|
384 |
+
ffn_output = layers.Dense(d_model)(ffn_output)
|
385 |
+
|
386 |
+
# Add & Norm
|
387 |
+
x = layers.Add()([x, ffn_output])
|
388 |
+
x = layers.LayerNormalization()(x)
|
389 |
+
|
390 |
+
return x
|
391 |
+
|
392 |
+
def decoder_module(encoded, time_emb):
|
393 |
+
"""Decoder implementation"""
|
394 |
+
# Expand time embeddings
|
395 |
+
time_emb = tf.expand_dims(time_emb, 1)
|
396 |
+
time_emb = tf.tile(time_emb, [1, tf.shape(encoded)[1], 1])
|
397 |
+
|
398 |
+
# Concatenate along feature dimension
|
399 |
+
x = layers.Concatenate(axis=-1)([encoded, time_emb])
|
400 |
+
|
401 |
+
# Decoder layers
|
402 |
+
x = layers.Dense(256, activation='relu')(x)
|
403 |
+
x = layers.Dense(128, activation='relu')(x)
|
404 |
+
|
405 |
+
return x
|
406 |
+
|
407 |
+
def get_time_embedding(timesteps, embedding_dim):
|
408 |
+
"""
|
409 |
+
Create sinusoidal time embeddings.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
timesteps: Tensor of shape [batch_size] containing timesteps
|
413 |
+
embedding_dim: Dimension of the embeddings to create
|
414 |
+
"""
|
415 |
+
# Ensure timesteps is a 2D tensor
|
416 |
+
timesteps = tf.expand_dims(timesteps, -1)
|
417 |
+
|
418 |
+
# Calculate positions and dimensions
|
419 |
+
half_dim = embedding_dim // 2
|
420 |
+
emb = math.log(10000) / (half_dim - 1)
|
421 |
+
emb = tf.exp(tf.range(half_dim, dtype=tf.float32) * -emb)
|
422 |
+
|
423 |
+
# Create embeddings
|
424 |
+
emb = tf.cast(timesteps, dtype=tf.float32) * emb[None, :]
|
425 |
+
emb = tf.concat([tf.sin(emb), tf.cos(emb)], axis=-1)
|
426 |
+
|
427 |
+
# Handle odd embedding dimensions
|
428 |
+
if embedding_dim % 2 == 1:
|
429 |
+
emb = tf.pad(emb, [[0, 0], [0, 1]])
|
430 |
+
|
431 |
+
return emb # Shape: [batch_size, embedding_dim]
|
432 |
+
|
433 |
+
def get_positional_embedding(sequence_length, embedding_dim):
|
434 |
+
"""
|
435 |
+
Create sinusoidal position embeddings.
|
436 |
+
|
437 |
+
Args:
|
438 |
+
sequence_length: Length of the sequence
|
439 |
+
embedding_dim: Dimension of the embeddings to create
|
440 |
+
"""
|
441 |
+
# Create position indices
|
442 |
+
positions = tf.range(sequence_length, dtype=tf.float32)[:, tf.newaxis]
|
443 |
+
|
444 |
+
# Create dimension indices
|
445 |
+
dimensions = tf.range(0, embedding_dim, 2, dtype=tf.float32)[tf.newaxis, :]
|
446 |
+
|
447 |
+
# Calculate angle rates
|
448 |
+
angle_rates = 1 / tf.pow(10000.0, (2 * dimensions) / tf.cast(embedding_dim, tf.float32))
|
449 |
+
|
450 |
+
# Calculate angle rads
|
451 |
+
angle_rads = positions * angle_rates
|
452 |
+
|
453 |
+
# Apply sin and cos
|
454 |
+
pos_encoding = tf.concat(
|
455 |
+
[tf.sin(angle_rads), tf.cos(angle_rads)],
|
456 |
+
axis=-1
|
457 |
+
)
|
458 |
+
|
459 |
+
# Handle odd embedding dimensions
|
460 |
+
if embedding_dim % 2 == 1:
|
461 |
+
pos_encoding = tf.pad(pos_encoding, [[0, 0], [0, 1]])
|
462 |
+
|
463 |
+
# Add batch dimension
|
464 |
+
pos_encoding = tf.expand_dims(pos_encoding, 0)
|
465 |
+
|
466 |
+
return pos_encoding
|
467 |
+
|
468 |
+
class DiffusionModel(keras.Model):
|
469 |
+
def __init__(self, network, ema_network, timesteps, gdf_util, data, ema=0.999):
|
470 |
+
super().__init__()
|
471 |
+
self.network = network
|
472 |
+
self.ema_network = ema_network
|
473 |
+
self.timesteps = timesteps
|
474 |
+
self.gdf_util = gdf_util
|
475 |
+
self.data = data
|
476 |
+
self.ema = ema
|
477 |
+
|
478 |
+
def train_step(self, data):
|
479 |
+
|
480 |
+
batch_size = tf.shape(data)[0]
|
481 |
+
|
482 |
+
t = tf.random.uniform(
|
483 |
+
minval=0,
|
484 |
+
maxval=self.timesteps,
|
485 |
+
shape=(batch_size,),
|
486 |
+
dtype=tf.int32
|
487 |
+
)
|
488 |
+
|
489 |
+
old_weights = [tf.identity(w) for w in self.network.trainable_weights]
|
490 |
+
|
491 |
+
with tf.GradientTape() as tape:
|
492 |
+
_, noise, x_t = self.gdf_util.q_sample(data, t)
|
493 |
+
pred_noise = self.network([x_t, t], training=True)
|
494 |
+
loss = self.loss(noise, pred_noise)
|
495 |
+
|
496 |
+
gradients = tape.gradient(loss, self.network.trainable_weights)
|
497 |
+
self.optimizer.apply_gradients(zip(gradients, self.network.trainable_weights))
|
498 |
+
|
499 |
+
for weight, ema_weight in zip(self.network.weights, self.ema_network.weights):
|
500 |
+
ema_weight.assign(self.ema * ema_weight + (1 - self.ema) * weight)
|
501 |
+
|
502 |
+
new_weights = self.network.trainable_weights
|
503 |
+
weight_changes = []
|
504 |
+
for old_w, new_w in zip(old_weights, new_weights):
|
505 |
+
diff = tf.reduce_max(tf.abs(old_w - new_w))
|
506 |
+
weight_changes.append(diff)
|
507 |
+
max_change = tf.reduce_max(weight_changes)
|
508 |
+
|
509 |
+
return {
|
510 |
+
"loss": loss,
|
511 |
+
"weight_max_change": max_change,
|
512 |
+
"has_weight_changed": max_change > 0
|
513 |
+
}
|
514 |
+
|
515 |
+
def check_noise_levels(self):
|
516 |
+
|
517 |
+
x_0 = tf.cast(self.data, tf.float32)
|
518 |
+
|
519 |
+
print("\n=== Noise Level Analysis ===")
|
520 |
+
print(f"Using all {len(self.data)} samples")
|
521 |
+
print("Checking noise levels at different timesteps:")
|
522 |
+
|
523 |
+
timesteps_to_check = [
|
524 |
+
0,
|
525 |
+
self.timesteps//4,
|
526 |
+
self.timesteps//2,
|
527 |
+
3*self.timesteps//4,
|
528 |
+
self.timesteps-1
|
529 |
+
]
|
530 |
+
|
531 |
+
for t in timesteps_to_check:
|
532 |
+
|
533 |
+
sqrt_alphas = tf.sqrt(self.gdf_util.alphas_cumprod[t])
|
534 |
+
sqrt_one_minus_alphas = tf.sqrt(1 - self.gdf_util.alphas_cumprod[t])
|
535 |
+
|
536 |
+
_, noise, x_t = self.gdf_util.q_sample(x_0, tf.fill([len(x_0)], t))
|
537 |
+
pred_noise = self.ema_network.predict([x_t, tf.fill([len(x_0)], t)], verbose=0)
|
538 |
+
|
539 |
+
print(f"\nTimestep {t}:")
|
540 |
+
print(f"Signal scaling factor (sqrt_alphas): {sqrt_alphas:.4f}")
|
541 |
+
print(f"Noise scaling factor (sqrt_1-alphas): {sqrt_one_minus_alphas:.4f}")
|
542 |
+
print(f"Original data range: [{tf.reduce_min(x_0):.4f}, {tf.reduce_max(x_0):.4f}]")
|
543 |
+
print(f"Noisy data range: [{tf.reduce_min(x_t):.4f}, {tf.reduce_max(x_t):.4f}]")
|
544 |
+
print(f"Added noise - Mean: {tf.reduce_mean(noise):.4f}, Std: {tf.math.reduce_std(noise):.4f}")
|
545 |
+
print(f"Scaled noise - Mean: {tf.reduce_mean(sqrt_one_minus_alphas * noise):.4f}, Std: {tf.math.reduce_std(sqrt_one_minus_alphas * noise):.4f}")
|
546 |
+
print(f"Predicted noise - Mean: {tf.reduce_mean(pred_noise):.4f}, Std: {tf.math.reduce_std(pred_noise):.4f}")
|
547 |
+
print(f"Noise prediction error: {tf.reduce_mean(tf.abs(noise - pred_noise)):.4f}")
|
548 |
+
|
549 |
+
def generate_ts(self, num_ts=16):
|
550 |
+
|
551 |
+
if num_ts > len(self.data):
|
552 |
+
indices = tf.random.uniform(
|
553 |
+
shape=[num_ts],
|
554 |
+
minval=0,
|
555 |
+
maxval=len(self.data),
|
556 |
+
dtype=tf.int32
|
557 |
+
)
|
558 |
+
initial_samples = tf.cast(
|
559 |
+
tf.gather(self.data, indices),
|
560 |
+
tf.float32
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
initial_samples = self.data
|
564 |
+
|
565 |
+
_, _, samples = self.gdf_util.q_sample(initial_samples, tf.fill([num_ts], self.timesteps-1))
|
566 |
+
samples0 = samples
|
567 |
+
|
568 |
+
for i in reversed(range(0, self.timesteps)):
|
569 |
+
tt = tf.fill([num_ts], i)
|
570 |
+
pred_noise = self.ema_network.predict([samples0, tt], verbose=0, batch_size=num_ts
|
571 |
+
)
|
572 |
+
# print(f"\nStep {i}:")
|
573 |
+
# print(f"Predicted noise - Mean: {tf.reduce_mean(pred_noise):.4f}")
|
574 |
+
# print(f"Predicted noise - Std: {tf.math.reduce_std(pred_noise):.4f}")
|
575 |
+
# print(f"Predicted noise - Min: {tf.reduce_min(pred_noise):.4f}")
|
576 |
+
# print(f"Predicted noise - Max: {tf.reduce_max(pred_noise):.4f}")
|
577 |
+
|
578 |
+
samples = self.gdf_util.p_sample(
|
579 |
+
pred_noise, samples0, tt, clip_denoised=False
|
580 |
+
)
|
581 |
+
# scaler = TSFeatureScaler()
|
582 |
+
# print(f"Generated samples - Mean: {tf.reduce_mean(scaler.fit_transform(samples.numpy())):.4f}")
|
583 |
+
# print(f"Generated samples- Std: {tf.math.reduce_std(scaler.fit_transform(samples.numpy())):.4f}")
|
584 |
+
# print(f"Generated samples - Min: {tf.reduce_min(scaler.fit_transform(samples.numpy())):.4f}")
|
585 |
+
# print(f"Generated samples - Max: {tf.reduce_max(scaler.fit_transform(samples.numpy())):.4f}")
|
586 |
+
|
587 |
+
return samples
|
588 |
+
|
589 |
+
def plot_denoise_process(self, save_dir='denoise_process'):
|
590 |
+
|
591 |
+
if os.path.exists(save_dir):
|
592 |
+
shutil.rmtree(save_dir)
|
593 |
+
os.makedirs(save_dir, exist_ok=True)
|
594 |
+
|
595 |
+
indices = tf.random.uniform(
|
596 |
+
shape=[16],
|
597 |
+
minval=0,
|
598 |
+
maxval=len(self.data),
|
599 |
+
dtype=tf.int32
|
600 |
+
)
|
601 |
+
x_0 = tf.cast(tf.gather(self.data, indices), tf.float32)
|
602 |
+
_, _, samples = self.gdf_util.q_sample(x_0, tf.fill([16], self.timesteps-1))
|
603 |
+
samples0 = samples
|
604 |
+
|
605 |
+
time_steps = np.arange(self.data.shape[1])
|
606 |
+
|
607 |
+
self._plot_step_grid(x_0.numpy(), self.timesteps, time_steps, save_dir)
|
608 |
+
print(f"Denoising: Generate 16 samples for visualization")
|
609 |
+
|
610 |
+
for i in reversed(range(0, self.timesteps)):
|
611 |
+
print(f"Processing step {i}/{self.timesteps}")
|
612 |
+
tt = tf.fill([16], i)
|
613 |
+
pred_noise = self.ema_network.predict([samples0, tt], verbose=0, batch_size=1
|
614 |
+
)
|
615 |
+
samples = self.gdf_util.p_sample(
|
616 |
+
pred_noise, samples0, tt, clip_denoised=False
|
617 |
+
)
|
618 |
+
scaler = TSFeatureScaler()
|
619 |
+
scaled_samples = scaler.fit_transform(samples.numpy())
|
620 |
+
self._plot_step_grid(scaled_samples, i, time_steps, save_dir)
|
621 |
+
|
622 |
+
print(f"Saved {self.timesteps + 1} plots to {save_dir}/")
|
623 |
+
|
624 |
+
def _plot_step_grid(self, samples, step, time_steps, save_dir):
|
625 |
+
|
626 |
+
fig, axes = plt.subplots(4, 4, figsize=(20, 20))
|
627 |
+
fig.suptitle(f'Generated Samples at Step {step}', fontsize=16)
|
628 |
+
|
629 |
+
for idx in range(16):
|
630 |
+
row = idx // 4
|
631 |
+
col = idx % 4
|
632 |
+
|
633 |
+
for feature_idx in range(samples.shape[-1]):
|
634 |
+
axes[row, col].plot(
|
635 |
+
time_steps,
|
636 |
+
samples[idx, :, feature_idx],
|
637 |
+
label=f'Feature {feature_idx+1}',
|
638 |
+
alpha=0.8
|
639 |
+
)
|
640 |
+
|
641 |
+
axes[row, col].set_title(f'Sample {idx+1}')
|
642 |
+
axes[row, col].grid(True)
|
643 |
+
if idx % 4 == 0:
|
644 |
+
axes[row, col].set_ylabel('Value')
|
645 |
+
if idx >= 12:
|
646 |
+
axes[row, col].set_xlabel('Time Steps')
|
647 |
+
if idx == 15:
|
648 |
+
axes[row, col].legend()
|
649 |
+
|
650 |
+
plt.tight_layout()
|
651 |
+
plt.savefig(os.path.join(save_dir, f'step_{step:04d}.png'),
|
652 |
+
dpi=300, bbox_inches='tight')
|
653 |
+
plt.close()
|
654 |
+
|
655 |
+
def plot_denoise_detailed_process(self, save_dir='denoise_detailed_process'):
|
656 |
+
|
657 |
+
if os.path.exists(save_dir):
|
658 |
+
shutil.rmtree(save_dir)
|
659 |
+
os.makedirs(save_dir, exist_ok=True)
|
660 |
+
|
661 |
+
indices = tf.random.uniform(
|
662 |
+
shape=[8],
|
663 |
+
minval=0,
|
664 |
+
maxval=len(self.data),
|
665 |
+
dtype=tf.int32
|
666 |
+
)
|
667 |
+
x_0 = tf.cast(tf.gather(self.data, indices), tf.float32)
|
668 |
+
_, _, samples = self.gdf_util.q_sample(x_0, tf.fill([8], self.timesteps-1))
|
669 |
+
samples0 = samples
|
670 |
+
|
671 |
+
self._plot_step_comparison(
|
672 |
+
x_0.numpy(),
|
673 |
+
x_0.numpy(),
|
674 |
+
-1,
|
675 |
+
time_steps=np.arange(self.data.shape[1]),
|
676 |
+
save_dir=save_dir,
|
677 |
+
title="Original Data"
|
678 |
+
)
|
679 |
+
|
680 |
+
self._plot_step_comparison(
|
681 |
+
samples.numpy(),
|
682 |
+
samples.numpy(),
|
683 |
+
self.timesteps,
|
684 |
+
time_steps=np.arange(self.data.shape[1]),
|
685 |
+
save_dir=save_dir,
|
686 |
+
title="Initial Noisy Data"
|
687 |
+
)
|
688 |
+
|
689 |
+
for i in reversed(range(0, self.timesteps)):
|
690 |
+
print(f"Processing step {i}/{self.timesteps}")
|
691 |
+
tt = tf.fill([8], i)
|
692 |
+
pred_noise = self.ema_network.predict([samples0, tt], verbose=0, batch_size=8)
|
693 |
+
samples = self.gdf_util.p_sample(pred_noise, samples0, tt, clip_denoised=False)
|
694 |
+
scaler = TSFeatureScaler()
|
695 |
+
|
696 |
+
self._plot_step_comparison(
|
697 |
+
pred_noise,
|
698 |
+
scaler.fit_transform(samples.numpy()),
|
699 |
+
i,
|
700 |
+
time_steps=np.arange(self.data.shape[1]),
|
701 |
+
save_dir=save_dir,
|
702 |
+
title=f"Denoising Step {i}"
|
703 |
+
)
|
704 |
+
|
705 |
+
print(f"Visualization completed. Check {save_dir}/ for results.")
