Upload modules.py
Browse files- modules.py +233 -0
modules.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
|
3 |
+
def embedding_lookup(lookup_table, x):
|
4 |
+
return tf.compat.v1.nn.embedding_lookup(lookup_table, x)
|
5 |
+
|
6 |
+
|
7 |
+
def normal_embedding_lookup(x, n_token, d_embed, d_proj, initializer,
|
8 |
+
proj_initializer, scope='normal_embed', **kwargs):
|
9 |
+
emb_scale = d_proj ** 0.5
|
10 |
+
with tf.compat.v1.variable_scope(scope):
|
11 |
+
lookup_table = tf.compat.v1.get_variable('lookup_table', [n_token, d_embed], initializer=initializer)
|
12 |
+
y = embedding_lookup(lookup_table, x)
|
13 |
+
if d_proj != d_embed:
|
14 |
+
proj_W = tf.compat.v1.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer)
|
15 |
+
y = tf.einsum('ibe,ed->ibd', y, proj_W)
|
16 |
+
else:
|
17 |
+
proj_W = None
|
18 |
+
ret_params = [lookup_table, proj_W]
|
19 |
+
y *= emb_scale
|
20 |
+
return y, ret_params
|
21 |
+
|
22 |
+
|
23 |
+
def normal_softmax(hidden, target, n_token, params, scope='normal_softmax', **kwargs):
|
24 |
+
def _logit(x, W, b, proj):
|
25 |
+
y = x
|
26 |
+
if proj is not None:
|
27 |
+
y = tf.einsum('ibd,ed->ibe', y, proj)
|
28 |
+
return tf.einsum('ibd,nd->ibn', y, W) + b
|
29 |
+
|
30 |
+
params_W, params_projs = params[0], params[1]
|
31 |
+
|
32 |
+
with tf.compat.v1.variable_scope(scope):
|
33 |
+
softmax_b = tf.compat.v1.get_variable('bias', [n_token], initializer=tf.zeros_initializer())
|
34 |
+
output = _logit(hidden, params_W, softmax_b, params_projs)
|
35 |
+
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output)
|
36 |
+
return nll, output
|
37 |
+
|
38 |
+
|
39 |
+
def positional_embedding(pos_seq, inv_freq, bsz=None):
|
40 |
+
sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq)
|
41 |
+
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1)
|
42 |
+
if bsz is not None:
|
43 |
+
return tf.tile(pos_emb[:, None, :], [1, bsz, 1])
|
44 |
+
else:
|
45 |
+
return pos_emb[:, None, :]
|
46 |
+
|
47 |
+
|
48 |
+
def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer,
|
49 |
+
scope='ff', is_training=True):
|
50 |
+
output = inp
|
51 |
+
with tf.compat.v1.variable_scope(scope):
|
52 |
+
output = tf.keras.layers.Dense(d_inner, activation=tf.nn.relu,
|
53 |
+
kernel_initializer=kernel_initializer, name='layer_1')(inp)
|
54 |
+
output = tf.keras.layers.Dropout(dropout, name='drop_1')(output, training=is_training)
|
55 |
+
output = tf.keras.layers.Dense(d_model, activation=tf.nn.relu,
|
56 |
+
kernel_initializer=kernel_initializer, name='layer_2')(output)
|
57 |
+
output = tf.keras.layers.Dropout(dropout, name='drop_2')(output, training=is_training)
|
58 |
+
output = tf.keras.layers.LayerNormalization(axis=-1)(output + inp)
|
59 |
+
return output
|
60 |
+
|
61 |
+
|
62 |
+
def _create_mask(qlen, mlen, same_length=False):
|
63 |
+
attn_mask = tf.ones([qlen, qlen])
|
64 |
+
mask_u = tf.linalg.band_part(attn_mask, 0, -1)
|
65 |
+
mask_dia = tf.linalg.band_part(attn_mask, 0, 0)
|
66 |
+
attn_mask_pad = tf.zeros([qlen, mlen])
|
67 |
+
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1)
|
68 |
+
if same_length:
|
69 |
+
mask_l = tf.matrix_band_part(attn_mask, -1, 0)
|
70 |
+
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1)
|
71 |
+
return ret
|
72 |
+
|
73 |
+
|
74 |
+
def _cache_mem(curr_out, prev_mem, mem_len=None):
|
75 |
+
if mem_len is None or prev_mem is None:
|
76 |
+
new_mem = curr_out
|
77 |
+
elif mem_len == 0:
|
78 |
+
return prev_mem
|
79 |
+
else:
|
80 |
+
new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]
|
81 |
+
return tf.stop_gradient(new_mem)
|
82 |
+
|
83 |
+
|
84 |
+
def rel_shift(x):
|
85 |
+
x_size = tf.shape(x)
|
86 |
+
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]])
|
87 |
+
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]])
|
88 |
+
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
|
89 |
+
x = tf.reshape(x, x_size)
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model,
|
94 |
+
n_head, d_head, dropout, dropatt, is_training,
|
95 |
+
kernel_initializer, scope='rel_attn'):
|
96 |
+
scale = 1 / (d_head ** 0.5)
|
97 |
+
with tf.compat.v1.variable_scope(scope):
|
98 |
+
qlen = tf.shape(w)[0]
|
99 |
+
rlen = tf.shape(r)[0]
|
100 |
+
bsz = tf.shape(w)[1]
|
101 |
+
|
102 |
+
cat = tf.concat([mems, w], 0) if mems is not None and mems.shape.ndims > 1 else w
|
103 |
+
|
104 |
+
w_heads = tf.keras.layers.Dense(3 * n_head * d_head, use_bias=False,
|
105 |
+
kernel_initializer=kernel_initializer, name='qkv')(cat)
|
106 |
+
r_head_k = tf.keras.layers.Dense(n_head * d_head, use_bias=False,
|
107 |
+
