import os os.system("pip install gradio==2.4.6") os.system('pip freeze') import torch torch.hub.download_url_to_file('https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/files/?p=%2Fconfigs%2Fmodel.yaml&dl=1', 'vqgan_imagenet_f16_16384.yaml') torch.hub.download_url_to_file('https://heibox.uni-heidelberg.de/d/a7530b09fed84f80a887/files/?p=%2Fckpts%2Flast.ckpt&dl=1', 'vqgan_imagenet_f16_16384.ckpt') import argparse import math from pathlib import Path import sys sys.path.insert(1, './taming-transformers') from base64 import b64encode from omegaconf import OmegaConf from PIL import Image from taming.models import cond_transformer, vqgan import taming.modules from torch import nn, optim from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF from tqdm.notebook import tqdm from CLIP import clip import kornia.augmentation as K import numpy as np import imageio from PIL import ImageFile, Image ImageFile.LOAD_TRUNCATED_IMAGES = True import gradio as gr import nvidia_smi nvidia_smi.nvmlInit() handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) # card id 0 hardcoded here, there is also a call to get all available card ids, so we could iterate torch.hub.download_url_to_file('https://images.pexels.com/photos/158028/bellingrath-gardens-alabama-landscape-scenic-158028.jpeg', 'garden.jpeg') torch.hub.download_url_to_file('https://images.pexels.com/photos/68767/divers-underwater-ocean-swim-68767.jpeg', 'coralreef.jpeg') torch.hub.download_url_to_file('https://images.pexels.com/photos/803975/pexels-photo-803975.jpeg', 'cabin.jpeg') def sinc(x): return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] def resample(input, size, align_corners=True): n, c, h, w = input.shape dh, dw = size input = input.view([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect') input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect') input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.view([n, c, h, w]) return F.interpolate(input, size, mode='bicubic', align_corners=align_corners) class ReplaceGrad(torch.autograd.Function): @staticmethod def forward(ctx, x_forward, x_backward): ctx.shape = x_backward.shape return x_forward @staticmethod def backward(ctx, grad_in): return None, grad_in.sum_to_size(ctx.shape) replace_grad = ReplaceGrad.apply class ClampWithGrad(torch.autograd.Function): @staticmethod def forward(ctx, input, min, max): ctx.min = min ctx.max = max ctx.save_for_backward(input) return input.clamp(min, max) @staticmethod def backward(ctx, grad_in): input, = ctx.saved_tensors return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None clamp_with_grad = ClampWithGrad.apply def vector_quantize(x, codebook): d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T indices = d.argmin(-1) x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook return replace_grad(x_q, x) class Prompt(nn.Module): def __init__(self, embed, weight=1., stop=float('-inf')): super().__init__() self.register_buffer('embed', embed) self.register_buffer('weight', torch.as_tensor(weight)) self.register_buffer('stop', torch.as_tensor(stop)) def forward(self, input): input_normed = F.normalize(input.unsqueeze(1), dim=2) embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2) dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2) dists = dists * self.weight.sign() return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean() def parse_prompt(prompt): vals = prompt.rsplit(':', 2) vals = vals + ['', '1', '-inf'][len(vals):] return vals[0], float(vals[1]), float(vals[2]) class MakeCutouts(nn.Module): def __init__(self, cut_size, cutn, cut_pow=1.): super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.augs = nn.Sequential( # K.RandomHorizontalFlip(p=0.5), # K.RandomVerticalFlip(p=0.5), # K.RandomSolarize(0.01, 0.01, p=0.7), # K.RandomSharpness(0.3,p=0.4), # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5), # K.RandomCrop(size=(self.cut_size,self.cut_size), p=0.5), K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border'), K.RandomPerspective(0.7,p=0.7), K.ColorJitter(hue=0.1, saturation=0.1, p=0.7), K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7), ) self.noise_fac = 0.1 self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) def forward(self, input): sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] for _ in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) # offsetx = torch.randint(0, sideX - size + 1, ()) # offsety = torch.randint(0, sideY - size + 1, ()) # cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] # cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) # cutout = transforms.Resize(size=(self.cut_size, self.cut_size))(input) cutout = (self.av_pool(input) + self.max_pool(input))/2 cutouts.append(cutout) batch = self.augs(torch.cat(cutouts, dim=0)) if self.noise_fac: facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac) batch = batch + facs * torch.randn_like(batch) return batch def load_vqgan_model(config_path, checkpoint_path): config = OmegaConf.load(config_path) if config.model.target == 'taming.models.vqgan.VQModel': model = vqgan.VQModel(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) elif config.model.target == 'taming.models.vqgan.GumbelVQ': model = vqgan.GumbelVQ(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer': parent_model = cond_transformer.Net2NetTransformer(**config.model.params) parent_model.eval().requires_grad_(False) parent_model.init_from_ckpt(checkpoint_path) model = parent_model.first_stage_model else: raise ValueError(f'unknown model type: {config.model.target}') del model.loss return model def resize_image(image, out_size): ratio = image.size[0] / image.size[1] area = min(image.size[0] * image.size[1], out_size[0] * out_size[1]) size = round((area * ratio)**0.5), round((area / ratio)**0.5) return image.resize(size, Image.LANCZOS) model_name = "vqgan_imagenet_f16_16384" images_interval = 50 width = 280 height = 280 init_image = "" seed = 42 args = argparse.Namespace( noise_prompt_seeds=[], noise_prompt_weights=[], size=[width, height], init_image=init_image, init_weight=0., clip_model='ViT-B/32', vqgan_config=f'{model_name}.yaml', vqgan_checkpoint=f'{model_name}.ckpt', step_size=0.15, cutn=4, cut_pow=1., display_freq=images_interval, seed=seed, ) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('Using device:', device) model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device) perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device) def inference(text, seed, step_size, max_iterations, width, height, init_image, init_weight, target_images, cutn, cut_pow): torch.cuda.empty_cache() torch.cuda.memory_summary(device=None, abbreviated=False) all_frames = [] size=[width, height] texts = text init_weight=init_weight if init_image: init_image = init_image.name else: init_image = "" if target_images: target_images = target_images.name else: target_images = "" max_iterations = max_iterations model_names={"vqgan_imagenet_f16_16384": 'ImageNet 16384',"vqgan_imagenet_f16_1024":"ImageNet 1024", 'vqgan_openimages_f16_8192':'OpenImages 8912', "wikiart_1024":"WikiArt 1024", "wikiart_16384":"WikiArt 16384", "coco":"COCO-Stuff", "faceshq":"FacesHQ", "sflckr":"S-FLCKR"} name_model = model_names[model_name] if target_images == "None" or not target_images: target_images = [] else: target_images = target_images.split("|") target_images = [image.strip() for image in target_images] texts = [phrase.strip() for phrase in texts.split("|")] if texts == ['']: texts = [] from urllib.request import urlopen if texts: print('Using texts:', texts) if target_images: print('Using image prompts:', target_images) if seed is None or seed == -1: seed = torch.seed() else: seed = seed torch.manual_seed(seed) print('Using seed:', seed) # clock=deepcopy(perceptor.visual.positional_embedding.data) # perceptor.visual.positional_embedding.data = clock/clock.max() # perceptor.visual.positional_embedding.data=clamp_with_grad(clock,0,1) cut_size = perceptor.visual.input_resolution f = 2**(model.decoder.num_resolutions - 1) make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow) toksX, toksY = size[0] // f, size[1] // f sideX, sideY = toksX * f, toksY * f if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt': e_dim = 256 n_toks = model.quantize.n_embed z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None] else: e_dim = model.quantize.e_dim n_toks = model.quantize.n_e z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] # z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] # z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] # normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) if init_image: if 'http' in init_image: img = Image.open(urlopen(init_image)) else: img = Image.open(init_image) pil_image = img.convert('RGB') pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS) pil_tensor = TF.to_tensor(pil_image) z, *_ = model.encode(pil_tensor.to(device).unsqueeze(0) * 2 - 1) else: one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float() # z = one_hot @ model.quantize.embedding.weight if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt': z = one_hot @ model.quantize.embed.weight else: z = one_hot @ model.quantize.embedding.weight z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) z = torch.rand_like(z)*2 z_orig = z.clone() z.requires_grad_(True) opt = optim.Adam([z], lr=step_size) normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) pMs = [] for prompt in texts: txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for prompt in target_images: path, weight, stop = parse_prompt(prompt) img = Image.open(path) pil_image = img.convert('RGB') img = resize_image(pil_image, (sideX, sideY)) batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device)) embed = perceptor.encode_image(normalize(batch)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights): gen = torch.Generator().manual_seed(seed) embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen) pMs.append(Prompt(embed, weight).to(device)) def synth(z): if args.vqgan_checkpoint == 'vqgan_openimages_f16_8192.ckpt': z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1) else: z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1) return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1) @torch.no_grad() def checkin(i, losses): losses_str = ', '.join(f'{loss.item():g}' for loss in losses) tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}') out = synth(z) # TF.to_pil_image(out[0].cpu()).save('progress.png') # display.display(display.Image('progress.png')) res = nvidia_smi.nvmlDeviceGetUtilizationRates(handle) print(f'gpu: {res.gpu}%, gpu-mem: {res.memory}%') def ascend_txt(): # global i out = synth(z) iii = perceptor.encode_image(normalize(make_cutouts(out))).float() result = [] if init_weight: result.append(F.mse_loss(z, z_orig) * init_weight / 2) #result.append(F.mse_loss(z, torch.zeros_like(z_orig)) * ((1/torch.tensor(i*2 + 1))*init_weight) / 2) for prompt in pMs: result.append(prompt(iii)) img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:] img = np.transpose(img, (1, 2, 0)) # imageio.imwrite('./steps/' + str(i) + '.png', np.array(img)) img = Image.fromarray(img).convert('RGB') all_frames.append(img) return result, np.array(img) def train(i): opt.zero_grad() lossAll, image = ascend_txt() if i % args.display_freq == 0: checkin(i, lossAll) loss = sum(lossAll) loss.backward() opt.step() with torch.no_grad(): z.copy_(z.maximum(z_min).minimum(z_max)) return image i = 0 try: with tqdm() as pbar: while True: image = train(i) if i == max_iterations: break i += 1 pbar.update() except KeyboardInterrupt: pass writer = imageio.get_writer('test.mp4', fps=20) for im in all_frames: writer.append_data(np.array(im)) writer.close() # all_frames[0].save('out.gif', # save_all=True, append_images=all_frames[1:], optimize=False, duration=80, loop=0) return image, 'test.mp4' def load_image( infilename ) : img = Image.open( infilename ) img.load() data = np.asarray( img, dtype="int32" ) return data title = "VQGAN + CLIP" description = "Gradio demo for VQGAN + CLIP. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
Originally made by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). The original BigGAN+CLIP method was by https://twitter.com/advadnoun. Added some explanations and modifications by Eleiber#8347, pooling trick by Crimeacs#8222 (https://twitter.com/EarthML1) and the GUI was made with the help of Abulafia#3734. | Colab | Taming Transformers Github Repo | CLIP Github Repo | Special thanks to BoneAmputee (https://twitter.com/BoneAmputee) for suggestions and advice
" gr.Interface( inference, [gr.inputs.Textbox(label="Text Input"), gr.inputs.Number(default=42, label="seed"), gr.inputs.Slider(minimum=0.1, maximum=0.9, default=0.6, label='step size'), gr.inputs.Slider(minimum=1, maximum=500, default=100, label='max iterations', step=1), gr.inputs.Slider(minimum=200, maximum=600, default=256, label='width', step=1), gr.inputs.Slider(minimum=200, maximum=600, default=256, label='height', step=1), gr.inputs.Image(type="file", label="Initial Image (Optional)", optional=True), gr.inputs.Slider(minimum=0.0, maximum=15.0, default=0.0, label='Initial Weight', step=1.0), gr.inputs.Image(type="file", label="Target Image (Optional)", optional=True), gr.inputs.Slider(minimum=1, maximum=40, default=1, label='cutn', step=1), gr.inputs.Slider(minimum=1.0, maximum=40.0, default=1.0, label='cut_pow', step=1.0) ], [gr.outputs.Image(type="numpy", label="Output Image"),gr.outputs.Video(label="Output Video")], title=title, description=description, article=article, examples=[ ['a garden by james gurney',42,0.6, 100, 256, 256, 'garden.jpeg', 0.0, 'garden.jpeg',1,1.0], ['coral reef city artstationHQ',1000,0.6, 110, 200, 200, 'coralreef.jpeg', 0.0, 'coralreef.jpeg',1,1.0], ['a cabin in the mountains unreal engine',98,0.6, 120, 280, 280, 'cabin.jpeg', 0.0, 'cabin.jpeg',1,1.0] ], enable_queue=True ).launch(debug=True)