|
706 |
+
|
707 |
+
def _plot_step_comparison(self, noise_data, sample_data, step, time_steps, save_dir, title):
|
708 |
+
|
709 |
+
fig, axes = plt.subplots(2, 8, figsize=(24, 8))
|
710 |
+
fig.suptitle(f'{title}', fontsize=16)
|
711 |
+
|
712 |
+
for idx in range(8):
|
713 |
+
ax = axes[0, idx]
|
714 |
+
for feature_idx in range(noise_data.shape[-1]):
|
715 |
+
ax.plot(
|
716 |
+
time_steps,
|
717 |
+
noise_data[idx, :, feature_idx],
|
718 |
+
label=f'Feature {feature_idx+1}',
|
719 |
+
alpha=0.8
|
720 |
+
)
|
721 |
+
ax.set_title(f'Noise {idx+1}')
|
722 |
+
ax.grid(True)
|
723 |
+
if idx == 0:
|
724 |
+
ax.set_ylabel('Value')
|
725 |
+
if idx == 7:
|
726 |
+
ax.legend()
|
727 |
+
|
728 |
+
for idx in range(8):
|
729 |
+
ax = axes[1, idx]
|
730 |
+
for feature_idx in range(sample_data.shape[-1]):
|
731 |
+
ax.plot(
|
732 |
+
time_steps,
|
733 |
+
sample_data[idx, :, feature_idx],
|
734 |
+
label=f'Feature {feature_idx+1}',
|
735 |
+
alpha=0.8
|
736 |
+
)
|
737 |
+
ax.set_title(f'Sample {idx+1}')
|
738 |
+
ax.grid(True)
|
739 |
+
if idx == 0:
|
740 |
+
ax.set_ylabel('Value')
|
741 |
+
ax.set_xlabel('Time Steps')
|
742 |
+
|
743 |
+
plt.tight_layout()
|
744 |
+
plt.savefig(
|
745 |
+
os.path.join(save_dir, f'step_{step:04d}.png'),
|
746 |
+
dpi=300,
|
747 |
+
bbox_inches='tight'
|
748 |
+
)
|
749 |
+
plt.close()
|
750 |
+
|
751 |
+
def plot_noise_process(self, save_dir='noise_process'):
|
752 |
+
|
753 |
+
if os.path.exists(save_dir):
|
754 |
+
shutil.rmtree(save_dir)
|
755 |
+
os.makedirs(save_dir, exist_ok=True)
|
756 |
+
|
757 |
+
indices = tf.random.uniform(
|
758 |
+
shape=[16],
|
759 |
+
minval=0,
|
760 |
+
maxval=len(self.data),
|
761 |
+
dtype=tf.int32
|
762 |
+
)
|
763 |
+
x_start = tf.cast(tf.gather(self.data, indices), tf.float32)
|
764 |
+
print(f"Noising: Select 16 samples for visualization")
|
765 |
+
|
766 |
+
for t in range(self.timesteps):
|
767 |
+
print(f"Processing step {t}/{self.timesteps}")
|
768 |
+
_, _, x_noisy = self.gdf_util.q_sample(
|
769 |
+
x_start,
|
770 |
+
tf.fill([16], t))
|
771 |
+
|
772 |
+
fig, axes = plt.subplots(4, 4, figsize=(20, 20))
|
773 |
+
fig.suptitle(f'Noise Process at Step {t}', fontsize=16)
|
774 |
+
|
775 |
+
time_steps = np.arange(x_start.shape[1])
|
776 |
+
|
777 |
+
for idx in range(16):
|
778 |
+
row = idx // 4
|
779 |
+
col = idx % 4
|
780 |
+
|
781 |
+
for feature_idx in range(x_noisy.shape[-1]):
|
782 |
+
axes[row, col].plot(
|
783 |
+
time_steps,
|
784 |
+
x_noisy[idx, :, feature_idx],
|
785 |
+
label=f'Feature {feature_idx+1}',
|
786 |
+
alpha=0.8
|
787 |
+
)
|
788 |
+
|
789 |
+
axes[row, col].set_title(f'Sample {idx+1}')
|
790 |
+
axes[row, col].grid(True)
|
791 |
+
if idx % 4 == 0:
|
792 |
+
axes[row, col].set_ylabel('Value')
|
793 |
+
if idx >= 12:
|
794 |
+
axes[row, col].set_xlabel('Time Steps')
|
795 |
+
if idx == 15:
|
796 |
+
axes[row, col].legend()
|
797 |
+
|
798 |
+
plt.tight_layout()
|
799 |
+
plt.savefig(os.path.join(save_dir, f'step_{t:04d}.png'),
|
800 |
+
dpi=300, bbox_inches='tight')
|
801 |
+
plt.close()
|
802 |
+
|
803 |
+
print(f"Saved {self.timesteps} plots to {save_dir}/")
|
804 |
+
|
805 |
+
def plot_noise_process_app(self, num_samples=16):
|
806 |
+
"""为应用程序创建加噪过程的动态可视化"""
|
807 |
+
# 验证num_samples是否为有效值
|
808 |
+
valid_sizes = [4, 9, 16, 25]
|
809 |
+
if num_samples not in valid_sizes:
|
810 |
+
raise ValueError(f"num_samples must be one of {valid_sizes}")
|
811 |
+
|
812 |
+
# 计算网格大小
|
813 |
+
grid_size = int(np.sqrt(num_samples))
|
814 |
+
|
815 |
+
# 随机选择样本
|
816 |
+
indices = tf.random.uniform(
|
817 |
+
shape=[num_samples],
|
818 |
+
minval=0,
|
819 |
+
maxval=len(self.data),
|
820 |
+
dtype=tf.int32
|
821 |
+
)
|
822 |
+
x_start = tf.cast(tf.gather(self.data, indices), tf.float32)
|
823 |
+
|
824 |
+
# 存储每一步的图像
|
825 |
+
frames = []
|
826 |
+
time_steps = np.arange(x_start.shape[1])
|
827 |
+
|
828 |
+
# 逐步添加噪声
|
829 |
+
for t in range(0, self.timesteps, max(1, self.timesteps // 10)):
|
830 |
+
# 添加噪声
|
831 |
+
_, _, x_noisy = self.gdf_util.q_sample(
|
832 |
+
x_start,
|
833 |
+
tf.fill([num_samples], t)
|
834 |
+
)
|
835 |
+
|
836 |
+
# 创建图形
|
837 |
+
fig, axes = plt.subplots(grid_size, grid_size, figsize=(5*grid_size, 5*grid_size))
|
838 |
+
fig.suptitle(f'Noise Process at Step {t}', fontsize=16)
|
839 |
+
|
840 |
+
colors = ['#0a9396', '#ee9b00', '#9b2226']
|
841 |
+
|
842 |
+
# 确保axes是二维数组
|
843 |
+
if grid_size == 2:
|
844 |
+
axes = axes.reshape(2, 2)
|
845 |
+
|
846 |
+
# 绘制每个样本
|
847 |
+
for idx in range(num_samples):
|
848 |
+
row = idx // grid_size
|
849 |
+
col = idx % grid_size
|
850 |
+
|
851 |
+
for feature_idx in range(x_noisy.shape[-1]):
|
852 |
+
axes[row, col].plot(
|
853 |
+
time_steps,
|
854 |
+
x_noisy[idx, :, feature_idx],
|
855 |
+
label=f'Feature {feature_idx+1}',
|
856 |
+
color=colors[feature_idx],
|
857 |
+
alpha=0.8
|
858 |
+
)
|
859 |
+
|
860 |
+
axes[row, col].set_title(f'Sample {idx+1}')
|
861 |
+
axes[row, col].grid(True)
|
862 |
+
if idx % grid_size == 0:
|
863 |
+
axes[row, col].set_ylabel('Value')
|
864 |
+
if idx >= num_samples - grid_size:
|
865 |
+
axes[row, col].set_xlabel('Time Steps')
|
866 |
+
if idx == num_samples - 1:
|
867 |
+
axes[row, col].legend()
|
868 |
+
|
869 |
+
plt.tight_layout()
|
870 |
+
|
871 |
+
# 将图形转换为图像
|
872 |
+
fig.canvas.draw()
|
873 |
+
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
874 |
+
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
875 |
+
frames.append(image)
|
876 |
+
|
877 |
+
plt.close()
|
878 |
+
|
879 |
+
return frames
|
880 |
+
|
881 |
+
def plot_denoise_process_app(self, num_samples=16):
|
882 |
+
"""为应用程序创建去噪过程的动态可视化"""
|
883 |
+
# 验证num_samples是否为有效值
|
884 |
+
valid_sizes = [4, 9, 16, 25]
|
885 |
+
if num_samples not in valid_sizes:
|
886 |
+
raise ValueError(f"num_samples must be one of {valid_sizes}")
|
887 |
+
|
888 |
+
# 计算网格大小
|
889 |
+
grid_size = int(np.sqrt(num_samples))
|
890 |
+
|
891 |
+
# 随机选择样本
|
892 |
+
indices = tf.random.uniform(
|
893 |
+
shape=[num_samples],
|
894 |
+
minval=0,
|
895 |
+
maxval=len(self.data),
|
896 |
+
dtype=tf.int32
|
897 |
+
)
|
898 |
+
x_0 = tf.cast(tf.gather(self.data, indices), tf.float32)
|
899 |
+
_, _, samples = self.gdf_util.q_sample(x_0, tf.fill([num_samples], self.timesteps-1))
|
900 |
+
samples0 = samples
|
901 |
+
|
902 |
+
# 存储每一步的图像
|
903 |
+
frames = []
|
904 |
+
time_steps = np.arange(self.data.shape[1])
|
905 |
+
|
906 |
+
# 添加原始数据的图像
|
907 |
+
frames.append(self._plot_step_grid_app(x_0.numpy(), self.timesteps, time_steps, grid_size))
|
908 |
+
|
909 |
+
# 逐步去噪
|
910 |
+
for i in reversed(range(0, self.timesteps)):
|
911 |
+
if i % max(1, self.timesteps // 10) == 0:
|
912 |
+
tt = tf.fill([num_samples], i)
|
913 |
+
pred_noise = self.ema_network.predict([samples0, tt], verbose=0, batch_size=num_samples)
|
914 |
+
samples = self.gdf_util.p_sample(pred_noise, samples0, tt, clip_denoised=False)
|
915 |
+
scaler = TSFeatureScaler()
|
916 |
+
scaled_samples = scaler.fit_transform(samples.numpy())
|
917 |
+
frames.append(self._plot_step_grid_app(scaled_samples, i, time_steps, grid_size))
|
918 |
+
|
919 |
+
return frames
|
920 |
+
|
921 |
+
def _plot_step_grid_app(self, samples, step, time_steps, grid_size):
|
922 |
+
"""辅助函数:为应用程序创建单个时间步的网格图"""
|
923 |
+
fig, axes = plt.subplots(grid_size, grid_size, figsize=(5*grid_size, 5*grid_size))
|
924 |
+
fig.suptitle(f'Generated Samples at Step {step}', fontsize=16)
|
925 |
+
|
926 |
+
colors = ['#0a9396', '#ee9b00', '#9b2226']
|
927 |
+
|
928 |
+
# 确保axes是二维数组
|
929 |
+
if grid_size == 2:
|
930 |
+
axes = axes.reshape(2, 2)
|
931 |
+
|
932 |
+
# 绘制每个样本
|
933 |
+
num_samples = grid_size * grid_size
|
934 |
+
for idx in range(num_samples):
|
935 |
+
row = idx // grid_size
|
936 |
+
col = idx % grid_size
|
937 |
+
|
938 |
+
for feature_idx in range(samples.shape[-1]):
|
939 |
+
axes[row, col].plot(
|
940 |
+
time_steps,
|
941 |
+
samples[idx, :, feature_idx],
|
942 |
+
label=f'Feature {feature_idx+1}',
|
943 |
+
color=colors[feature_idx],
|
944 |
+
alpha=0.8
|
945 |
+
)
|
946 |
+
|
947 |
+
axes[row, col].set_title(f'Sample {idx+1}')
|
948 |
+
axes[row, col].grid(True)
|
949 |
+
if idx % grid_size == 0:
|
950 |
+
axes[row, col].set_ylabel('Value')
|
951 |
+
if idx >= num_samples - grid_size:
|
952 |
+
axes[row, col].set_xlabel('Time Steps')
|
953 |
+
if idx == num_samples - 1:
|
954 |
+
axes[row, col].legend()
|
955 |
+
|
956 |
+
plt.tight_layout()
|
957 |
+
|
958 |
+
# 将图形转换为图像
|
959 |
+
fig.canvas.draw()
|
960 |
+
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
961 |
+
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
962 |
+
|
963 |
+
plt.close()
|
964 |
+
return image
|
965 |
+
|
GAN/timegan.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
from tensorflow.python.types.core import TensorLike
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
from tqdm import tqdm, trange
|
7 |
+
from collections import OrderedDict
|
8 |
+
import typing as T
|
9 |
+
|
10 |
+
import logging
|
11 |
+
|
12 |
+
from GAN.zoo import BasicRecurrentArchitecture
|
13 |
+
|
14 |
+
logger = logging.getLogger("models")
|
15 |
+
logger.setLevel(logging.DEBUG)
|
16 |
+
|
17 |
+
|
18 |
+
class LossTracker(OrderedDict):
|
19 |
+
"""
|
20 |
+
Dictionary of lists, extends python OrderedDict.
|
21 |
+
Example: Given {'loss_a': [1], 'loss_b': [2]}, adding key='loss_a' with value=0.7
|
22 |
+
gives {'loss_a': [1, 0.7], 'loss_b': [2]}, and adding key='loss_c' with value=1.2
|
23 |
+
gives {'loss_a': [1, 0.7], 'loss_b': [2], 'loss_c': [1.2]}
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __setitem__(self, key: T.Any, value: T.Any) -> None:
|
27 |
+
try:
|
28 |
+
# Assumes the key already exists
|
29 |
+
# and the value is a list [oldest_value, another_old, ...]
|
30 |
+
# key -> [oldest_value, another_old, ..., new_value]
|
31 |
+
self[key].append(value)
|
32 |
+
# If there is no key, add key -> [new_value]
|
33 |
+
except KeyError:
|
34 |
+
# key -> [new_value]
|
35 |
+
super(LossTracker, self).__setitem__(key, [value])
|
36 |
+
|
37 |
+
def to_numpy(self) -> npt.NDArray:
|
38 |
+
"""
|
39 |
+
:return 2d vector of losses
|
40 |
+
"""
|
41 |
+
_losses = np.array([np.array(v) for v in self.values() if isinstance(v, list)])
|
42 |
+
return _losses
|
43 |
+
|
44 |
+
def labels(self) -> T.List:
|
45 |
+
"""
|
46 |
+
:return list of keys
|
47 |
+
"""
|
48 |
+
return list(self.keys())
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
class TimeGAN(keras.Model):
|
53 |
+
"""
|
54 |
+
Time-series Generative Adversarial Networks (TimeGAN)
|
55 |
+
|
56 |
+
Reference: Jinsung Yoon, Daniel Jarrett, Mihaela van der Schaar,
|
57 |
+
"Time-series Generative Adversarial Networks,"
|
58 |
+
Neural Information Processing Systems (NeurIPS), 2019.
