redkye2 commited on
Commit
20244e0
1 Parent(s): c2804db
Files changed (8) hide show
  1. app.py +110 -0
  2. labels.txt +18 -0
  3. person-1.jpg +0 -0
  4. person-2.jpg +0 -0
  5. person-3.jpg +0 -0
  6. person-4.jpg +0 -0
  7. person-5.jpg +0 -0
  8. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "mattmdjaga/segformer_b2_clothes"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "mattmdjaga/segformer_b2_clothes"
15
+ )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [90, 90, 90],
21
+ [255, 0, 0],
22
+ [159, 201, 60],
23
+ [0, 0, 0],
24
+ [70, 65, 217],
25
+ [255, 72, 255],
26
+ [255, 255, 36],
27
+ [90, 255, 255],
28
+ [147, 79, 0],
29
+ [231, 230, 230],
30
+ [102, 0, 51],
31
+ [255, 167, 167],
32
+ [174, 164, 72],
33
+ [20, 137, 137],
34
+ [250, 108, 108],
35
+ [147, 2, 2],
36
+ [255, 255, 255],
37
+ [0, 165, 0],
38
+ ]
39
+
40
+ labels_list = []
41
+
42
+ with open(r'labels.txt', 'r') as fp:
43
+ for line in fp:
44
+ labels_list.append(line[:-1])
45
+
46
+ colormap = np.asarray(ade_palette())
47
+
48
+ def label_to_color_image(label):
49
+ if label.ndim != 2:
50
+ raise ValueError("Expect 2-D input label")
51
+
52
+ if np.max(label) >= len(colormap):
53
+ raise ValueError("label value too large.")
54
+ return colormap[label]
55
+
56
+ def draw_plot(pred_img, seg):
57
+ fig = plt.figure(figsize=(20, 15))
58
+
59
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
60
+
61
+ plt.subplot(grid_spec[0])
62
+ plt.imshow(pred_img)
63
+ plt.axis('off')
64
+ LABEL_NAMES = np.asarray(labels_list)
65
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
66
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
67
+
68
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
69
+ ax = plt.subplot(grid_spec[1])
70
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
71
+ ax.yaxis.tick_right()
72
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
73
+ plt.xticks([], [])
74
+ ax.tick_params(width=0.0, labelsize=25)
75
+ return fig
76
+
77
+ def sepia(input_img):
78
+ input_img = Image.fromarray(input_img)
79
+
80
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
81
+ outputs = model(**inputs)
82
+ logits = outputs.logits
83
+
84
+ logits = tf.transpose(logits, [0, 2, 3, 1])
85
+ logits = tf.image.resize(
86
+ logits, input_img.size[::-1]
87
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
88
+ seg = tf.math.argmax(logits, axis=-1)[0]
89
+
90
+ color_seg = np.zeros(
91
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
92
+ ) # height, width, 3
93
+ for label, color in enumerate(colormap):
94
+ color_seg[seg.numpy() == label, :] = color
95
+
96
+ # Show image + mask
97
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
98
+ pred_img = pred_img.astype(np.uint8)
99
+
100
+ fig = draw_plot(pred_img, seg)
101
+ return fig
102
+
103
+ demo = gr.Interface(fn=sepia,
104
+ inputs=gr.Image(shape=(400, 600)),
105
+ outputs=['plot'],
106
+ examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
107
+ allow_flagging='never')
108
+
109
+
110
+ demo.launch()
labels.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Background
2
+ Hat
3
+ Hair
4
+ Sunglasses
5
+ Upper-clothes
6
+ Skirt
7
+ Pants
8
+ Dress
9
+ Belt
10
+ Left-shoe
11
+ Right-shoe
12
+ Face
13
+ Left-leg
14
+ Right-leg
15
+ Left-arm
16
+ Right-arm
17
+ Bag
18
+ Scarf
person-1.jpg ADDED
person-2.jpg ADDED
person-3.jpg ADDED
person-4.jpg ADDED
person-5.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ tensorflow
4
+ numpy
5
+ Image
6
+ matplotlib