File size: 12,591 Bytes
1a21884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import tensorflow as tf
import numpy as np
import miditoolkit
import modules
import pickle
import utils
import time
class PopMusicTransformer(object):
########################################
# initialize
########################################
def __init__(self, checkpoint, is_training=False):
# load dictionary
self.dictionary_path = '{}/dictionary.pkl'.format(checkpoint)
self.event2word, self.word2event = pickle.load(open(self.dictionary_path, 'rb'))
# model settings
self.x_len = 512
self.mem_len = 512
self.n_layer = 12
self.d_embed = 512
self.d_model = 512
self.dropout = 0.1
self.n_head = 8
self.d_head = self.d_model // self.n_head
self.d_ff = 2048
self.n_token = len(self.event2word)
self.learning_rate = 0.0002
# load model
self.is_training = is_training
if self.is_training:
self.batch_size = 4
else:
self.batch_size = 1
self.checkpoint_path = '{}/model'.format(checkpoint)
self.load_model()
########################################
# load model
########################################
def load_model(self):
# placeholders
self.x = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None])
self.y = tf.compat.v1.placeholder(tf.int32, shape=[self.batch_size, None])
self.mems_i = [tf.compat.v1.placeholder(tf.float32, [self.mem_len, self.batch_size, self.d_model]) for _ in range(self.n_layer)]
# model
self.global_step = tf.compat.v1.train.get_or_create_global_step()
initializer = tf.compat.v1.initializers.random_normal(stddev=0.02, seed=None)
proj_initializer = tf.compat.v1.initializers.random_normal(stddev=0.01, seed=None)
with tf.compat.v1.variable_scope(tf.compat.v1.get_variable_scope()):
xx = tf.transpose(self.x, [1, 0])
yy = tf.transpose(self.y, [1, 0])
loss, self.logits, self.new_mem = modules.transformer(
dec_inp=xx,
target=yy,
mems=self.mems_i,
n_token=self.n_token,
n_layer=self.n_layer,
d_model=self.d_model,
d_embed=self.d_embed,
n_head=self.n_head,
d_head=self.d_head,
d_inner=self.d_ff,
dropout=self.dropout,
dropatt=self.dropout,
initializer=initializer,
proj_initializer=proj_initializer,
is_training=self.is_training,
mem_len=self.mem_len,
cutoffs=[],
div_val=-1,
tie_projs=[],
same_length=False,
clamp_len=-1,
input_perms=None,
target_perms=None,
head_target=None,
untie_r=False,
proj_same_dim=True)
self.avg_loss = tf.reduce_mean(loss)
# vars
all_vars = tf.compat.v1.trainable_variables()
grads = tf.gradients(self.avg_loss, all_vars)
grads_and_vars = list(zip(grads, all_vars))
all_trainable_vars = tf.reduce_sum([tf.reduce_prod(v.shape) for v in tf.compat.v1.trainable_variables()])
# optimizer
decay_lr = tf.compat.v1.train.cosine_decay(
self.learning_rate,
global_step=self.global_step,
decay_steps=400000,
alpha=0.004)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=decay_lr)
self.train_op = optimizer.apply_gradients(grads_and_vars, self.global_step)
# saver
self.saver = tf.compat.v1.train.Saver()
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
self.sess = tf.compat.v1.Session(config=config)
self.saver.restore(self.sess, self.checkpoint_path)
########################################
# temperature sampling
########################################
def temperature_sampling(self, logits, temperature, topk):
probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature))
if topk == 1:
prediction = np.argmax(probs)
else:
sorted_index = np.argsort(probs)[::-1]
candi_index = sorted_index[:topk]
candi_probs = [probs[i] for i in candi_index]
# normalize probs
candi_probs /= sum(candi_probs)
# choose by predicted probs
prediction = np.random.choice(candi_index, size=1, p=candi_probs)[0]
return prediction
########################################
# extract events for prompt continuation
########################################
def extract_events(self, input_path):
note_items, tempo_items = utils.read_items(input_path)
note_items = utils.quantize_items(note_items)
max_time = note_items[-1].end
if 'chord' in self.checkpoint_path:
chord_items = utils.extract_chords(note_items)
items = chord_items + tempo_items + note_items
else:
items = tempo_items + note_items
groups = utils.group_items(items, max_time)
events = utils.item2event(groups)
return events
########################################
# generate
########################################
def generate(self, n_target_bar, temperature, topk, output_path, prompt=None):
# if prompt, load it. Or, random start
if prompt:
events = self.extract_events(prompt)
words = [[self.event2word['{}_{}'.format(e.name, e.value)] for e in events]]
words[0].append(self.event2word['Bar_None'])
else:
words = []