|
59 |
+
|
60 |
+
Paper link: https://papers.nips.cc/paper/8789-time-series-generative-adversarial-networks
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
seq_len: int = 24,
|
66 |
+
module: str = "gru",
|
67 |
+
hidden_dim: int = 24,
|
68 |
+
n_features: int = 6,
|
69 |
+
n_layers: int = 3,
|
70 |
+
batch_size: int = 256,
|
71 |
+
gamma: float = 1.0,
|
72 |
+
) -> None:
|
73 |
+
super().__init__()
|
74 |
+
self.seq_len = seq_len
|
75 |
+
self.hidden_dim = hidden_dim
|
76 |
+
self.dim = n_features
|
77 |
+
|
78 |
+
assert module in ["gru", "lstm", "lstmLN"]
|
79 |
+
self.module = module
|
80 |
+
|
81 |
+
self.n_layers = n_layers
|
82 |
+
|
83 |
+
self.batch_size = batch_size
|
84 |
+
|
85 |
+
self.gamma = gamma
|
86 |
+
|
87 |
+
# ----------------------------
|
88 |
+
# Basic Architectures
|
89 |
+
# ----------------------------
|
90 |
+
self.embedder = BasicRecurrentArchitecture(
|
91 |
+
hidden_dim=self.hidden_dim,
|
92 |
+
output_dim=self.hidden_dim,
|
93 |
+
n_layers=self.n_layers,
|
94 |
+
network_type=self.module,
|
95 |
+
name="Embedder",
|
96 |
+
).build()
|
97 |
+
|
98 |
+
self.recovery = BasicRecurrentArchitecture(
|
99 |
+
hidden_dim=self.hidden_dim,
|
100 |
+
output_dim=self.dim,
|
101 |
+
n_layers=self.n_layers,
|
102 |
+
network_type=self.module,
|
103 |
+
name="Recovery",
|
104 |
+
).build()
|
105 |
+
|
106 |
+
self.supervisor = BasicRecurrentArchitecture(
|
107 |
+
hidden_dim=self.hidden_dim,
|
108 |
+
output_dim=self.hidden_dim,
|
109 |
+
n_layers=self.n_layers,
|
110 |
+
network_type=self.module,
|
111 |
+
name="Supervisor",
|
112 |
+
).build()
|
113 |
+
|
114 |
+
self.discriminator = BasicRecurrentArchitecture(
|
115 |
+
hidden_dim=self.hidden_dim,
|
116 |
+
output_dim=1,
|
117 |
+
n_layers=self.n_layers,
|
118 |
+
network_type=self.module,
|
119 |
+
name="Discriminator",
|
120 |
+
).build()
|
121 |
+
|
122 |
+
self.generator_aux = BasicRecurrentArchitecture(
|
123 |
+
hidden_dim=self.hidden_dim,
|
124 |
+
output_dim=self.hidden_dim,
|
125 |
+
n_layers=self.n_layers,
|
126 |
+
network_type=self.module,
|
127 |
+
name="Generator",
|
128 |
+
).build()
|
129 |
+
|
130 |
+
# ----------------------------
|
131 |
+
# Optimizers: call .compile() to set them
|
132 |
+
# ----------------------------
|
133 |
+
self.autoencoder_opt = keras.optimizers.Adam()
|
134 |
+
self.adversarialsup_opt = keras.optimizers.Adam()
|
135 |
+
self.generator_opt = keras.optimizers.Adam()
|
136 |
+
self.embedder_opt = keras.optimizers.Adam()
|
137 |
+
self.discriminator_opt = keras.optimizers.Adam()
|
138 |
+
# ----------------------------
|
139 |
+
# Loss functions: call .compile() to set them
|
140 |
+
# ----------------------------
|
141 |
+
self._mse = keras.losses.MeanSquaredError()
|
142 |
+
self._bce = keras.losses.BinaryCrossentropy()
|
143 |
+
|
144 |
+
# --------------------------
|
145 |
+
# All losses: will be populated in .fit()
|
146 |
+
# --------------------------
|
147 |
+
self.training_losses_history = LossTracker()
|
148 |
+
|
149 |
+
# --------------------------
|
150 |
+
# Synthetic data generation during training: will be populated in .fit()
|
151 |
+
# --------------------------
|
152 |
+
self.synthetic_data_generated_in_training = dict()
|
153 |
+
|
154 |
+
def compile(
|
155 |
+
self,
|
156 |
+
d_optimizer: keras.optimizers.Optimizer = keras.optimizers.Adam(), # keras.optimizers.legacy.Adam()
|
157 |
+
g_optimizer: keras.optimizers.Optimizer = keras.optimizers.Adam(),
|
158 |
+
emb_optimizer: keras.optimizers.Optimizer = keras.optimizers.Adam(),
|
159 |
+
supgan_optimizer: keras.optimizers.Optimizer = keras.optimizers.Adam(),
|
160 |
+
ae_optimizer: keras.optimizers.Optimizer = keras.optimizers.Adam(),
|
161 |
+
emb_loss: keras.losses.Loss = keras.losses.MeanSquaredError(),
|
162 |
+
clf_loss: keras.losses.Loss = keras.losses.BinaryCrossentropy(),
|
163 |
+
) -> None:
|
164 |
+
"""
|
165 |
+
Assign optimizers and loss functions.
|
166 |
+
|
167 |
+
:param d_optimizer: An optimizer for the GAN's discriminator
|
168 |
+
:param g_optimizer: An optimizer for the GAN's generator
|
169 |
+
:param emb_optimizer: An optimizer for the GAN's embedder
|
170 |
+
:param supgan_optimizer: An optimizer for the adversarial supervised network
|
171 |
+
:param ae_optimizer: An optimizer for the autoencoder network
|
172 |
+
:param emb_loss: A loss function for the embedding recovery
|
173 |
+
:param clf_loss: A loss function for the discriminator task
|
174 |
+
:return: None
|
175 |
+
"""
|
176 |
+
# ----------------------------
|
177 |
+
# Optimizers
|
178 |
+
# ----------------------------
|
179 |
+
self.autoencoder_opt = ae_optimizer
|
180 |
+
self.adversarialsup_opt = supgan_optimizer
|
181 |
+
self.generator_opt = g_optimizer
|
182 |
+
self.embedder_opt = emb_optimizer
|
183 |
+
self.discriminator_opt = d_optimizer
|
184 |
+
# ----------------------------
|
185 |
+
# Loss functions
|
186 |
+
# ----------------------------
|
187 |
+
self._mse = emb_loss
|
188 |
+
self._bce = clf_loss
|
189 |
+
|
190 |
+
def _define_timegan(self) -> None:
|
191 |
+
# --------------------------------
|
192 |
+
# Data and Noise Inputs
|
193 |
+
# --------------------------------
|
194 |
+
X = keras.layers.Input(
|
195 |
+
shape=[self.seq_len, self.dim], batch_size=self.batch_size, name="RealData"
|
196 |
+
)
|
197 |
+
|
198 |
+
Z = keras.layers.Input(
|
199 |
+
shape=[self.seq_len, self.dim],
|
200 |
+
batch_size=self.batch_size,
|
201 |
+
name="RandomNoise",
|
202 |
+
)
|
203 |
+
|
204 |
+
# --------------------------------
|
205 |
+
# Autoencoder: Embedder + Recovery
|
206 |
+
# --------------------------------
|
207 |
+
H = self.embedder(X)
|
208 |
+
X_tilde = self.recovery(H)
|
209 |
+
|
210 |
+
self.autoencoder = keras.models.Model(
|
211 |
+
inputs=X, outputs=X_tilde, name="Autoencoder"
|
212 |
+
)
|
213 |
+
self.autoencoder.summary()
|
214 |
+
|
215 |
+
# ---------------------------------
|
216 |
+
# Adversarial Supervised
|
217 |
+
# ---------------------------------
|
218 |
+
E_Hat = self.generator_aux(Z)
|
219 |
+
H_hat = self.supervisor(E_Hat)
|
220 |
+
Y_fake = self.discriminator(H_hat)
|
221 |
+
|
222 |
+
self.adversarial_supervised = keras.models.Model(
|
223 |
+
inputs=Z, outputs=Y_fake, name="AdversarialSupervised"
|
224 |
+
)
|
225 |
+
self.adversarial_supervised.summary()
|
226 |
+
|
227 |
+
# ---------------------------------
|
228 |
+
# Adversarial embedded in latent space
|
229 |
+
# ---------------------------------
|
230 |
+
Y_fake_e = self.discriminator(E_Hat)
|
231 |
+
|
232 |
+
self.adversarial_embedded = keras.models.Model(
|
233 |
+
inputs=Z, outputs=Y_fake_e, name="AdversarialEmbedded"
|
234 |
+
)
|
235 |
+
self.adversarial_embedded.summary()
|
236 |
+
|
237 |
+
# ---------------------------------
|
238 |
+
# Synthetic data generator
|
239 |
+
# ---------------------------------
|
240 |
+
X_hat = self.recovery(H_hat)
|
241 |
+
self.generator = keras.models.Model(
|
242 |
+
inputs=Z, outputs=X_hat, name="FinalGenerator"
|
243 |
+
)
|
244 |
+
self.generator.summary()
|
245 |
+
|
246 |
+
# --------------------------------
|
247 |
+
# Discriminator
|
248 |
+
# --------------------------------
|
249 |
+
Y_real = self.discriminator(H)
|
250 |
+
self.discriminator_model = keras.models.Model(
|
251 |
+
inputs=X, outputs=Y_real, name="FinalDiscriminator"
|
252 |
+
)
|
253 |
+
self.discriminator_model.summary()
|
254 |
+
|
255 |
+
@tf.function
|
256 |
+
def _train_autoencoder(
|
257 |
+
self, X: TensorLike, optimizer: keras.optimizers.Optimizer
|
258 |
+
) -> float:
|
259 |
+
"""
|
260 |
+
1. Embedding network training: minimize E_loss0
|
261 |
+
"""
|
262 |
+
with tf.GradientTape() as tape:
|
263 |
+
X_tilde = self.autoencoder(X)
|
264 |
+
E_loss_T0 = self._mse(X, X_tilde)
|
265 |
+
E_loss0 = 10.0 * tf.sqrt(E_loss_T0)
|
266 |
+
|
267 |
+
e_vars = self.embedder.trainable_variables
|
268 |
+
r_vars = self.recovery.trainable_variables
|
269 |
+
all_trainable = e_vars + r_vars
|
270 |
+
|
271 |
+
gradients = tape.gradient(E_loss0, all_trainable)
|
272 |
+
optimizer.apply_gradients(zip(gradients, all_trainable))
|
273 |
+
return E_loss0
|
274 |
+
|
275 |
+
@tf.function
|
276 |
+
def _train_supervisor(
|
277 |
+
self, X: TensorLike, optimizer: keras.optimizers.Optimizer
|
278 |
+
) -> float:
|
279 |
+
"""
|
280 |
+
2. Training with supervised loss only: minimize G_loss_S
|
281 |
+
"""
|
282 |
+
with tf.GradientTape() as tape:
|
283 |
+
H = self.embedder(X)
|
284 |
+
H_hat_supervised = self.supervisor(H)
|
285 |
+
G_loss_S = self._mse(H[:, 1:, :], H_hat_supervised[:, :-1, :])
|
286 |
+
|
287 |
+
g_vars = self.generator.trainable_variables
|
288 |
+
s_vars = self.supervisor.trainable_variables
|
289 |
+
all_trainable = g_vars + s_vars
|
290 |
+
gradients = tape.gradient(G_loss_S, all_trainable)
|
291 |
+
apply_grads = [
|
292 |
+
(grad, var)
|
293 |
+
for (grad, var) in zip(gradients, all_trainable)
|
294 |
+
if grad is not None
|
295 |
+
]
|
296 |
+
optimizer.apply_gradients(apply_grads)
|
297 |
+
return G_loss_S
|
298 |
+
|
299 |
+
@tf.function
|
300 |
+
def _train_generator(
|
301 |
+
self, X: TensorLike, Z: TensorLike, optimizer: keras.optimizers.Optimizer
|
302 |
+
) -> T.Tuple[float, float, float, float, float]:
|
303 |
+
"""
|
304 |
+
3. Joint training (Generator training twice more than discriminator training): minimize G_loss
|
305 |
+
"""
|
306 |
+
with tf.GradientTape() as tape:
|
307 |
+
# 1. Adversarial loss
|
308 |
+
Y_fake = self.adversarial_supervised(Z)
|
309 |
+
G_loss_U = self._bce(y_true=tf.ones_like(Y_fake), y_pred=Y_fake)
|
310 |
+
|
311 |
+
Y_fake_e = self.adversarial_embedded(Z)
|
312 |
+
G_loss_U_e = self._bce(y_true=tf.ones_like(Y_fake_e), y_pred=Y_fake_e)
|
313 |
+
# 2. Supervised loss
|
314 |
+
H = self.embedder(X)
|
315 |
+
H_hat_supervised = self.supervisor(H)
|
316 |
+
G_loss_S = self._mse(H[:, 1:, :], H_hat_supervised[:, :-1, :])
|
317 |
+
|
318 |
+
# 3. Two Moments
|
319 |
+
X_hat = self.generator(Z)
|
320 |
+
G_loss_V = self._compute_generator_moments_loss(X, X_hat)
|
321 |
+
|
322 |
+
# 4. Summation
|
323 |
+
G_loss = (
|
324 |
+
G_loss_U
|
325 |
+
+ self.gamma * G_loss_U_e
|
326 |
+
+ 100 * tf.sqrt(G_loss_S)
|
327 |
+
+ 100 * G_loss_V
|
328 |
+
)
|
329 |
+
|
330 |
+
g_vars = self.generator_aux.trainable_variables
|
331 |
+
s_vars = self.supervisor.trainable_variables
|
332 |
+
all_trainable = g_vars + s_vars
|
333 |
+
gradients = tape.gradient(G_loss, all_trainable)
|
334 |
+
apply_grads = [
|
335 |
+
(grad, var)
|
336 |
+
for (grad, var) in zip(gradients, all_trainable)
|
337 |
+
if grad is not None
|
338 |
+
]
|
339 |
+
optimizer.apply_gradients(apply_grads)
|
340 |
+
return G_loss_U, G_loss_U_e, G_loss_S, G_loss_V, G_loss
|
341 |
+
|
342 |
+
@tf.function
|
343 |
+
def _train_embedder(
|
344 |
+
self, X: TensorLike, optimizer: keras.optimizers.Optimizer
|
345 |
+
) -> T.Tuple[float, float]:
|
346 |
+
"""
|
347 |
+
Train embedder during joint training: minimize E_loss
|
348 |
+
"""
|
349 |
+
with tf.GradientTape() as tape:
|
350 |
+
# Supervised Loss
|
351 |
+
H = self.embedder(X)
|
352 |
+
H_hat_supervised = self.supervisor(H)
|
353 |
+
G_loss_S = self._mse(H[:, 1:, :], H_hat_supervised[:, :-1, :])
|
354 |
+
|
355 |
+
# Reconstruction Loss
|
356 |
+
X_tilde = self.autoencoder(X)
|
357 |
+
E_loss_T0 = self._mse(X, X_tilde)
|
358 |
+
E_loss0 = 10 * tf.sqrt(E_loss_T0)
|
359 |
+
|
360 |
+
E_loss = E_loss0 + 0.1 * G_loss_S
|
361 |
+
|
362 |
+
e_vars = self.embedder.trainable_variables
|
363 |
+
r_vars = self.recovery.trainable_variables
|
364 |
+
all_trainable = e_vars + r_vars
|
365 |
+
gradients = tape.gradient(E_loss, all_trainable)
|
366 |
+
optimizer.apply_gradients(zip(gradients, all_trainable))
|
367 |
+
return E_loss, E_loss_T0
|
368 |
+
|
369 |
+
@tf.function
|
370 |
+
def _train_discriminator(
|
371 |
+
self, X: TensorLike, Z: TensorLike, optimizer: keras.optimizers.Optimizer
|
372 |
+
) -> float:
|
373 |
+
"""
|
374 |
+
minimize D_loss
|
375 |
+
"""
|
376 |
+
with tf.GradientTape() as tape:
|
377 |
+
D_loss = self._check_discriminator_loss(X, Z)
|
378 |
+
|
379 |
+
d_vars = self.discriminator.trainable_variables
|
380 |
+
gradients = tape.gradient(D_loss, d_vars)
|
381 |
+
optimizer.apply_gradients(zip(gradients, d_vars))
|
382 |
+
return D_loss
|
383 |
+
|
384 |
+
@staticmethod
|
385 |
+
def _compute_generator_moments_loss(
|
386 |
+
y_true: TensorLike, y_pred: TensorLike
|
387 |
+
) -> float:
|
388 |
+
"""
|
389 |
+
:param y_true: TensorLike
|
390 |
+
:param y_pred: TensorLike
|
391 |
+
:return G_loss_V: float
|
392 |
+
"""
|
393 |
+
_eps = 1e-6
|
394 |
+
y_true_mean, y_true_var = tf.nn.moments(x=y_true, axes=[0])
|
395 |
+
y_pred_mean, y_pred_var = tf.nn.moments(x=y_pred, axes=[0])
|
396 |
+
# G_loss_V2
|
397 |
+
g_loss_mean = tf.reduce_mean(abs(y_true_mean - y_pred_mean))
|
398 |
+
# G_loss_V1
|
399 |
+
g_loss_var = tf.reduce_mean(
|
400 |
+
abs(tf.sqrt(y_true_var + _eps) - tf.sqrt(y_pred_var + _eps))
|
401 |
+
)
|
402 |
+
# G_loss_V = G_loss_V1 + G_loss_V2
|
403 |
+
return g_loss_mean + g_loss_var
|
404 |
+
|
405 |
+
def _check_discriminator_loss(self, X: TensorLike, Z: TensorLike) -> float:
|
406 |
+
"""
|
407 |
+
:param X: TensorLike
|
408 |
+
:param Z: TensorLike
|
409 |
+
:return D_loss: float
|
410 |
+
"""
|
411 |
+
# Loss on false negatives
|
412 |
+
Y_real = self.discriminator_model(X)
|
413 |
+
D_loss_real = self._bce(y_true=tf.ones_like(Y_real), y_pred=Y_real)
|
414 |
+
|
415 |
+
# Loss on false positives
|
416 |
+
Y_fake = self.adversarial_supervised(Z)
|
417 |
+
D_loss_fake = self._bce(y_true=tf.zeros_like(Y_fake), y_pred=Y_fake)
|
418 |
+
|
419 |
+
Y_fake_e = self.adversarial_embedded(Z)
|
420 |
+
D_loss_fake_e = self._bce(y_true=tf.zeros_like(Y_fake_e), y_pred=Y_fake_e)
|
421 |
+
|
422 |
+
D_loss = D_loss_real + D_loss_fake + self.gamma * D_loss_fake_e
|
423 |
+
return D_loss
|
424 |
+
|
425 |
+
def _generate_noise(self) -> TensorLike:
|
426 |
+
"""
|
427 |
+
Random vector generation
|
428 |
+
:return Z, generated random vector
|
429 |
+
"""
|
430 |
+
while True:
|
431 |
+
yield np.random.uniform(low=0, high=1, size=(self.seq_len, self.dim))
|
432 |
+
|
433 |
+
def get_noise_batch(self) -> T.Iterator:
|
434 |
+
"""
|
435 |
+
Return an iterator of random noise vectors
|
436 |
+
"""
|
437 |
+
return iter(
|
438 |
+
tf.data.Dataset.from_generator(
|
439 |
+
self._generate_noise, output_types=tf.float32
|
440 |
+
)
|
441 |
+
.batch(self.batch_size)
|
442 |
+
.repeat()
|
443 |
+
