import pandas as pd import pickle import streamlit as st @st.cache_resource def load_model(): with open('model_svm.pkl', 'rb') as file: model = pickle.load(file) return model cols = ['type', 'amount', 'amount', 'old_balance_ori', 'new_balance_ori', 'old_balance_dest'] def run(): st.title('Transaction Fraud Prediction') st.write('This is a simple web app to predict transaction is a fraud or not using random forest.') st.write('Please fill in the form below to get the prediction.') amount = st.number_input('Transfer Amount', min_value=0.0) old_balance_ori = st.number_input('Old Balance Origin', min_value=0.0) new_balance_ori = st.number_input('New Balance Origin', min_value=0.0) old_balance_dest = st.number_input('Old Balance Destination', min_value=0.0) new_balance_dest = st.number_input('New Balance Destination', min_value=0.0) type = st.selectbox('Transaction type', ['CASH_OUT', 'TRANSFER', 'DEBIT', 'CASH_IN', 'PAYMENT']) if st.button("Predict"): model = load_model() data = {'type': type, 'amount': amount, 'old_balance_ori': old_balance_ori, 'new_balance_ori': new_balance_ori, 'old_balance_dest': old_balance_dest, 'new_balance_dest': new_balance_dest} features = pd.DataFrame(data, index=[0]) prediction = model.predict(features) if prediction == 0: st.success('The model predicts that the transaction is not a fraud.') else: st.error('The model predicts that the transaction is a fraud.') if __name__ == '__main__': run()