for _ in range(self.batch_size):
ws = [self.event2word['Bar_None']]
if 'chord' in self.checkpoint_path:
tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k]
tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k]
chords = [v for k, v in self.event2word.items() if 'Chord' in k]
ws.append(self.event2word['Position_1/16'])
ws.append(np.random.choice(chords))
ws.append(self.event2word['Position_1/16'])
ws.append(np.random.choice(tempo_classes))
ws.append(np.random.choice(tempo_values))
else:
tempo_classes = [v for k, v in self.event2word.items() if 'Tempo Class' in k]
tempo_values = [v for k, v in self.event2word.items() if 'Tempo Value' in k]
ws.append(self.event2word['Position_1/16'])
ws.append(np.random.choice(tempo_classes))
ws.append(np.random.choice(tempo_values))
words.append(ws)
# initialize mem
batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)]
# generate
original_length = len(words[0])
initial_flag = 1
current_generated_bar = 0
while current_generated_bar < n_target_bar:
# input
if initial_flag:
temp_x = np.zeros((self.batch_size, original_length))
for b in range(self.batch_size):
for z, t in enumerate(words[b]):
temp_x[b][z] = t
initial_flag = 0
else:
temp_x = np.zeros((self.batch_size, 1))
for b in range(self.batch_size):
temp_x[b][0] = words[b][-1]
# prepare feed dict
feed_dict = {self.x: temp_x}
for m, m_np in zip(self.mems_i, batch_m):
feed_dict[m] = m_np
# model (prediction)
_logits, _new_mem = self.sess.run([self.logits, self.new_mem], feed_dict=feed_dict)
# sampling
_logit = _logits[-1, 0]
word = self.temperature_sampling(
logits=_logit,
temperature=temperature,
topk=topk)
words[0].append(word)
# if bar event (only work for batch_size=1)
if word == self.event2word['Bar_None']:
current_generated_bar += 1
# re-new mem
batch_m = _new_mem
# write
if prompt:
utils.write_midi(
words=words[0][original_length:],
word2event=self.word2event,
output_path=output_path,
prompt_path=prompt)
else:
utils.write_midi(
words=words[0],
word2event=self.word2event,
output_path=output_path,
prompt_path=None)
########################################
# prepare training data
########################################
def prepare_data(self, midi_paths):
# extract events
all_events = []
for path in midi_paths:
events = self.extract_events(path)
all_events.append(events)
# event to word
all_words = []
for events in all_events:
words = []
for event in events:
e = '{}_{}'.format(event.name, event.value)
if e in self.event2word:
words.append(self.event2word[e])
else:
# OOV
if event.name == 'Note Velocity':
# replace with max velocity based on our training data
words.append(self.event2word['Note Velocity_21'])
else:
# something is wrong
# you should handle it for your own purpose
print('something is wrong! {}'.format(e))
all_words.append(words)
# to training data
self.group_size = 5
segments = []
for words in all_words:
pairs = []
for i in range(0, len(words)-self.x_len-1, self.x_len):
x = words[i:i+self.x_len]
y = words[i+1:i+self.x_len+1]
pairs.append([x, y])
pairs = np.array(pairs)
# abandon the last
for i in np.arange(0, len(pairs)-self.group_size, self.group_size*2):
data = pairs[i:i+self.group_size]
if len(data) == self.group_size:
segments.append(data)
segments = np.array(segments)
return segments
########################################
# finetune
########################################
def finetune(self, training_data, output_checkpoint_folder):
# shuffle
index = np.arange(len(training_data))
np.random.shuffle(index)
training_data = training_data[index]
num_batches = len(training_data) // self.batch_size
st = time.time()
for e in range(200):
total_loss = []
for i in range(num_batches):
segments = training_data[self.batch_size*i:self.batch_size*(i+1)]
batch_m = [np.zeros((self.mem_len, self.batch_size, self.d_model), dtype=np.float32) for _ in range(self.n_layer)]
for j in range(self.group_size):
batch_x = segments[:, j, 0, :]
batch_y = segments[:, j, 1, :]
# prepare feed dict
feed_dict = {self.x: batch_x, self.y: batch_y}
for m, m_np in zip(self.mems_i, batch_m):
feed_dict[m] = m_np
# run
_, gs_, loss_, new_mem_ = self.sess.run([self.train_op, self.global_step, self.avg_loss, self.new_mem], feed_dict=feed_dict)
batch_m = new_mem_
total_loss.append(loss_)
print('>>> Epoch: {}, Step: {}, Loss: {:.5f}, Time: {:.2f}'.format(e, gs_, loss_, time.time()-st))
self.saver.save(self.sess, '{}/model-{:03d}-{:.3f}'.format(output_checkpoint_folder, e, np.mean(total_loss)))
# stop
if np.mean(total_loss) <= 0.1:
break
########################################
# close
########################################
def close(self):
self.sess.close()
|