)
|
444 |
+
|
445 |
+
def _get_data_batch(self, data: TensorLike, n_windows: int) -> T.Iterator:
|
446 |
+
"""
|
447 |
+
Return an iterator of shuffled input data
|
448 |
+
"""
|
449 |
+
data = tf.convert_to_tensor(data, dtype=tf.float32)
|
450 |
+
return iter(
|
451 |
+
tf.data.Dataset.from_tensor_slices(data)
|
452 |
+
.shuffle(buffer_size=n_windows)
|
453 |
+
.batch(self.batch_size)
|
454 |
+
.repeat()
|
455 |
+
)
|
456 |
+
|
457 |
+
def fit(
|
458 |
+
self,
|
459 |
+
data: T.Union[TensorLike, tf.data.Dataset],
|
460 |
+
epochs: int,
|
461 |
+
checkpoints_interval: T.Optional[int] = None,
|
462 |
+
generate_synthetic: T.Tuple = (),
|
463 |
+
*args,
|
464 |
+
**kwargs,
|
465 |
+
):
|
466 |
+
"""
|
467 |
+
:param data: TensorLike, the training data
|
468 |
+
:param epochs: int, the number of epochs for the training loops
|
469 |
+
:param checkpoints_interval: int, the interval for printing out loss values
|
470 |
+
(loss values will be print out every 'checkpoints_interval' epochs)
|
471 |
+
Default: None (no print out)
|
472 |
+
:param generate_synthetic: list of int, a list of epoch numbers when synthetic data samples are generated
|
473 |
+
Default: [] (no generation)
|
474 |
+
:return None
|
475 |
+
"""
|
476 |
+
assert not (
|
477 |
+
self.autoencoder_opt is None
|
478 |
+
or self.adversarialsup_opt is None
|
479 |
+
or self.generator_opt is None
|
480 |
+
or self.embedder_opt is None
|
481 |
+
or self.discriminator_opt is None
|
482 |
+
), "One of the optimizers is not defined. Please call .compile() to set them"
|
483 |
+
assert not (
|
484 |
+
self._mse is None or self._bce is None
|
485 |
+
), "One of the loss functions is not defined. Please call .compile() to set them"
|
486 |
+
|
487 |
+
# take tf.data.Dataset | TensorLike
|
488 |
+
if isinstance(data, tf.data.Dataset):
|
489 |
+
batches = iter(data.repeat())
|
490 |
+
else:
|
491 |
+
batches = self._get_data_batch(data, n_windows=len(data))
|
492 |
+
|
493 |
+
# Define the model
|
494 |
+
self._define_timegan()
|
495 |
+
|
496 |
+
# 1. Embedding network training
|
497 |
+
logger.info("Start Embedding Network Training")
|
498 |
+
|
499 |
+
for epoch in tqdm(range(epochs), desc="Autoencoder - training"):
|
500 |
+
X_ = next(batches)
|
501 |
+
step_e_loss_0 = self._train_autoencoder(X_, self.autoencoder_opt)
|
502 |
+
|
503 |
+
# Checkpoint
|
504 |
+
if checkpoints_interval is not None and epoch % checkpoints_interval == 0:
|
505 |
+
logger.info(f"step: {epoch}/{epochs}, e_loss: {step_e_loss_0}")
|
506 |
+
self.training_losses_history["autoencoder"] = float(step_e_loss_0)
|
507 |
+
|
508 |
+
logger.info("Finished Embedding Network Training")
|
509 |
+
|
510 |
+
# 2. Training only with supervised loss
|
511 |
+
logger.info("Start Training with Supervised Loss Only")
|
512 |
+
|
513 |
+
# Adversarial Supervised network training
|
514 |
+
for epoch in tqdm(range(epochs), desc="Adversarial Supervised - training"):
|
515 |
+
X_ = next(batches)
|
516 |
+
step_g_loss_s = self._train_supervisor(X_, self.adversarialsup_opt)
|
517 |
+
|
518 |
+
# Checkpoint
|
519 |
+
if checkpoints_interval is not None and epoch % checkpoints_interval == 0:
|
520 |
+
logger.info(
|
521 |
+
f"step: {epoch}/{epochs}, s_loss: {np.round(np.sqrt(step_g_loss_s), 4)}"
|
522 |
+
)
|
523 |
+
self.training_losses_history["adversarial_supervised"] = float(
|
524 |
+
np.sqrt(step_g_loss_s)
|
525 |
+
)
|
526 |
+
|
527 |
+
logger.info("Finished Training with Supervised Loss Only")
|
528 |
+
|
529 |
+
# 3. Joint Training
|
530 |
+
logger.info("Start Joint Training")
|
531 |
+
|
532 |
+
# GAN with embedding network training
|
533 |
+
for epoch in tqdm(range(epochs), desc="GAN with embedding - training"):
|
534 |
+
# Generator training (twice more than discriminator training)
|
535 |
+
for kk in range(2):
|
536 |
+
X_ = next(batches)
|
537 |
+
Z_ = next(self.get_noise_batch())
|
538 |
+
# --------------------------
|
539 |
+
# Train the generator
|
540 |
+
# --------------------------
|
541 |
+
(
|
542 |
+
step_g_loss_u,
|
543 |
+
step_g_loss_u_e,
|
544 |
+
step_g_loss_s,
|
545 |
+
step_g_loss_v,
|
546 |
+
step_g_loss,
|
547 |
+
) = self._train_generator(X_, Z_, self.generator_opt)
|
548 |
+
|
549 |
+
# --------------------------
|
550 |
+
# Train the embedder
|
551 |
+
# --------------------------
|
552 |
+
_, step_e_loss_t0 = self._train_embedder(X_, self.embedder_opt)
|
553 |
+
|
554 |
+
X_ = next(batches)
|
555 |
+
Z_ = next(self.get_noise_batch())
|
556 |
+
step_d_loss = self._check_discriminator_loss(X_, Z_)
|
557 |
+
if step_d_loss > 0.15:
|
558 |
+
logger.info(
|
559 |
+
"Train Discriminator (discriminator does not work well yet)"
|
560 |
+
)
|
561 |
+
step_d_loss = self._train_discriminator(X_, Z_, self.discriminator_opt)
|
562 |
+
|
563 |
+
# Print multiple checkpoints
|
564 |
+
if checkpoints_interval is not None and epoch % checkpoints_interval == 0:
|
565 |
+
logger.info(
|
566 |
+
f"""step: {epoch}/{epochs},
|
567 |
+
d_loss: {np.round(step_d_loss, 4)},
|
568 |
+
g_loss_u: {np.round(step_g_loss_u, 4)},
|
569 |
+
g_loss_u_e: {np.round(step_g_loss_u_e, 4)},
|
570 |
+
g_loss_s: {np.round(np.sqrt(step_g_loss_s), 4)},
|
571 |
+
g_loss_v: {np.round(step_g_loss_v, 4)},
|
572 |
+
g_loss_v: {np.round(step_g_loss, 4)},
|
573 |
+
e_loss_t0: {np.round(np.sqrt(step_e_loss_t0), 4)}"""
|
574 |
+
)
|
575 |
+
self.training_losses_history["discriminator"] = float(step_d_loss)
|
576 |
+
self.training_losses_history["generator_u"] = float(step_g_loss_u)
|
577 |
+
self.training_losses_history["generator_u_e"] = float(step_g_loss_u_e)
|
578 |
+
self.training_losses_history["generator_v"] = float(step_g_loss_v)
|
579 |
+
self.training_losses_history["generator_s"] = float(np.sqrt(step_g_loss_s))
|
580 |
+
self.training_losses_history["generator"] = float(step_g_loss)
|
581 |
+
self.training_losses_history["embedder"] = float(np.sqrt(step_e_loss_t0))
|
582 |
+
|
583 |
+
# Synthetic data generation
|
584 |
+
if epoch in generate_synthetic:
|
585 |
+
_sample = self.generate(n_samples=len(data))
|
586 |
+
self.synthetic_data_generated_in_training[epoch] = _sample
|
587 |
+
|
588 |
+
logger.info("Finished Joint Training")
|
589 |
+
return
|
590 |
+
|
591 |
+
def generate(self, n_samples: int) -> TensorLike:
|
592 |
+
"""
|
593 |
+
Generate synthetic time series
|
594 |
+
"""
|
595 |
+
steps = n_samples // self.batch_size + 1
|
596 |
+
data = []
|
597 |
+
for _ in trange(steps, desc="Synthetic data generation"):
|
598 |
+
Z_ = next(self.get_noise_batch())
|
599 |
+
records = self.generator(Z_)
|
600 |
+
data.append(records)
|
601 |
+
return np.array(np.vstack(data))[:n_samples]
|
GAN/timevae.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, warnings
|
2 |
+
warnings.filterwarnings('ignore')
|
3 |
+
|
4 |
+
from abc import ABC, abstractmethod
|
5 |
+
import numpy as np
|
6 |
+
import joblib
|
7 |
+
import tensorflow as tf
|
8 |
+
from tensorflow.keras import backend as K
|
9 |
+
from tensorflow.keras.layers import Conv1D, Flatten, Dense, Conv1DTranspose, Reshape, Input, Layer
|
10 |
+
from tensorflow.keras.models import Model
|
11 |
+
from tensorflow.keras.optimizers import Adam
|
12 |
+
from tensorflow.keras.metrics import Mean
|
13 |
+
from tensorflow.keras.backend import random_normal
|
14 |
+
|
15 |
+
class Sampling(Layer):
|
16 |
+
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
|
17 |
+
|
18 |
+
def call(self, inputs):
|
19 |
+
z_mean, z_log_var = inputs
|
20 |
+
batch = tf.shape(z_mean)[0]
|
21 |
+
dim = tf.shape(z_mean)[1]
|
22 |
+
epsilon = random_normal(shape=(batch, dim))
|
23 |
+
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
|
24 |
+
|
25 |
+
class BaseVariationalAutoencoder(Model, ABC):
|
26 |
+
def __init__(self,
|
27 |
+
seq_len,
|
28 |
+
feat_dim,
|
29 |
+
latent_dim,
|
30 |
+
reconstruction_wt=3.0,
|
31 |
+
**kwargs):
|
32 |
+
super(BaseVariationalAutoencoder, self).__init__(**kwargs)
|
33 |
+
self.seq_len = seq_len
|
34 |
+
self.feat_dim = feat_dim
|
35 |
+
self.latent_dim = latent_dim
|
36 |
+
self.reconstruction_wt = reconstruction_wt
|
37 |
+
self.total_loss_tracker = Mean(name="total_loss")
|
38 |
+
self.reconstruction_loss_tracker = Mean(name="reconstruction_loss")
|
39 |
+
self.kl_loss_tracker = Mean(name="kl_loss")
|
40 |
+
|
41 |
+
self.encoder = None
|
42 |
+
self.decoder = None
|
43 |
+
|
44 |
+
def call(self, X):
|
45 |
+
z_mean, _, _ = self.encoder(X)
|
46 |
+
x_decoded = self.decoder(z_mean)
|
47 |
+
if len(x_decoded.shape) == 1: x_decoded = x_decoded.reshape((1, -1))
|
48 |
+
return x_decoded
|
49 |
+
|
50 |
+
def get_num_trainable_variables(self):
|
51 |
+
trainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.trainable_weights]))
|
52 |
+
nonTrainableParams = int(np.sum([np.prod(v.get_shape()) for v in self.non_trainable_weights]))
|
53 |
+
totalParams = trainableParams + nonTrainableParams
|
54 |
+
return trainableParams, nonTrainableParams, totalParams
|
55 |
+
|
56 |
+
def get_prior_samples(self, num_samples):
|
57 |
+
Z = np.random.randn(num_samples, self.latent_dim)
|
58 |
+
samples = self.decoder.predict(Z)
|
59 |
+
return samples
|
60 |
+
|
61 |
+
def get_prior_samples_given_Z(self, Z):
|
62 |
+
samples = self.decoder.predict(Z)
|
63 |
+
return samples
|
64 |
+
|
65 |
+
@abstractmethod
|
66 |
+
def _get_encoder(self, **kwargs):
|
67 |
+
raise NotImplementedError
|
68 |
+
|
69 |
+
@abstractmethod
|
70 |
+
def _get_decoder(self, **kwargs):
|
71 |
+
raise NotImplementedError
|
72 |
+
|
73 |
+
def summary(self):
|
74 |
+
self.encoder.summary()
|
75 |
+
self.decoder.summary()
|
76 |
+
|
77 |
+
def _get_reconstruction_loss(self, X, X_recons):
|
78 |
+
def get_reconst_loss_by_axis(X, X_c, axis):
|
79 |
+
x_r = tf.reduce_mean(X, axis=axis)
|
80 |
+
x_c_r = tf.reduce_mean(X_recons, axis=axis)
|
81 |
+
err = tf.math.squared_difference(x_r, x_c_r)
|
82 |
+
loss = tf.reduce_sum(err)
|
83 |
+
return loss
|
84 |
+
|
85 |
+
# overall
|
86 |
+
err = tf.math.squared_difference(X, X_recons)
|
87 |
+
reconst_loss = tf.reduce_sum(err)
|
88 |
+
|
89 |
+
reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[2]) # by time axis
|
90 |
+
# reconst_loss += get_reconst_loss_by_axis(X, X_recons, axis=[1]) # by feature axis
|
91 |
+
return reconst_loss
|
92 |
+
|
93 |
+
def train_step(self, X):
|
94 |
+
with tf.GradientTape() as tape:
|
95 |
+
z_mean, z_log_var, z = self.encoder(X)
|
96 |
+
|
97 |
+
reconstruction = self.decoder(z)
|
98 |
+
|
99 |
+
reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)
|
100 |
+
|
101 |
+
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
|
102 |
+
kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
|
103 |
+
# kl_loss = kl_loss / self.latent_dim
|
104 |
+
|
105 |
+
total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss
|
106 |
+
|
107 |
+
grads = tape.gradient(total_loss, self.trainable_weights)
|
108 |
+
|
109 |
+
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
|
110 |
+
|
111 |
+
self.total_loss_tracker.update_state(total_loss)
|
112 |
+
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
|
113 |
+
self.kl_loss_tracker.update_state(kl_loss)
|
114 |
+
|
115 |
+
return {
|
116 |
+
"loss": self.total_loss_tracker.result(),
|
117 |
+
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
|
118 |
+
"kl_loss": self.kl_loss_tracker.result(),
|
119 |
+
}
|
120 |
+
|
121 |
+
def test_step(self, X):
|
122 |
+
z_mean, z_log_var, z = self.encoder(X)
|
123 |
+
reconstruction = self.decoder(z)
|
124 |
+
reconstruction_loss = self._get_reconstruction_loss(X, reconstruction)
|
125 |
+
|
126 |
+
kl_loss = -0.5 * (1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var))
|
127 |
+
kl_loss = tf.reduce_sum(tf.reduce_sum(kl_loss, axis=1))
|
128 |
+
# kl_loss = kl_loss / self.latent_dim
|
129 |
+
|
130 |
+
total_loss = self.reconstruction_wt * reconstruction_loss + kl_loss
|
131 |
+
|
132 |
+
self.total_loss_tracker.update_state(total_loss)
|
133 |
+
self.reconstruction_loss_tracker.update_state(reconstruction_loss)
|
134 |
+
self.kl_loss_tracker.update_state(kl_loss)
|
135 |
+
|
136 |
+
return {
|
137 |
+
"loss": self.total_loss_tracker.result(),
|
138 |
+
"reconstruction_loss": self.reconstruction_loss_tracker.result(),
|
139 |
+
"kl_loss": self.kl_loss_tracker.result(),
|
140 |
+
}
|
141 |
+
|
142 |
+
def save_weights(self, model_dir, file_pref):
|
143 |
+
encoder_wts = self.encoder.get_weights()
|
144 |
+
decoder_wts = self.decoder.get_weights()
|
145 |
+
joblib.dump(encoder_wts, os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
|
146 |
+
joblib.dump(decoder_wts, os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))
|
147 |
+
|
148 |
+
def load_weights(self, model_dir, file_pref):
|
149 |
+
encoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}encoder_wts.h5'))
|
150 |
+
decoder_wts = joblib.load(os.path.join(model_dir, f'{file_pref}decoder_wts.h5'))
|
151 |
+
|
152 |
+
self.encoder.set_weights(encoder_wts)
|
153 |
+
self.decoder.set_weights(decoder_wts)
|
154 |
+
|
155 |
+
def save(self, model_dir, file_pref):
|
156 |
+
self.save_weights(model_dir, file_pref)
|
157 |
+
dict_params = {
|
158 |
+
|
159 |
+
'seq_len': self.seq_len,
|
160 |
+
'feat_dim': self.feat_dim,
|
161 |
+
'latent_dim': self.latent_dim,
|
162 |
+
'reconstruction_wt': self.reconstruction_wt,
|
163 |
+
'hidden_layer_sizes': self.hidden_layer_sizes,
|
164 |
+
}
|
165 |
+
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
|
166 |
+
joblib.dump(dict_params, params_file)
|
167 |
+
|
168 |
+
class TimeVAE(BaseVariationalAutoencoder):
|
169 |
+
|
170 |
+
def __init__(self, hidden_layer_sizes, trend_poly=0, num_gen_seas=0, custom_seas=None,
|
171 |
+
use_scaler=False, use_residual_conn=True, **kwargs):
|
172 |
+
'''
|
173 |
+
hidden_layer_sizes: list of number of filters in convolutional layers in encoder and residual connection of decoder.
|
174 |
+
trend_poly: integer for number of orders for trend component. e.g. setting trend_poly = 2 will include linear and quadratic term.
|
175 |
+
num_gen_seas: Number of sine-waves to use to model seasonalities. Each sine wae will have its own amplitude, frequency and phase.
|
176 |
+
custom_seas: list of tuples of (num_seasons, len_per_season).
|
177 |
+
num_seasons: number of seasons per cycle.
|
178 |
+
len_per_season: number of epochs (time-steps) per season.
|
179 |
+
use_residual_conn: boolean value indicating whether to use a residual connection for reconstruction in addition to
|
180 |
+
trend, generic and custom seasonalities.
