import os import pandas as pd import numpy as np from typing import List, Tuple import faiss from faiss import write_index, read_index import gradio as gr from fuzzywuzzy import process # Global variables to store loaded data dataset = None faiss_index = None normalized_data = None book_titles = None def load_data(ratings_path: str, books_path: str) -> Tuple[pd.DataFrame, pd.DataFrame]: ratings = pd.read_csv(ratings_path, encoding='cp1251', sep=';') ratings = ratings[ratings['Book-Rating'] != 0] books = pd.read_csv(books_path, encoding='cp1251', sep=';', on_bad_lines='skip') return ratings, books def preprocess_data(ratings: pd.DataFrame, books: pd.DataFrame) -> pd.DataFrame: dataset = pd.merge(ratings, books, on=['ISBN']) return dataset.apply(lambda x: x.str.lower() if x.dtype == 'object' else x) def get_books_to_compare(data: pd.DataFrame, min_ratings: int = 8) -> List[str]: book_ratings = data.groupby('Book-Title')['User-ID'].count() return book_ratings[book_ratings >= min_ratings].index.tolist() def prepare_correlation_dataset(data: pd.DataFrame, books_to_compare: List[str]) -> pd.DataFrame: ratings_data = data.loc[data['Book-Title'].isin(books_to_compare), ['User-ID', 'Book-Rating', 'Book-Title']] ratings_mean = ratings_data.groupby(['User-ID', 'Book-Title'])['Book-Rating'].mean().reset_index() return ratings_mean.pivot(index='User-ID', columns='Book-Title', values='Book-Rating').fillna(0) def build_faiss_index(data: pd.DataFrame) -> Tuple[faiss.IndexFlatIP, np.ndarray]: transposed_data = data.T.values normalized_data = transposed_data / np.linalg.norm(transposed_data, axis=1)[:, np.newaxis] index_file = "books.index" if os.path.exists(index_file): return read_index(index_file), normalized_data dimension = normalized_data.shape[1] index = faiss.IndexFlatIP(dimension) index.add(normalized_data.astype('float32')) write_index(index, index_file) return index, normalized_data def compute_correlations_faiss(index: faiss.IndexFlatIP, data: np.ndarray, book_titles: List[str], target_book: str) -> pd.DataFrame: target_index = book_titles.index(target_book) target_vector = data[target_index].reshape(1, -1) k = len(book_titles) similarities, I = index.search(target_vector.astype('float32'), k) avg_ratings = np.mean(data, axis=1) corr_df = pd.DataFrame({ 'book': [book_titles[i] for i in I[0]], 'corr': similarities[0], 'avg_rating': avg_ratings[I[0]] }) return corr_df.sort_values('corr', ascending=False) def load_and_prepare_data(): global dataset, faiss_index, normalized_data, book_titles # Download data files from Hugging Face ratings_file = "BX-Book-Ratings.csv" books_file = "BX-Books.csv" ratings, books = load_data(ratings_file, books_file) dataset = preprocess_data(ratings, books) books_to_compare = get_books_to_compare(dataset) correlation_dataset = prepare_correlation_dataset(dataset, books_to_compare) faiss_index, normalized_data = build_faiss_index(correlation_dataset) book_titles = correlation_dataset.columns.tolist() def recommend_books(target_book: str, num_recommendations: int = 10) -> str: global dataset, faiss_index, normalized_data, book_titles if dataset is None or faiss_index is None or normalized_data is None or book_titles is None: load_and_prepare_data() target_book = target_book.lower() # Fuzzy match the input to the closest book title closest_match, score = process.extractOne(target_book, book_titles) if score < 50: # You can adjust this threshold return f"No close match found for '{target_book}'. Please try a different title." if closest_match != target_book: result = f"Closest match: '{closest_match}' (similarity: {score}%)\n\n" else: result = "" correlations = compute_correlations_faiss(faiss_index, normalized_data, book_titles, closest_match) recommendations = correlations[correlations['book'] != target_book].head(num_recommendations) result = f"Top {num_recommendations} recommendations for '{target_book}':\n\n" for i, (_, row) in enumerate(recommendations.iterrows(), 1): result += f"{i}. {row['book']} (Correlation: {row['corr']:.2f})\n" return result # Create Gradio interface iface = gr.Interface( fn=recommend_books, inputs=[ gr.Textbox(label="Enter a book title"), gr.Slider(minimum=1, maximum=20, step=1, label="Number of recommendations", value=10) ], outputs=gr.Textbox(label="Recommendations"), title="Book Recommender", description="Enter a book title to get recommendations based on user ratings and book similarities." ) # Launch the app iface.launch(share=True)