|
181 |
+
'''
|
182 |
+
|
183 |
+
super(TimeVAE, self).__init__(**kwargs)
|
184 |
+
|
185 |
+
self.hidden_layer_sizes = hidden_layer_sizes
|
186 |
+
self.trend_poly = trend_poly
|
187 |
+
self.num_gen_seas = num_gen_seas
|
188 |
+
self.custom_seas = custom_seas
|
189 |
+
self.use_scaler = use_scaler
|
190 |
+
self.use_residual_conn = use_residual_conn
|
191 |
+
self.encoder = self._get_encoder()
|
192 |
+
self.decoder = self._get_decoder()
|
193 |
+
|
194 |
+
def _get_encoder(self):
|
195 |
+
encoder_inputs = Input(shape=(self.seq_len, self.feat_dim), name='encoder_input')
|
196 |
+
x = encoder_inputs
|
197 |
+
for i, num_filters in enumerate(self.hidden_layer_sizes):
|
198 |
+
x = Conv1D(
|
199 |
+
filters=num_filters,
|
200 |
+
kernel_size=3,
|
201 |
+
strides=2,
|
202 |
+
activation='relu',
|
203 |
+
padding='same',
|
204 |
+
name=f'enc_conv_{i}')(x)
|
205 |
+
|
206 |
+
x = Flatten(name='enc_flatten')(x)
|
207 |
+
|
208 |
+
# save the dimensionality of this last dense layer before the hidden state layer. We need it in the decoder.
|
209 |
+
self.encoder_last_dense_dim = x.get_shape()[-1]
|
210 |
+
|
211 |
+
z_mean = Dense(self.latent_dim, name="z_mean")(x)
|
212 |
+
z_log_var = Dense(self.latent_dim, name="z_log_var")(x)
|
213 |
+
|
214 |
+
encoder_output = Sampling()([z_mean, z_log_var])
|
215 |
+
self.encoder_output = encoder_output
|
216 |
+
|
217 |
+
encoder = Model(encoder_inputs, [z_mean, z_log_var, encoder_output], name="encoder")
|
218 |
+
return encoder
|
219 |
+
|
220 |
+
def _get_decoder(self):
|
221 |
+
decoder_inputs = Input(shape=(int(self.latent_dim)), name='decoder_input')
|
222 |
+
|
223 |
+
outputs = None
|
224 |
+
outputs = self.level_model(decoder_inputs)
|
225 |
+
|
226 |
+
# trend polynomials
|
227 |
+
if self.trend_poly is not None and self.trend_poly > 0:
|
228 |
+
trend_vals = self.trend_model(decoder_inputs)
|
229 |
+
outputs = trend_vals if outputs is None else outputs + trend_vals
|
230 |
+
|
231 |
+
# # generic seasonalities
|
232 |
+
# if self.num_gen_seas is not None and self.num_gen_seas > 0:
|
233 |
+
# gen_seas_vals, freq, phase, amplitude = self.generic_seasonal_model(decoder_inputs)
|
234 |
+
# # gen_seas_vals = self.generic_seasonal_model2(decoder_inputs)
|
235 |
+
# outputs = gen_seas_vals if outputs is None else outputs + gen_seas_vals
|
236 |
+
|
237 |
+
# custom seasons
|
238 |
+
if self.custom_seas is not None and len(self.custom_seas) > 0:
|
239 |
+
cust_seas_vals = self.custom_seasonal_model(decoder_inputs)
|
240 |
+
outputs = cust_seas_vals if outputs is None else outputs + cust_seas_vals
|
241 |
+
|
242 |
+
if self.use_residual_conn:
|
243 |
+
residuals = self._get_decoder_residual(decoder_inputs)
|
244 |
+
outputs = residuals if outputs is None else outputs + residuals
|
245 |
+
|
246 |
+
if self.use_scaler and outputs is not None:
|
247 |
+
scale = self.scale_model(decoder_inputs)
|
248 |
+
outputs *= scale
|
249 |
+
|
250 |
+
# outputs = Activation(activation='sigmoid')(outputs)
|
251 |
+
|
252 |
+
if outputs is None:
|
253 |
+
raise Exception('''Error: No decoder model to use.
|
254 |
+
You must use one or more of:
|
255 |
+
trend, generic seasonality(ies), custom seasonality(ies), and/or residual connection. ''')
|
256 |
+
|
257 |
+
decoder = Model(decoder_inputs, [outputs], name="decoder")
|
258 |
+
return decoder
|
259 |
+
|
260 |
+
def level_model(self, z):
|
261 |
+
level_params = Dense(self.feat_dim, name="level_params", activation='relu')(z)
|
262 |
+
level_params = Dense(self.feat_dim, name="level_params2")(level_params)
|
263 |
+
level_params = Reshape(target_shape=(1, self.feat_dim))(level_params) # shape: (N, 1, D)
|
264 |
+
|
265 |
+
ones_tensor = tf.ones(shape=[1, self.seq_len, 1], dtype=tf.float32) # shape: (1, T, D)
|
266 |
+
|
267 |
+
level_vals = level_params * ones_tensor
|
268 |
+
return level_vals
|
269 |
+
|
270 |
+
def scale_model(self, z):
|
271 |
+
scale_params = Dense(self.feat_dim, name="scale_params", activation='relu')(z)
|
272 |
+
scale_params = Dense(self.feat_dim, name="scale_params2")(scale_params)
|
273 |
+
scale_params = Reshape(target_shape=(1, self.feat_dim))(scale_params) # shape: (N, 1, D)
|
274 |
+
|
275 |
+
scale_vals = tf.repeat(scale_params, repeats=self.seq_len, axis=1) # shape: (N, T, D)
|
276 |
+
return scale_vals
|
277 |
+
|
278 |
+
def trend_model(self, z):
|
279 |
+
trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params", activation='relu')(z)
|
280 |
+
trend_params = Dense(self.feat_dim * self.trend_poly, name="trend_params2")(trend_params)
|
281 |
+
trend_params = Reshape(target_shape=(self.feat_dim, self.trend_poly))(trend_params) # shape: N x D x P
|
282 |
+
|
283 |
+
lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of lin_space : 1d tensor of length T
|
284 |
+
poly_space = K.stack([lin_space ** float(p + 1) for p in range(self.trend_poly)], axis=0) # shape: P x T
|
285 |
+
|
286 |
+
trend_vals = K.dot(trend_params, poly_space) # shape (N, D, T)
|
287 |
+
trend_vals = tf.transpose(trend_vals, perm=[0, 2, 1]) # shape: (N, T, D)
|
288 |
+
trend_vals = K.cast(trend_vals, tf.float32)
|
289 |
+
return trend_vals
|
290 |
+
|
291 |
+
def custom_seasonal_model(self, z):
|
292 |
+
|
293 |
+
N = tf.shape(z)[0]
|
294 |
+
ones_tensor = tf.ones(shape=[N, self.feat_dim, self.seq_len], dtype=tf.int32)
|
295 |
+
|
296 |
+
all_seas_vals = []
|
297 |
+
for i, season_tup in enumerate(self.custom_seas):
|
298 |
+
num_seasons, len_per_season = season_tup
|
299 |
+
|
300 |
+
season_params = Dense(self.feat_dim * num_seasons, name=f"season_params_{i}")(z) # shape: (N, D * S)
|
301 |
+
season_params = Reshape(target_shape=(self.feat_dim, num_seasons))(season_params) # shape: (N, D, S)
|
302 |
+
|
303 |
+
season_indexes_over_time = self._get_season_indexes_over_seq(num_seasons, len_per_season) # shape: (T, )
|
304 |
+
|
305 |
+
dim2_idxes = ones_tensor * tf.reshape(season_indexes_over_time, shape=(1, 1, -1)) # shape: (1, 1, T)
|
306 |
+
|
307 |
+
season_vals = tf.gather(season_params, dim2_idxes, batch_dims=-1) # shape (N, D, T)
|
308 |
+
|
309 |
+
all_seas_vals.append(season_vals)
|
310 |
+
|
311 |
+
all_seas_vals = K.stack(all_seas_vals, axis=-1) # shape: (N, D, T, S)
|
312 |
+
all_seas_vals = tf.reduce_sum(all_seas_vals, axis=-1) # shape (N, D, T)
|
313 |
+
all_seas_vals = tf.transpose(all_seas_vals, perm=[0, 2, 1]) # shape (N, T, D)
|
314 |
+
return all_seas_vals
|
315 |
+
|
316 |
+
def _get_season_indexes_over_seq(self, num_seasons, len_per_season):
|
317 |
+
curr_len = 0
|
318 |
+
season_idx = []
|
319 |
+
curr_idx = 0
|
320 |
+
while curr_len < self.seq_len:
|
321 |
+
reps = len_per_season if curr_len + len_per_season <= self.seq_len else self.seq_len - curr_len
|
322 |
+
season_idx.extend([curr_idx] * reps)
|
323 |
+
curr_idx += 1
|
324 |
+
if curr_idx == num_seasons: curr_idx = 0
|
325 |
+
curr_len += reps
|
326 |
+
return season_idx
|
327 |
+
|
328 |
+
def generic_seasonal_model(self, z):
|
329 |
+
|
330 |
+
freq = Dense(self.feat_dim * self.num_gen_seas, name="g_season_freq", activation='sigmoid')(z)
|
331 |
+
freq = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(freq) # shape: (N, 1, D, S)
|
332 |
+
|
333 |
+
phase = Dense(self.feat_dim * self.num_gen_seas, name="g_season_phase")(z)
|
334 |
+
phase = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(phase) # shape: (N, 1, D, S)
|
335 |
+
|
336 |
+
amplitude = Dense(self.feat_dim * self.num_gen_seas, name="g_season_amplitude")(z)
|
337 |
+
amplitude = Reshape(target_shape=(1, self.feat_dim, self.num_gen_seas))(amplitude) # shape: (N, 1, D, S)
|
338 |
+
|
339 |
+
lin_space = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of lin_space : 1d tensor of length T
|
340 |
+
lin_space = tf.reshape(lin_space, shape=(1, self.seq_len, 1, 1)) # shape: 1, T, 1, 1
|
341 |
+
|
342 |
+
seas_vals = amplitude * K.sin(2. * np.pi * freq * lin_space + phase) # shape: N, T, D, S
|
343 |
+
seas_vals = tf.math.reduce_sum(seas_vals, axis=-1) # shape: N, T, D
|
344 |
+
|
345 |
+
return seas_vals
|
346 |
+
|
347 |
+
def generic_seasonal_model2(self, z):
|
348 |
+
|
349 |
+
season_params = Dense(self.feat_dim * self.num_gen_seas, name="g_season_params")(z)
|
350 |
+
season_params = Reshape(target_shape=(self.feat_dim, self.num_gen_seas))(season_params) # shape: (D, S)
|
351 |
+
|
352 |
+
p = self.num_gen_seas
|
353 |
+
p1, p2 = (p // 2, p // 2) if p % 2 == 0 else (p // 2, p // 2 + 1)
|
354 |
+
|
355 |
+
ls = K.arange(0, float(self.seq_len), 1) / self.seq_len # shape of ls : 1d tensor of length T
|
356 |
+
|
357 |
+
s1 = K.stack([K.cos(2 * np.pi * i * ls) for i in range(p1)], axis=0)
|
358 |
+
s2 = K.stack([K.sin(2 * np.pi * i * ls) for i in range(p2)], axis=0)
|
359 |
+
if p == 1:
|
360 |
+
s = s2
|
361 |
+
else:
|
362 |
+
s = K.concatenate([s1, s2], axis=0)
|
363 |
+
s = K.cast(s, np.float32)
|
364 |
+
|
365 |
+
seas_vals = K.dot(season_params, s, name='g_seasonal_vals')
|
366 |
+
seas_vals = tf.transpose(seas_vals, perm=[0, 2, 1]) # shape: (N, T, D)
|
367 |
+
seas_vals = K.cast(seas_vals, np.float32)
|
368 |
+
print('seas_vals shape', tf.shape(seas_vals))
|
369 |
+
|
370 |
+
return seas_vals
|
371 |
+
|
372 |
+
def _get_decoder_residual(self, x):
|
373 |
+
|
374 |
+
x = Dense(self.encoder_last_dense_dim, name="dec_dense", activation='relu')(x)
|
375 |
+
x = Reshape(target_shape=(-1, self.hidden_layer_sizes[-1]), name="dec_reshape")(x)
|
376 |
+
|
377 |
+
for i, num_filters in enumerate(reversed(self.hidden_layer_sizes[:-1])):
|
378 |
+
x = Conv1DTranspose(
|
379 |
+
filters=num_filters,
|
380 |
+
kernel_size=3,
|
381 |
+
strides=2,
|
382 |
+
padding='same',
|
383 |
+
activation='relu',
|
384 |
+
name=f'dec_deconv_{i}')(x)
|
385 |
+
|
386 |
+
# last de-convolution
|
387 |
+
x = Conv1DTranspose(
|
388 |
+
filters=self.feat_dim,
|
389 |
+
kernel_size=3,
|
390 |
+
strides=2,
|
391 |
+
padding='same',
|
392 |
+
activation='relu',
|
393 |
+
name=f'dec_deconv__{i + 1}')(x)
|
394 |
+
|
395 |
+
x = Flatten(name='dec_flatten')(x)
|
396 |
+
x = Dense(self.seq_len * self.feat_dim, name="decoder_dense_final")(x)
|
397 |
+
residuals = Reshape(target_shape=(self.seq_len, self.feat_dim))(x)
|
398 |
+
return residuals
|
399 |
+
|
400 |
+
def save(self, model_dir, file_pref):
|
401 |
+
|
402 |
+
super().save_weights(model_dir, file_pref)
|
403 |
+
dict_params = {
|
404 |
+
'seq_len': self.seq_len,
|
405 |
+
'feat_dim': self.feat_dim,
|
406 |
+
'latent_dim': self.latent_dim,
|
407 |
+
'reconstruction_wt': self.reconstruction_wt,
|
408 |
+
|
409 |
+
'hidden_layer_sizes': self.hidden_layer_sizes,
|
410 |
+
'trend_poly': self.trend_poly,
|
411 |
+
'num_gen_seas': self.num_gen_seas,
|
412 |
+
'custom_seas': self.custom_seas,
|
413 |
+
'use_scaler': self.use_scaler,
|
414 |
+
'use_residual_conn': self.use_residual_conn,
|
415 |
+
}
|
416 |
+
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
|
417 |
+
joblib.dump(dict_params, params_file)
|
418 |
+
|
419 |
+
@staticmethod
|
420 |
+
def load(model_dir, file_pref):
|
421 |
+
params_file = os.path.join(model_dir, f'{file_pref}parameters.pkl')
|
422 |
+
dict_params = joblib.load(params_file)
|
423 |
+
|
424 |
+
vae_model = TimeVAE(**dict_params)
|
425 |
+
|
426 |
+
vae_model.load_weights(model_dir, file_pref)
|
427 |
+
|
428 |
+
vae_model.compile(optimizer=Adam())
|
429 |
+
|
430 |
+
return vae_model
|
GAN/utils.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import typing as T
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import sklearn
|
7 |
+
import sklearn.manifold
|
8 |
+
import tensorflow as tf
|
9 |
+
import numpy.typing as npt
|
10 |
+
|
11 |
+
from tensorflow import keras
|
12 |
+
from tensorflow.python.types.core import TensorLike
|
13 |
+
|
14 |
+
Tensor = T.Union[tf.Tensor, npt.NDArray]
|
15 |
+
OptTensor = T.Optional[Tensor]
|
16 |
+
|
17 |
+
|
18 |
+
EPS = 1e-18
|
19 |
+
class TSFeatureScaler:
|
20 |
+
"""Global time series scaler that scales all features to [0,1] then normalizes to [-1,1]"""
|
21 |
+
|
22 |
+
def __init__(self) -> None:
|
23 |
+
self.min_val = None
|
24 |
+
self.max_val = None
|
25 |
+
|
26 |
+
def fit(self, X: TensorLike) -> "TSFeatureScaler":
|
27 |
+
"""
|
28 |
+
Fit scaler to data
|
29 |
+
|
30 |
+
Args:
|
31 |
+
X: Input tensor of shape [N, T, D]
|
32 |
+
(N: samples, T: timesteps, D: features)
|
33 |
+
"""
|
34 |
+
# 计算整个数据集的全局最大最小值
|
35 |
+
self.min_val = np.min(X)
|
36 |
+
self.max_val = np.max(X)
|
37 |
+
return self
|
38 |
+
|
39 |
+
def transform(self, X: TensorLike) -> TensorLike:
|
40 |
+
"""
|
41 |
+
Transform data in two steps:
|
42 |
+
1. Scale to [0,1] using min-max scaling
|
43 |
+
2. Normalize to [-1,1]
|
44 |
+
"""
|
45 |
+
if self.min_val is None or self.max_val is None:
|
46 |
+
raise ValueError("Scaler must be fitted before transform")
|
47 |
+
|
48 |
+
# 1. 缩放到[0,1]
|
49 |
+
X_scaled = (X - self.min_val) / (self.max_val - self.min_val + EPS)
|
50 |
+
|
51 |
+
# 2. 归一化到[-1,1]
|
52 |
+
X_normalized = 2.0 * X_scaled - 1.0
|
53 |
+
|
54 |
+
return X_normalized
|
55 |
+
|
56 |
+
def inverse_transform(self, X: TensorLike) -> TensorLike:
|
57 |
+
"""
|
58 |
+
Inverse transform data:
|
59 |
+
1. From [-1,1] back to [0,1]
|
60 |
+
2. From [0,1] back to original range
|
61 |
+
"""
|
62 |
+
if self.min_val is None or self.max_val is None:
|
63 |
+
raise ValueError("Scaler must be fitted before inverse_transform")
|
64 |
+
|
65 |
+
# 1. 从[-1,1]转回[0,1]
|
66 |
+
X_scaled = (X + 1.0) / 2.0
|
67 |
+
|
68 |
+
# 2. 从[0,1]转回原始范围
|
69 |
+
X_original = X_scaled * (self.max_val - self.min_val + EPS) + self.min_val
|
70 |
+
|
71 |
+
return X_original
|
72 |
+
|
73 |
+
def fit_transform(self, X: TensorLike) -> TensorLike:
|
74 |
+
"""Fit to data, then transform it"""
|
75 |
+
return self.fit(X).transform(X)
|
76 |
+
|
77 |
+
def get_range(self) -> T.Tuple[float, float]:
|
78 |
+
"""获取原始数据的范围"""
|
79 |
+
if self.min_val is None or self.max_val is None:
|
80 |
+
raise ValueError("Scaler must be fitted first")
|
81 |
+
return (self.min_val, self.max_val)
|
82 |
+
|
83 |
+
|
84 |
+
EPS = 1e-18
|
85 |
+
class TSFeatureWiseScaler():
|
86 |
+
def __init__(self, feature_range: T.Tuple[float, float] = (0, 1)) -> None:
|
87 |
+
assert len(feature_range) == 2
|
88 |
+
|
89 |
+
self._min_v, self._max_v = feature_range
|
90 |
+
|
91 |
+
# X: N x T x D
|
92 |
+
def fit(self, X: TensorLike) -> "TSFeatureWiseScaler":
|
93 |
+
D = X.shape[2]
|
94 |
+
self.mins = np.zeros(D)
|
95 |
+
self.maxs = np.zeros(D)
|
96 |
+
|
97 |
+
for i in range(D):
|
98 |
+
self.mins[i] = np.min(X[:, :, i])
|
99 |
+
self.maxs[i] = np.max(X[:, :, i])
|
100 |
+
|
101 |
+
return self
|
102 |
+
|
103 |
+
def transform(self, X: TensorLike) -> TensorLike:
|
104 |
+
return ((X - self.mins) / (self.maxs - self.mins + EPS)) * (self._max_v - self._min_v) + self._min_v
|
105 |
+
|
106 |
+
def inverse_transform(self, X: TensorLike) -> TensorLike:
|
107 |
+
X -= self._min_v
|
108 |
+
X /= self._max_v - self._min_v
|
109 |
+
X *= (self.maxs - self.mins + EPS)
|
110 |
+
X += self.mins
|
111 |
+
return X
|
112 |
+
|
113 |
+
def fit_transform(self, X: TensorLike) -> TensorLike:
|
114 |
+
self.fit(X)
|
115 |
+
return self.transform(X)
|
116 |
+
|
117 |
+
|
118 |
+
def linear_beta_schedule(timesteps, beta_start=1e-4, beta_end=0.99): # beta_end=0.99
|
119 |
+
betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
|
120 |
+
return betas
|
121 |
+
|
122 |
+
|
123 |
+
def cosine_beta_schedule(timesteps, s=0.008):
|
124 |
+
steps = timesteps + 1
|
125 |
+
x = np.linspace(0, timesteps, steps, dtype=np.float64)
|
126 |
+
alphas_cumprod = np.cos(((x / timesteps) + s) / (1 + s) * math.pi * 0.5) ** 2
|
127 |
+
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
|
128 |
+
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
|
129 |
+
betas = np.clip(betas, 0, 0.999)
|
130 |
+
return betas
|
131 |
+
|
132 |
+
|
133 |
+
def reconstruction_loss_by_axis(original: tf.Tensor, reconstructed: tf.Tensor, axis: int = 0) -> tf.Tensor:
|
134 |
+
"""
|
135 |
+
Calculate the reconstruction loss based on a specified axis.
|
136 |
+
|
137 |
+
This function computes the reconstruction loss between the original data and
|
138 |
+
the reconstructed data along a specified axis. The loss can be computed in
|
139 |
+
two ways depending on the chosen axis:
|
140 |
+
|
141 |
+
- When `axis` is 0, it computes the loss as the sum of squared differences
|
142 |
+
between the original and reconstructed data for all elements.
|
143 |
+
- When `axis` is 1 or 2, it computes the mean squared error (MSE) between the
|
144 |
+
mean values along the chosen axis for the original and reconstructed data.
|
145 |
+
|
146 |
+
Parameters:
|
147 |
+
----------
|
148 |
+
original : tf.Tensor
|
149 |
+
The original data tensor.
|
150 |
+
|
151 |
+
reconstructed : tf.Tensor
|
152 |
+
The reconstructed data tensor, typically produced by an autoencoder.
|
153 |
+
|
154 |
+
axis : int, optional (default=0)
|
155 |
+
The axis along which to compute the reconstruction loss:
|
156 |
+
- 0: All elements (sum of squared differences).
|
157 |
+
- 1: Along features (MSE).
|
158 |
+
- 2: Along time steps (MSE).
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
-------
|
162 |
+
tf.Tensor
|
163 |
+
The computed reconstruction loss as a TensorFlow tensor.
|
164 |
+
Notes:
|
165 |
+
------
|
166 |
+
- This function is commonly used in the context of autoencoders and other
|
167 |
+
reconstruction-based models to assess the quality of the reconstruction.
|
168 |
+
- The choice of `axis` determines how the loss is calculated, and it should
|
169 |
+
align with the data's structure.
|
170 |
+
"""
|
171 |
+
|
172 |
+
# axis=0 all (sum of squared diffs)
|
173 |
+
# axis=1 features (MSE)
|
174 |
+
# axis=2 times (MSE)
|
175 |
+
if axis == 0:
|
176 |
+
return tf.reduce_sum(tf.math.squared_difference(original, reconstructed))
|
177 |
+
else:
|
178 |
+
return tf.losses.mean_squared_error(tf.reduce_mean(original, axis=axis), tf.reduce_mean(reconstructed, axis=axis))
|
179 |
+
|
180 |
+
|
181 |
+
def gen_sine_dataset(N: int, T: int, D: int, max_value: int = 10) -> npt.NDArray:
|
182 |
+
result = []
|
183 |
+
for i in range(N):
|
184 |
+
result.append([])
|
185 |
+
a = np.random.random() * max_value
|
186 |
+
shift = np.random.random() * max_value + 1
|
187 |
+
ts = np.arange(0, T, 1)
|
188 |
+
for d in range(1, D + 1):
|
189 |
+
result[-1].append((a * np.sin((d + 3) * ts / 25. + shift)).T)
|
190 |
+
|
191 |
+
return np.transpose(np.array(result), [0, 2, 1])
|
192 |
+
|
193 |
+
|
194 |
+
def gen_sine_vs_const_dataset(N: int, T: int, D: int, max_value: int = 10, const: int = 0) -> T.Tuple[TensorLike, TensorLike]:
|
195 |
+
result_X, result_y = [], []
|
196 |
+
for i in range(N):
|
197 |
+
scales = np.random.random(D) * max_value
|
198 |
+
consts = np.random.random(D) * const
|
199 |
+
shifts = np.random.random(D) * 2
|
200 |
+
alpha = np.random.random()
|
201 |
+
if np.random.random() < 0.5:
|
202 |
+
times = np.repeat(np.arange(0, T, 1)[:, None], D, axis=1) / 10
|
203 |
+
result_X.append(np.sin(alpha * times + shifts) * scales)
|
204 |
+
result_y.append(0)
|
205 |
+
else:
|
206 |
+
result_X.append(np.tile(consts, (T, 1)))
|
207 |
+
result_y.append(1)
|
208 |
+
return np.array(result_X), np.array(result_y)
|
209 |
+
|
210 |
+
|
211 |
+
def visualize_ts_lineplot(
|
212 |
+
ts: Tensor,
|
213 |
+
ys: OptTensor = None,
|
214 |
+
num: int = 5,
|
215 |
+
unite_features: bool = True,
|
216 |
+
) -> None:
|
217 |
+
assert len(ts.shape) == 3
|
218 |
+
|
219 |
+
fig, axs = plt.subplots(num, 1, figsize=(14, 10))
|
220 |
+
if num == 1:
|
221 |
+
axs = [axs]
|
222 |
+
|
223 |
+
ids = np.random.choice(ts.shape[0], size=num, replace=False)
|
224 |
+
for i, sample_id in enumerate(ids):
|
225 |
+
if not unite_features:
|
226 |
+
feature_id = np.random.randint(ts.shape[2])
|
227 |
+
sns.lineplot(
|
228 |
+
x=range(ts.shape[1]),
|
229 |
+
y=ts[sample_id, :, feature_id],
|
230 |
+
ax=axs[i],
|
231 |
+
label=rf"feature \#{feature_id}",
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
for feat_id in range(ts.shape[2]):
|
235 |
+
sns.lineplot(
|
236 |
+
x=range(ts.shape[1]), y=ts[sample_id, :, feat_id], ax=axs[i]
|
237 |
+
)
|
238 |
+
if ys is not None:
|
239 |
+
if len(ys.shape) == 1:
|
240 |
+
axs[i].set_title(ys[sample_id])
|
241 |
+
elif len(ys.shape) == 2:
|
242 |
+
sns.lineplot(
|
243 |
+
x=range(ts.shape[1]),
|
244 |
+
y=ys[sample_id],
|
245 |
+
ax=axs[i].twinx(),
|
246 |
+
color="g",
|
247 |
+
label="Target variable",
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
raise ValueError("ys contains too many dimensions")
|
251 |
+
#plt.show()
|
252 |
+
|
253 |
+
def visualize_tsne(
|
254 |
+
X: Tensor,
|
255 |
+
y: Tensor,
|
256 |
+
X_gen: Tensor,
|
257 |
+
y_gen: Tensor,
|
258 |
+
path: str = "/tmp/tsne_embeddings.pdf",
|
259 |
+
feature_averaging: bool = False,
|
260 |
+
perplexity=30.0
|
261 |
+
) -> None:
|
262 |
+
"""
|
263 |
+
Visualizes t-SNE embeddings of real and synthetic data.
|
264 |
+
|
265 |
+
This function generates a scatter plot of t-SNE embeddings for real and synthetic data.
|
266 |
+
Each data point is represented by a marker on the plot, and the colors of the markers
|
267 |
+
correspond to the corresponding class labels of the data points.
|
268 |
+
|
269 |
+
:param X: The original real data tensor of shape (num_samples, num_features).
|
270 |
+
:type X: tsgm.types.Tensor
|
271 |
+
:param y: The labels of the original real data tensor of shape (num_samples,).
|
272 |
+
:type y: tsgm.types.Tensor
|
273 |
+
:param X_gen: The generated synthetic data tensor of shape (num_samples, num_features).
|
274 |
+
:type X_gen: tsgm.types.Tensor
|
275 |
+
:param y_gen: The labels of the generated synthetic data tensor of shape (num_samples,).
|
276 |
+
:type y_gen: tsgm.types.Tensor
|
277 |
+
:param path: The path to save the visualization as a PDF file. Defaults to "/tmp/tsne_embeddings.pdf".
|
278 |
+
:type path: str, optional
|
279 |
+
:param feature_averaging: Whether to compute the average features for each class. Defaults to False.
|
280 |
+
:type feature_averaging: bool, optional
|
281 |
+
"""
|
282 |
+
tsne = sklearn.manifold.TSNE(n_components=2, perplexity=perplexity, learning_rate="auto", init="random")
|
283 |
+
|
284 |
+
if feature_averaging:
|
285 |
+
X_all = np.concatenate((np.mean(X, axis=2), np.mean(X_gen, axis=2)))
|
286 |
+
|
287 |
+
X_emb = tsne.fit_transform(np.resize(X_all, (X_all.shape[0], X_all.shape[1])))
|
288 |
+
else:
|
289 |
+
X_all = np.concatenate((X, X_gen))
|
290 |
+
|
291 |
+
X_emb = tsne.fit_transform(
|
292 |
+
np.resize(X_all, (X_all.shape[0], X_all.shape[1] * X_all.shape[2]))
|
293 |
+
)
|
294 |
+
|
295 |
+
y_all = np.concatenate((y, y_gen))
|
296 |
+
|
297 |
+
c = np.argmax(y_all, axis=1)
|
298 |
+
colors = {0: "class 0", 1: "class 1"}
|
299 |
+
c = [colors[el] for el in c]
|
300 |
+
point_styles = ["hist"] * X.shape[0] + ["gen"] * X_gen.shape[0]
|
301 |
+
|
302 |
+
plt.figure(figsize=(8, 6), dpi=80)
|
303 |
+
sns.scatterplot(
|
304 |
+
x=X_emb[:, 0],
|
305 |
+
y=X_emb[:, 1],
|
306 |
+
hue=c,
|
307 |
+
style=point_styles,
|
308 |
+
markers={"hist": "<", "gen": "H"},
|
309 |
+
alpha=0.7,
|
310 |
+
)
|
311 |
+
plt.legend()
|
312 |
+
plt.box(False)
|
313 |
+
plt.axis("off")
|
314 |
+
plt.savefig(path)
|
315 |
+
plt.show()
|
GAN/zoo.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import math
|
3 |
+
import typing as T
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy.typing as npt
|
6 |
+
from tensorflow import keras
|
7 |
+
from tensorflow.keras import layers
|
8 |
+
|
9 |
+
from prettytable import PrettyTable
|
10 |
+
|
11 |
+
Tensor = T.Union[tf.Tensor, npt.NDArray]
|
12 |
+
OptTensor = T.Optional[Tensor]
|
13 |
+
|
14 |
+
class Sampling(tf.keras.layers.Layer):
|
15 |
+
def call(self, inputs: Tensor) -> Tensor:
|
16 |
+
z_mean, z_log_var = inputs
|
17 |
+
epsilon = tf.keras.backend.random_normal(shape=tf.shape(z_mean))
|
18 |
+
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
|
19 |
+
|
20 |
+
|
21 |
+
class Architecture(abc.ABC):
|
22 |
+
@abc.abstractproperty
|
23 |
+
def arch_type(self):
|
24 |
+
raise NotImplementedError
|
25 |
+
|
26 |
+
class BaseGANArchitecture(Architecture):
|
27 |
+
@property
|
28 |
+
def discriminator(self) -> keras.models.Model:
|
29 |
+
if hasattr(self, "_discriminator"):
|
30 |
+
return self._discriminator
|
31 |
+
else:
|
32 |
+
raise NotImplementedError
|
33 |
+
|
34 |
+
@property
|
35 |
+
def generator(self) -> keras.models.Model:
|
36 |
+
if hasattr(self, "_generator"):
|
37 |
+
return self._generator
|
38 |
+
else:
|
39 |
+
raise NotImplementedError
|
40 |
+
|
41 |
+
def get(self) -> T.Dict:
|
42 |
+
if hasattr(self, "_discriminator") and hasattr(self, "_generator"):
|
43 |
+
return {"discriminator": self._discriminator, "generator": self._generator}
|
44 |
+
else:
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
class BaseVAEArchitecture(Architecture):
|
48 |
+
@property
|
49 |
+
def encoder(self) -> keras.models.Model:
|
50 |
+
if hasattr(self, "_encoder"):
|
51 |
+
return self._encoder
|
52 |
+
else:
|
53 |
+
raise NotImplementedError
|
54 |
+
|
55 |
+
@property
|
56 |
+
def decoder(self) -> keras.models.Model:
|
57 |
+
if hasattr(self, "_decoder"):
|
58 |
+
return self._decoder
|
59 |
+
else:
|
60 |
+
raise NotImplementedError
|
61 |
+
|
62 |
+
def get(self) -> T.Dict:
|
63 |
+
if hasattr(self, "_encoder") and hasattr(self, "_decoder"):
|
64 |
+
return {"encoder": self._encoder, "decoder": self._decoder}
|
65 |
+
else:
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
class VAE_CONV5Architecture(BaseVAEArchitecture):
|
69 |
+
arch_type = "vae: conv"
|
70 |
+
|
71 |
+
def __init__(self, seq_len: int, feat_dim: int, latent_dim: int) -> None:
|
72 |
+
super().__init__()
|
73 |
+
self._seq_len = seq_len
|
74 |
+
self._feat_dim = feat_dim
|
75 |
+
self._latent_dim = latent_dim
|
76 |
+
self._encoder = self._build_encoder()
|
77 |
+
self._decoder = self._build_decoder()
|
78 |
+
|
79 |
+
def _build_encoder(self) -> keras.models.Model:
|
80 |
+
encoder_inputs = keras.Input(shape=(self._seq_len, self._feat_dim))
|
81 |
+
x = layers.Conv1D(64, 3, activation="relu", strides=1, padding="same")(
|
82 |
+
encoder_inputs
|
83 |
+
)
|
84 |
+
x = layers.Dropout(rate=0.2)(x)
|
85 |
+
# x = layers.Conv1D(64, 2, activation="relu", strides=1, padding="same")(x)
|
86 |
+
# x = layers.Dropout(rate=0.2)(x)
|
87 |
+
# x = layers.Conv1D(64, 2, activation="relu", strides=1, padding="same")(x)
|
88 |
+
# x = layers.Dropout(rate=0.2)(x)
|
89 |
+
# x = layers.Conv1D(64, 2, activation="relu", strides=1, padding="same")(x)
|
90 |
+
# x = layers.Dropout(rate=0.2)(x)
|
91 |
+
# x = layers.Conv1D(64, 4, activation="relu", strides=1, padding="same")(x)
|
92 |
+
# x = layers.Dropout(rate=0.2)(x)
|
93 |
+
x = layers.Flatten()(x)
|
94 |
+
#x = layers.Dense(512, activation="relu")(x)
|
95 |
+
x = layers.Dense(64, activation="relu")(x)
|
96 |
+
z_mean = layers.Dense(self._latent_dim, name="z_mean")(x)
|
97 |
+
z_log_var = layers.Dense(self._latent_dim, name="z_log_var")(x)
|
98 |
+
z = Sampling()([z_mean, z_log_var])
|
99 |
+
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
|
100 |
+
return encoder
|
101 |
+
|
102 |
+
def _build_decoder(self) -> keras.models.Model:
|
103 |
+
latent_inputs = keras.Input(shape=(self._latent_dim,))
|
104 |
+
x = layers.Dense(64, activation="relu")(latent_inputs)
|
105 |
+
# x = layers.Dense(512, activation="relu")(x)
|
106 |
+
# x = layers.Dense(64, activation="relu")(x)
|
107 |
+
|
108 |
+
dense_shape = self._encoder.layers[-6].output_shape[1] * self._seq_len
|
109 |
+
|
110 |
+
x = layers.Dense(dense_shape, activation="relu")(x)
|
111 |
+
|
112 |
+
x = layers.Reshape((self._seq_len, dense_shape // self._seq_len))(x)
|
113 |
+
x = layers.Conv1DTranspose(64, 2, activation="relu", strides=1, padding="same")(
|
114 |
+
x
|
115 |
+
)
|
116 |
+
x = layers.Dropout(rate=0.2)(x)
|
117 |
+
# x = layers.Conv1DTranspose(64, 2, activation="relu", strides=1, padding="same")(
|
118 |
+
# x
|
119 |
+
# )
|
120 |
+
# x = layers.Dropout(rate=0.2)(x)
|
121 |
+
# x = layers.Conv1DTranspose(64, 2, activation="relu", strides=1, padding="same")(
|
122 |
+
# x
|
123 |
+
# )
|
124 |
+
# x = layers.Dropout(rate=0.2)(x)
|
125 |
+
# x = layers.Conv1DTranspose(64, 2, activation="relu", strides=1, padding="same")(
|
126 |
+
# x
|
127 |
+
# )
|
128 |
+
# x = layers.Dropout(rate=0.2)(x)
|
129 |
+
# x = layers.Conv1DTranspose(
|
130 |
+
# 64, 10, activation="relu", strides=1, padding="same"
|
131 |
+
# )(x)
|
132 |
+
# x = layers.Dropout(rate=0.2)(x)
|
133 |
+
decoder_outputs = layers.Conv1DTranspose(
|
134 |
+
self._feat_dim, 3, activation="sigmoid", padding="same"
|
135 |
+
)(x)
|
136 |
+
decoder = keras.Model(latent_inputs, decoder_outputs, name="decoder")
|
137 |
+
return decoder
|
138 |
+
|
139 |
+
class cVAE_CONV5Architecture(BaseVAEArchitecture):
|
140 |
+
arch_type = "vae:conditional"
|
141 |
+
|
142 |
+
def __init__(self, seq_len: int, feat_dim: int, latent_dim: int, output_dim: int = 2) -> None:
|
143 |
+
self._seq_len = seq_len
|
144 |
+
self._feat_dim = feat_dim
|
145 |
+
self._latent_dim = latent_dim
|
146 |
+
self._output_dim = output_dim
|
147 |
+
|
148 |
+
self._encoder = self._build_encoder()
|
149 |
+
self._decoder = self._build_decoder()
|
150 |
+
|
151 |
+
def _build_encoder(self) -> keras.models.Model:
|
152 |
+
encoder_inputs = keras.Input(
|
153 |
+
shape=(self._seq_len, self._feat_dim + self._output_dim)
|
154 |
+
)
|
155 |
+
|
156 |
+
x = layers.Conv1D(64, 3, activation="relu", strides=1, padding="same")(
|
157 |
+
encoder_inputs
|
158 |
+
)
|
159 |
+
x = layers.Dropout(rate=0.2)(x)
|
160 |
+
# x = layers.Conv1D(64, 2, activation="relu", strides=1, padding="same")(x)
|
161 |
+
# x = layers.Dropout(rate=0.2)(x)
|
162 |
+
# x = layers.Conv1D(64, 2, activation="relu", strides=1, padding="same")(x)
|
163 |
+
# x = layers.Dropout(rate=0.2)(x)
|
164 |
+
# x = layers.Conv1D(64, 2, activation="relu", strides=1, padding="same")(x)
|
165 |
+
# x = layers.Dropout(rate=0.2)(x)
|
166 |
+
# x = layers.Conv1D(64, 4, activation="relu", strides=1, padding="same")(x)
|
167 |
+
# x = layers.Dropout(rate=0.2)(x)
|
168 |
+
x = layers.Flatten()(x)
|
169 |
+
#x = layers.Dense(512, activation="relu")(x)
|
170 |
+
x = layers.Dense(64, activation="relu")(x)
|
171 |
+
z_mean = layers.Dense(self._latent_dim * self._seq_len, name="z_mean")(x)
|
172 |
+
z_log_var = layers.Dense(self._latent_dim * self._seq_len, name="z_log_var")(x)
|
173 |
+
z = Sampling()([z_mean, z_log_var])
|
174 |
+
encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z], name="encoder")
|
175 |
+
return encoder
|
176 |
+
|
177 |
+
def _build_decoder(self) -> keras.models.Model:
|
178 |
+
inputs = keras.Input(
|
179 |
+
shape=(
|
180 |
+
self._seq_len,
|
181 |
+
self._latent_dim + self._output_dim,
|
182 |
+
)
|
183 |
+
)
|
184 |
+
x = layers.Conv1DTranspose(64, 2, strides=2, padding="same")(inputs)
|
185 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
186 |
+
x = layers.Dropout(rate=0.2)(x)
|
187 |
+
# x = layers.Conv1DTranspose(64, 2, strides=2, padding="same")(x)
|
188 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
189 |
+
# x = layers.Dropout(rate=0.2)(x)
|
190 |
+
# x = layers.Conv1DTranspose(64, 2, strides=2, padding="same")(x)
|
191 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
192 |
+
# x = layers.Dropout(rate=0.2)(x)
|
193 |
+
|
194 |
+
pool_and_stride = round((x.shape[1] + 1) / (self._seq_len + 1))
|
195 |
+
x = layers.AveragePooling1D(pool_size=pool_and_stride, strides=pool_and_stride)(
|
196 |
+
x
|
197 |
+
)
|
198 |
+
d_output = layers.LocallyConnected1D(self._feat_dim, 1, activation="sigmoid")(x)
|
199 |
+
|
200 |
+
decoder = keras.Model(inputs, d_output, name="decoder")
|
201 |
+
return decoder
|
202 |
+
class GAN_ConvLSTM4Architecture(BaseGANArchitecture):
|
203 |
+
arch_type = "gan: conv_lstm"
|
204 |
+
|
205 |
+
def __init__(self, seq_len: int, feat_dim: int, latent_dim: int, output_dim: int) -> None:
|
206 |
+
super().__init__()
|
207 |
+
self._seq_len = seq_len
|
208 |
+
self._feat_dim = feat_dim
|
209 |
+
self._latent_dim = latent_dim
|
210 |
+
self._output_dim = output_dim
|
211 |
+
self.generator_in_channels = latent_dim + output_dim
|
212 |
+
self.discriminator_in_channels = feat_dim + output_dim
|
213 |
+
|
214 |
+
self._discriminator = self._build_discriminator()
|
215 |
+
self._generator = self._build_generator()
|
216 |
+
|
217 |
+
def _build_discriminator(self) -> keras.models.Model:
|
218 |
+
d_input = keras.Input((self._seq_len, self.discriminator_in_channels))
|
219 |
+
x = layers.Conv1D(64, 3, strides=2, padding="same")(d_input)
|
220 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
221 |
+
x = layers.Dropout(rate=0.2)(x)
|
222 |
+
# x = layers.Conv1D(128, 3, strides=2, padding="same")(x)
|
223 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
224 |
+
# x = layers.Dropout(rate=0.2)(x)
|
225 |
+
# x = layers.Conv1D(128, 3, strides=2, padding="same")(x)
|
226 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
227 |
+
# x = layers.Dropout(rate=0.2)(x)
|
228 |
+
# x = layers.Conv1D(128, 3, strides=2, padding="same")(x)
|
229 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
230 |
+
# x = layers.Dropout(rate=0.2)(x)
|
231 |
+
x = layers.GlobalAvgPool1D()(x)
|
232 |
+
d_output = layers.Dense(1, activation="sigmoid")(x)
|
233 |
+
discriminator = keras.Model(d_input, d_output, name="discriminator")
|
234 |
+
return discriminator
|
235 |
+
|
236 |
+
def _build_generator(self) -> keras.models.Model:
|
237 |
+
g_input = keras.Input((self.generator_in_channels,))
|
238 |
+
x = layers.Dense(8 * 8 * self._seq_len)(g_input)
|
239 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
240 |
+
x = layers.Reshape((self._seq_len, 64))(x)
|
241 |
+
x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
242 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
243 |
+
# x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
244 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
245 |
+
# x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
246 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
247 |
+
# x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
248 |
+
# x = layers.LeakyReLU(alpha=0.2)(x)
|
249 |
+
x = layers.Conv1D(1, 8, padding="same")(x)
|
250 |
+
x = layers.LSTM(256, return_sequences=True)(x)
|
251 |
+
|
252 |
+
pool_and_stride = math.ceil((x.shape[1] + 1) / (self._seq_len + 1))
|
253 |
+
|
254 |
+
x = layers.AveragePooling1D(pool_size=pool_and_stride, strides=pool_and_stride)(
|
255 |
+
x
|
256 |
+
)
|
257 |
+
g_output = layers.LocallyConnected1D(self._feat_dim, 1, activation="tanh")(x)
|
258 |
+
generator = keras.Model(g_input, g_output, name="generator")
|
259 |
+
return generator
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
class GAN_Conv2LSTM4Architecture(BaseGANArchitecture):
|
264 |
+
arch_type = "gan: conv_lstm_2"
|
265 |
+
|
266 |
+
def __init__(self, seq_len: int, feat_dim: int, latent_dim: int, output_dim: int, n_blocks: int = 1, output_activation: str = "tanh") -> None:
|
267 |
+
super().__init__()
|
268 |
+
self._seq_len = seq_len
|
269 |
+
self._feat_dim = feat_dim
|
270 |
+
self._latent_dim = latent_dim
|
271 |
+
self._output_dim = output_dim
|
272 |
+
self._n_blocks = n_blocks
|
273 |
+
self._output_activation = output_activation
|
274 |
+
|
275 |
+
self.generator_in_channels = latent_dim + output_dim
|
276 |
+
self.discriminator_in_channels = feat_dim + output_dim
|
277 |
+
|
278 |
+
self._discriminator = self._build_discriminator()
|
279 |
+
self._generator = self._build_generator(output_activation=output_activation)
|
280 |
+
|
281 |
+
def _build_discriminator(self) -> keras.Model:
|
282 |
+
d_input = keras.Input((self._seq_len, self.discriminator_in_channels))
|
283 |
+
x = d_input
|
284 |
+
for i in range(self._n_blocks - 1):
|
285 |
+
x = layers.LSTM(64, return_sequences=True)(x)
|
286 |
+
x = layers.Dropout(rate=0.2)(x)
|
287 |
+
|
288 |
+
x = layers.LSTM(64, return_sequences=True)(x)
|
289 |
+
x = layers.Dropout(rate=0.2)(x)
|
290 |
+
|
291 |
+
x = layers.GlobalAvgPool1D()(x)
|
292 |
+
d_output = layers.Dense(1, activation="sigmoid")(x)
|
293 |
+
discriminator = keras.Model(d_input, d_output, name="discriminator")
|
294 |
+
return discriminator
|
295 |
+
|
296 |
+
def _build_generator(self, output_activation: str) -> keras.Model:
|
297 |
+
g_input = keras.Input((self.generator_in_channels,))
|
298 |
+
|
299 |
+
x = layers.Dense(8 * 8 * self._seq_len)(g_input)
|
300 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
301 |
+
x = layers.Reshape((self._seq_len, 64))(x)
|
302 |
+
|
303 |
+
for i in range(self._n_blocks - 1):
|
304 |
+
x = layers.LSTM(64, return_sequences=True)(x)
|
305 |
+
x = layers.Dropout(rate=0.2)(x)
|
306 |
+
x = layers.LSTM(256, return_sequences=True)(x)
|
307 |
+
|
308 |
+
pool_and_stride = round((x.shape[1] + 1) / (self._seq_len + 1))
|
309 |
+
|
310 |
+
x = layers.AveragePooling1D(pool_size=pool_and_stride, strides=pool_and_stride)(x)
|
311 |
+
g_output = layers.LocallyConnected1D(self._feat_dim, 1, activation=output_activation)(x)
|
312 |
+
generator = keras.Model(g_input, g_output, name="generator")
|
313 |
+
return generator
|
314 |
+
|
315 |
+
class GAN_Conv3LSTM4Architecture(BaseGANArchitecture):
|
316 |
+
arch_type = "gan: conv_lstm_3"
|
317 |
+
|
318 |
+
def __init__(self, seq_len: int, feat_dim: int, latent_dim: int, output_dim: int) -> None:
|
319 |
+
super().__init__()
|
320 |
+
self._seq_len = seq_len
|
321 |
+
self._feat_dim = feat_dim
|
322 |
+
self._latent_dim = latent_dim
|
323 |
+
self._output_dim = output_dim
|
324 |
+
|
325 |
+
self.generator_in_channels = latent_dim + output_dim
|
326 |
+
self.discriminator_in_channels = feat_dim + output_dim
|
327 |
+
|
328 |
+
self._discriminator = self._build_discriminator()
|
329 |
+
self._generator = self._build_generator()
|
330 |
+
|
331 |
+
def _build_discriminator(self) -> keras.models.Model:
|
332 |
+
d_input = keras.Input((self._seq_len, self.discriminator_in_channels))
|
333 |
+
x = layers.LSTM(64, return_sequences=True)(d_input)
|
334 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
335 |
+
x = layers.Dropout(rate=0.2)(x)
|
336 |
+
x = layers.Conv1D(128, 3, strides=2, padding="same")(x)
|
337 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
338 |
+
x = layers.Dropout(rate=0.2)(x)
|
339 |
+
x = layers.Conv1D(128, 3, strides=2, padding="same")(x)
|
340 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
341 |
+
x = layers.Dropout(rate=0.2)(x)
|
342 |
+
x = layers.Conv1D(128, 3, strides=2, padding="same")(x)
|
343 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
344 |
+
x = layers.Dropout(rate=0.2)(x)
|
345 |
+
x = layers.GlobalAvgPool1D()(x)
|
346 |
+
d_output = layers.Dense(1, activation="sigmoid")(x)
|
347 |
+
discriminator = keras.Model(d_input, d_output, name="discriminator")
|
348 |
+
return discriminator
|
349 |
+
|
350 |
+
def _build_generator(self) -> keras.models.Model:
|
351 |
+
g_input = keras.Input((self.generator_in_channels,))
|
352 |
+
x = layers.Dense(8 * 8 * self._seq_len)(g_input)
|
353 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
354 |
+
x = layers.Reshape((self._seq_len, 64))(x)
|
355 |
+
x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
356 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
357 |
+
x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
358 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
359 |
+
x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
360 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
361 |
+
x = layers.Conv1DTranspose(128, 4, strides=2, padding="same")(x)
|
362 |
+
x = layers.LeakyReLU(alpha=0.2)(x)
|
363 |
+
x = layers.Conv1D(1, 8, padding="same")(x)
|
364 |
+
x = layers.LSTM(256, return_sequences=True)(x)
|
365 |
+
|
366 |
+
pool_and_stride = round((x.shape[1] + 1) / (self._seq_len + 1))
|
367 |
+
|
368 |
+
x = layers.AveragePooling1D(pool_size=pool_and_stride, strides=pool_and_stride)(x)
|
369 |
+
g_output = layers.LocallyConnected1D(self._feat_dim, 1, activation="tanh")(x)
|
370 |
+
generator = keras.Model(g_input, g_output, name="generator")
|
371 |
+
return generator
|
372 |
+
|
373 |
+
|
374 |
+
# class BaseClassificationArchitecture(Architecture):
|
375 |
+
# arch_type = "downstream:classification"
|
376 |
+
#
|
377 |
+
# def __init__(self, seq_len: int, feat_dim: int, output_dim: int) -> None:
|
378 |
+
# self._seq_len = seq_len
|
379 |
+
# self._feat_dim = feat_dim
|
380 |
+
# self._output_dim = output_dim
|
381 |
+
# self._model = self._build_model()
|
382 |
+
#
|
383 |
+
# @property
|
384 |
+
# def model(self) -> keras.models.Model:
|
385 |
+
# return self._model
|
386 |
+
#
|
387 |
+
# def get(self) -> T.Dict:
|
388 |
+
# return {"model": self.model}
|
389 |
+
#
|
390 |
+
# def _build_model(self) -> None:
|
391 |
+
# raise NotImplementedError
|
392 |
+
|
393 |
+
|
394 |
+
# class ConvnArchitecture(BaseClassificationArchitecture):
|
395 |
+
# def __init__(
|
396 |
+
# self, seq_len: int, feat_dim: int, output_dim: int, n_conv_blocks: int = 1
|
397 |
+
# ) -> None:
|
398 |
+
# self._n_conv_blocks = n_conv_blocks
|
399 |
+
# super().__init__(seq_len, feat_dim, output_dim)
|
400 |
+
#
|
401 |
+
# def _build_model(self) -> keras.models.Model:
|
402 |
+
# m_input = keras.Input((self._seq_len, self._feat_dim))
|
403 |
+
# x = m_input
|
404 |
+
# for _ in range(self._n_conv_blocks):
|
405 |
+
# x = layers.Conv1D(filters=64, kernel_size=3, activation="relu")(x)
|
406 |
+
# x = layers.Dropout(0.2)(x)
|
407 |
+
# x = layers.Flatten()(x)
|
408 |
+
# x = layers.Dense(128, activation="relu")(x)
|
409 |
+
# m_output = layers.Dense(self._output_dim, activation="softmax")(x)
|
410 |
+
# return keras.Model(m_input, m_output, name="classification_model")
|
411 |
+
|
412 |
+
# class ConvnLSTMnArchitecture(BaseClassificationArchitecture):
|
413 |
+
# def __init__(
|
414 |
+
# self, seq_len: int, feat_dim: int, output_dim: int, n_conv_lstm_blocks: int = 1
|
415 |
+
# ) -> None:
|
416 |
+
# self._n_conv_lstm_blocks = n_conv_lstm_blocks
|
417 |
+
# super().__init__(seq_len, feat_dim, output_dim)
|
418 |
+
#
|
419 |
+
# def _build_model(self) -> keras.models.Model:
|
420 |
+
# m_input = keras.Input((self._seq_len, self._feat_dim))
|
421 |
+
# x = m_input
|
422 |
+
# for _ in range(self._n_conv_lstm_blocks):
|
423 |
+
# x = layers.Conv1D(filters=64, kernel_size=3, activation="relu")(x)
|
424 |
+
# x = layers.Dropout(0.2)(x)
|
425 |
+
# x = layers.LSTM(128, activation="relu", return_sequences=True)(x)
|
426 |
+
# x = layers.Dropout(0.2)(x)
|
427 |
+
# x = layers.Flatten()(x)
|
428 |
+
# x = layers.Dense(128, activation="relu")(x)
|
429 |
+
# m_output = layers.Dense(self._output_dim, activation="softmax")(x)
|
430 |
+
# return keras.Model(m_input, m_output, name="classification_model")
|
431 |
+
|
432 |
+
class BasicRecurrentArchitecture(Architecture):
|
433 |
+
arch_type = "rnn_architecture"
|
434 |
+
|
435 |
+
def __init__(
|
436 |
+
self,
|
437 |
+
hidden_dim: int,
|
438 |
+
output_dim: int,
|
439 |
+
n_layers: int,
|
440 |
+
network_type: str,
|
441 |
+
name: str = "Sequential",
|
442 |
+
) -> None:
|
443 |
+
"""
|
444 |
+
:param hidden_dim: int, the number of units (e.g. 24)
|
445 |
+
:param output_dim: int, the number of output units (e.g. 1)
|
446 |
+
:param n_layers: int, the number of layers (e.g. 3)
|
447 |
+
:param network_type: str, one of 'gru', 'lstm', or 'lstmLN'
|
448 |
+
:param name: str, model name
|
449 |
+
Default: "Sequential"
|
450 |
+
"""
|
451 |
+
self.hidden_dim = hidden_dim
|
452 |
+
self.output_dim = output_dim
|
453 |
+
self.n_layers = n_layers
|
454 |
+
|
455 |
+
self.network_type = network_type.lower()
|
456 |
+
assert self.network_type in ["gru", "lstm"]
|
457 |
+
|
458 |
+
self._name = name
|
459 |
+
|
460 |
+
def _rnn_cell(self) -> keras.layers.Layer:
|
461 |
+
"""
|
462 |
+
Basic RNN Cell
|
463 |
+
:return cell: keras.layers.Layer
|
464 |
+
"""
|
465 |
+
cell = None
|
466 |
+
# GRU
|
467 |
+
if self.network_type == "gru":
|
468 |
+
cell = keras.layers.GRUCell(self.hidden_dim, activation="tanh")
|
469 |
+
# LSTM
|
470 |
+
elif self.network_type == "lstm":
|
471 |
+
cell = keras.layers.LSTMCell(self.hidden_dim, activation="tanh")
|
472 |
+
return cell
|
473 |
+
|
474 |
+
def _make_network(self, model: keras.models.Model, activation: str, return_sequences: bool) -> keras.models.Model:
|
475 |
+
_cells = tf.keras.layers.StackedRNNCells(
|
476 |
+
[self._rnn_cell() for _ in range(self.n_layers)],
|
477 |
+
name=f"{self.network_type}_x{self.n_layers}",
|
478 |
+
)
|
479 |
+
model.add(keras.layers.RNN(_cells, return_sequences=return_sequences))
|
480 |
+
model.add(
|
481 |
+
keras.layers.Dense(units=self.output_dim, activation=activation, name="OUT")
|
482 |
+
)
|
483 |
+
return model
|
484 |
+
|
485 |
+
def build(self, activation: str = "sigmoid", return_sequences: bool = True) -> keras.models.Model:
|
486 |
+
model = keras.models.Sequential(name=f"{self._name}")
|
487 |
+
model = self._make_network(model, activation=activation, return_sequences=return_sequences)
|
488 |
+
return model
|
489 |
+
|
490 |
+
|
491 |
+
class Zoo(dict):
|
492 |
+
def __init__(self, *arg, **kwargs) -> None:
|
493 |
+
super(Zoo, self).__init__(*arg, **kwargs)
|
494 |
+
|
495 |
+
def summary(self) -> None:
|
496 |
+
summary_table = PrettyTable()
|
497 |
+
summary_table.field_names = ["id", "type"]
|
498 |
+
for k, v in self.items():
|
499 |
+
summary_table.add_row([k, v.arch_type])
|
500 |
+
print(summary_table)
|
501 |
+
|
502 |
+
|
503 |
+
zoo = Zoo(
|
504 |
+
{
|
505 |
+
# Generative models
|
506 |
+
"vae_conv5": VAE_CONV5Architecture,
|
507 |
+
"cvae_conv5": cVAE_CONV5Architecture,
|
508 |
+
"gan_conv_lstm": GAN_ConvLSTM4Architecture,
|
509 |
+
"gan_conv_lstm_2": GAN_Conv2LSTM4Architecture,
|
510 |
+
"gan_conv_lstm_3": GAN_Conv3LSTM4Architecture
|
511 |
+
|
512 |
+
# # Downstream models
|
513 |
+
# "clf_cn": ConvnArchitecture,
|
514 |
+
# "clf_cl_n": ConvnLSTMnArchitecture,
|
515 |
+
# "recurrent": BasicRecurrentArchitecture,
|
516 |
+
}
|
517 |
+
)
|
app.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from GAN.diffusion import build_model, GaussianDiffusion, DiffusionModel
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow.python.types.core import TensorLike
|
7 |
+
import imageio
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
|
11 |
+
EPS = 1e-18
|
12 |
+
class TSFeatureScaler:
|
13 |
+
"""Global time series scaler that scales all features to [0,1] then normalizes to [-1,1]"""
|
14 |
+
|
15 |
+
def __init__(self) -> None:
|
16 |
+
self.min_val = None
|
17 |
+
self.max_val = None
|
18 |
+
|
19 |
+
def fit(self, X: TensorLike) -> "TSFeatureScaler":
|
20 |
+
"""
|
21 |
+
Fit scaler to data
|
22 |
+
|
23 |
+
Args:
|
24 |
+
X: Input tensor of shape [N, T, D]
|
25 |
+
(N: samples, T: timesteps, D: features)
|
26 |
+
"""
|
27 |
+
# 计算整个数据集的全局最大最小值
|
28 |
+
self.min_val = np.min(X)
|
29 |
+
self.max_val = np.max(X)
|
30 |
+
return self
|
31 |
+
|
32 |
+
def transform(self, X: TensorLike) -> TensorLike:
|
33 |
+
"""
|
34 |
+
Transform data in two steps:
|
35 |
+
1. Scale to [0,1] using min-max scaling
|
36 |
+
2. Normalize to [-1,1]
|
37 |
+
"""
|
38 |
+
if self.min_val is None or self.max_val is None:
|
39 |
+
raise ValueError("Scaler must be fitted before transform")
|
40 |
+
|
41 |
+
# 1. 缩放到[0,1]
|
42 |
+
X_scaled = (X - self.min_val) / (self.max_val - self.min_val + EPS)
|
43 |
+
|
44 |
+
# 2. 归一化到[-1,1]
|
45 |
+
X_normalized = 2.0 * X_scaled - 1.0
|
46 |
+
|
47 |
+
return X_normalized
|
48 |
+
|
49 |
+
def fit_transform(self, X: TensorLike) -> TensorLike:
|
50 |
+
"""Fit to data, then transform it"""
|
51 |
+
return self.fit(X).transform(X)
|
52 |
+
|
53 |
+
|
54 |
+
def create_animation(frames, fps=1):
|
55 |
+
"""将帧列表转换为GIF动画数据"""
|
56 |
+
import tempfile
|
57 |
+
import os
|
58 |
+
|
59 |
+
temp_dir = tempfile.gettempdir()
|
60 |
+
temp_path = os.path.join(temp_dir, f"temp_{id(frames)}.gif")
|
61 |
+
|
62 |
+
# 将fps转换为duration (毫秒)
|
63 |
+
duration = int(1000 / fps) # 1000ms = 1s
|
64 |
+
|
65 |
+
# 保存为GIF文件,设置循环播放
|
66 |
+
imageio.mimsave(temp_path, frames, format='GIF', duration=duration, loop=0) # loop=0 表示无限循环
|
67 |
+
|
68 |
+
return temp_path
|
69 |
+
|
70 |
+
def generate_timeseries(input_file, num_samples=16):
|
71 |
+
try:
|
72 |
+
# 加载数据
|
73 |
+
real_data = np.load(input_file.name)
|
74 |
+
scaler = TSFeatureScaler()
|
75 |
+
real_data = scaler.fit_transform(real_data)
|
76 |
+
print(f"Loaded data shape: {real_data.shape}")
|
77 |
+
|
78 |
+
# 确保数据形状正确
|
79 |
+
expected_shape = (None, 96, 3)
|
80 |
+
if len(real_data.shape) != 3 or real_data.shape[1:] != expected_shape[1:]:
|
81 |
+
return None, None
|
82 |
+
|
83 |
+
# 创建模型和必要的组件
|
84 |
+
network = build_model(
|
85 |
+
time_len=96,
|
86 |
+
fea_num=3,
|
87 |
+
d_model=16,
|
88 |
+
n_heads=2,
|
89 |
+
encoder_type='dual'
|
90 |
+
)
|
91 |
+
ema_network = build_model(
|
92 |
+
time_len=96,
|
93 |
+
fea_num=3,
|
94 |
+
d_model=16,
|
95 |
+
n_heads=2,
|
96 |
+
encoder_type='dual'
|
97 |
+
)
|
98 |
+
ema_network.set_weights(network.get_weights())
|
99 |
+
noise_util = GaussianDiffusion(timesteps=10)
|
100 |
+
|
101 |
+
print("Creating model...")
|
102 |
+
model = DiffusionModel(
|
103 |
+
network=network,
|
104 |
+
ema_network=ema_network,
|
105 |
+
timesteps=10,
|
106 |
+
gdf_util=noise_util,
|
107 |
+
data=real_data[:num_samples]
|
108 |
+
)
|
109 |
+
|
110 |
+
# 加载预训练权重
|
111 |
+
checkpoint_path = "/Users/lindan/Dropbox/PhD/Projects/PLF/GAN/code_github/checkpoint/cp.ckpt"
|
112 |
+
print(f"Loading weights from {checkpoint_path}")
|
113 |
+
model.load_weights(checkpoint_path)
|
114 |
+
|
115 |
+
|
116 |
+
# 生成加噪过程的动画
|
117 |
+
print("Generating noising animation...")
|
118 |
+
noise_frames = model.plot_noise_process_app(num_samples)
|
119 |
+
noise_gif = create_animation(noise_frames)
|
120 |
+
|
121 |
+
# 生成去噪过程的动画
|
122 |
+
print("Generating denoising animation...")
|
123 |
+
denoise_frames = model.plot_denoise_process_app(num_samples)[1:]
|
124 |
+
denoise_gif = create_animation(denoise_frames)
|
125 |
+
|
126 |
+
return noise_gif, denoise_gif
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
import traceback
|
130 |
+
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
131 |
+
print(error_msg)
|
132 |
+
return None, None
|
133 |
+
|
134 |
+
def update_example_gifs(num_samples):
|
135 |
+
"""根据选择的样本数更新示例GIF"""
|
136 |
+
return f"noising_example_{num_samples}.gif", f"denoising_example_{num_samples}.gif"
|
137 |
+
|
138 |
+
# 创建Gradio界面
|
139 |
+
with gr.Blocks(title="Wearable Sensors Time-Series Generation") as demo:
|
140 |
+
with gr.Column(elem_id="container"):
|
141 |
+
# Logo
|
142 |
+
gr.Image("logo.webp", elem_id="logo", show_label=False, container=False)
|
143 |
+
|
144 |
+
# 标题和副标题
|
145 |
+
gr.Markdown(
|
146 |
+
"""
|
147 |
+
# Wearable Sensors Time-Series Generation
|
148 |
+
|
149 |
+
<h3 style='font-weight: normal; color: #666;'>-- mainly targeted at livestock wearables sensors data</h3>
|
150 |
+
""")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
noise_gif = gr.Image(value="noising_example_16.gif", label="Noising Process", show_label=True)
|
155 |
+
with gr.Column():
|
156 |
+
denoise_gif = gr.Image(value="denoising_example_16.gif", label="Denoising Process", show_label=True)
|
157 |
+
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
|
161 |
+
num_samples = gr.Radio(
|
162 |
+
choices=[4, 9, 16, 25],
|
163 |
+
value=16,
|
164 |
+
label="Number of samples to generate"
|
165 |
+
)
|
166 |
+
generate_btn = gr.Button("Generate")
|
167 |
+
|
168 |
+
# 将File组件改为Examples组件
|
169 |
+
input_file = gr.File(label="Select example data")
|
170 |
+
gr.Examples(
|
171 |
+
examples=[
|
172 |
+
["app_examples/example1.npy"],
|
173 |
+
["app_examples/example2.npy"],
|
174 |
+
["app_examples/example3.npy"],
|
175 |
+
["app_examples/example4.npy"]
|
176 |
+
],
|
177 |
+
inputs=input_file,
|
178 |
+
label="Example Datasets"
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
# 添加按钮事件处理
|
184 |
+
generate_btn.click(
|
185 |
+
fn=generate_timeseries,
|
186 |
+
inputs=[input_file, num_samples],
|
187 |
+
outputs=[noise_gif, denoise_gif]
|
188 |
+
)
|
189 |
+
|
190 |
+
# 添加样本数选择的事件处理
|
191 |
+
num_samples.change(
|
192 |
+
fn=update_example_gifs,
|
193 |
+
inputs=[num_samples],
|
194 |
+
outputs=[noise_gif, denoise_gif]
|
195 |
+
)
|
196 |
+
|
197 |
+
# 添加CSS样式
|
198 |
+
gr.HTML(
|
199 |
+
"""
|
200 |
+
<style>
|
201 |
+
#container {
|
202 |
+
text-align: center;
|
203 |
+
padding: 2rem 0;
|
204 |
+
}
|
205 |
+
#logo {
|
206 |
+
width: 120px;
|
207 |
+
height: 120px;
|
208 |
+
margin: 0 auto;
|
209 |
+
margin-bottom: 1rem;
|
210 |
+
}
|
211 |
+
h1 {
|
212 |
+
font-size: 3.5rem;
|
213 |
+
margin-bottom: 0.5rem;
|
214 |
+
}
|
215 |
+
h3 {
|
216 |
+
font-size: 1.8rem;
|
217 |
+
margin-top: 0;
|
218 |
+
color: #666;
|
219 |
+
}
|
220 |
+
</style>
|
221 |
+
"""
|
222 |
+
)
|
223 |
+
|
224 |
+
# 启动应用
|
225 |
+
if __name__ == "__main__":
|
226 |
+
demo.launch(share=True)
|
app_examples/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app_examples/example1.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b82cbcf8248355a0c78e9bd5cf48d580363fb70e7b36fdf0bc1ec4ab96c77fe2
|
3 |
+
size 20864
|
app_examples/example2.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c81e71805ffaa6b0f7c74a6046ae2d55c86136ac668fe2517a4e1646f450773
|
3 |
+
size 18560
|
app_examples/example3.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:620459ceb06b59e8b4c9e24b3b4b99a06cab624a632e9f1f4de1166f0f49a1b6
|
3 |
+
size 41600
|
app_examples/example4.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1291113ea1aaea7c8bc9e138abcc9bc1213741960ca23a77f6f41ab069318499
|
3 |
+
size 20864
|
checkpoint/checkpoint
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
model_checkpoint_path: "cp.ckpt"
|
2 |
+
all_model_checkpoint_paths: "cp.ckpt"
|
checkpoint/cp.ckpt.data-00000-of-00001
ADDED
Binary file (989 kB). View file
|
|
checkpoint/cp.ckpt.index
ADDED
Binary file (19.2 kB). View file
|
|
denoising_example_16.gif
ADDED
![]() |
Git LFS Details
|
denoising_example_25.gif
ADDED
![]() |
Git LFS Details
|
denoising_example_4.gif
ADDED
![]() |
Git LFS Details
|
denoising_example_9.gif
ADDED
![]() |
Git LFS Details
|
logo.webp
ADDED
![]() |
noising_example_16.gif
ADDED
![]() |
Git LFS Details
|
noising_example_25.gif
ADDED
![]() |
Git LFS Details
|
noising_example_4.gif
ADDED
![]() |
Git LFS Details
|
noising_example_9.gif
ADDED
![]() |
Git LFS Details
|