kernel_initializer=kernel_initializer, name='r')(r)
|
108 |
+
|
109 |
+
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1)
|
110 |
+
w_head_q = w_head_q[-qlen:]
|
111 |
+
|
112 |
+
klen = tf.shape(w_head_k)[0]
|
113 |
+
|
114 |
+
w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head])
|
115 |
+
w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head])
|
116 |
+
w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head])
|
117 |
+
|
118 |
+
r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head])
|
119 |
+
|
120 |
+
rw_head_q = w_head_q + r_w_bias
|
121 |
+
rr_head_q = w_head_q + r_r_bias
|
122 |
+
|
123 |
+
AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k)
|
124 |
+
BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k)
|
125 |
+
BD = rel_shift(BD)
|
126 |
+
|
127 |
+
attn_score = (AC + BD) * scale
|
128 |
+
attn_mask_t = attn_mask[:, :, None, None]
|
129 |
+
attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t
|
130 |
+
|
131 |
+
attn_prob = tf.nn.softmax(attn_score, 1)
|
132 |
+
attn_prob = tf.keras.layers.Dropout(dropatt)(attn_prob, training=is_training)
|
133 |
+
|
134 |
+
attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v)
|
135 |
+
size_t = tf.shape(attn_vec)
|
136 |
+
attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head])
|
137 |
+
|
138 |
+
attn_out = tf.keras.layers.Dense(d_model, use_bias=False,
|
139 |
+
kernel_initializer=kernel_initializer, name='o')(attn_vec)
|
140 |
+
attn_out = tf.keras.layers.Dropout(dropout)(attn_out, training=is_training)
|
141 |
+
output = tf.keras.layers.LayerNormalization(axis=-1)(attn_out + w)
|
142 |
+
return output
|
143 |
+
|
144 |
+
|
145 |
+
def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed,
|
146 |
+
n_head, d_head, d_inner, dropout, dropatt,
|
147 |
+
initializer, is_training, proj_initializer=None,
|
148 |
+
mem_len=None, cutoffs=[], div_val=1, tie_projs=[],
|
149 |
+
same_length=False, clamp_len=-1,
|
150 |
+
input_perms=None, target_perms=None, head_target=None,
|
151 |
+
untie_r=False, proj_same_dim=True,
|
152 |
+
scope='transformer'):
|
153 |
+
"""
|
154 |
+
cutoffs: a list of python int. Cutoffs for adaptive softmax.
|
155 |
+
tie_projs: a list of python bools. Whether to tie the projections.
|
156 |
+
perms: a list of tensors. Each tensor should of size [len, bsz, bin_size].
|
157 |
+
Only used in the adaptive setting.
|
158 |
+
"""
|
159 |
+
new_mems = []
|
160 |
+
with tf.compat.v1.variable_scope(scope):
|
161 |
+
if untie_r:
|
162 |
+
r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_layer, n_head, d_head], initializer=initializer)
|
163 |
+
r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_layer, n_head, d_head], initializer=initializer)
|
164 |
+
else:
|
165 |
+
r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_head, d_head], initializer=initializer)
|
166 |
+
r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_head, d_head], initializer=initializer)
|
167 |
+
|
168 |
+
qlen = tf.shape(dec_inp)[0]
|
169 |
+
mlen = tf.shape(mems[0])[0] if mems is not None else 0
|
170 |
+
klen = qlen + mlen
|
171 |
+
|
172 |
+
if proj_initializer is None:
|
173 |
+
proj_initializer = initializer
|
174 |
+
|
175 |
+
embeddings, shared_params = normal_embedding_lookup(
|
176 |
+
x=dec_inp,
|
177 |
+
n_token=n_token,
|
178 |
+
d_embed=d_embed,
|
179 |
+
d_proj=d_model,
|
180 |
+
initializer=initializer,
|
181 |
+
proj_initializer=proj_initializer)
|
182 |
+
|
183 |
+
attn_mask = _create_mask(qlen, mlen, same_length)
|
184 |
+
|
185 |
+
pos_seq = tf.range(klen - 1, -1, -1.0)
|
186 |
+
if clamp_len > 0:
|
187 |
+
pos_seq = tf.minimum(pos_seq, clamp_len)
|
188 |
+
inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model))
|
189 |
+
pos_emb = positional_embedding(pos_seq, inv_freq)
|
190 |
+
|
191 |
+
output = tf.keras.layers.Dropout(rate=dropout)(embeddings, training=is_training)
|
192 |
+
pos_emb = tf.keras.layers.Dropout(rate=dropout)(pos_emb, training=is_training)
|
193 |
+
|
194 |
+
if mems is None:
|
195 |
+
mems = [None] * n_layer
|
196 |
+
|
197 |
+
for i in range(n_layer):
|
198 |
+
# cache new mems
|
199 |
+
new_mems.append(_cache_mem(output, mems[i], mem_len))
|
200 |
+
|
201 |
+
with tf.compat.v1.variable_scope('layer_{}'.format(i)):
|
202 |
+
output = rel_multihead_attn(
|
203 |
+
w=output,
|
204 |
+
r=pos_emb,
|
205 |
+
r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
|
206 |
+
r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
|
207 |
+
attn_mask=attn_mask,
|
208 |
+
mems=mems[i],
|
209 |
+
d_model=d_model,
|
210 |
+
n_head=n_head,
|
211 |
+
d_head=d_head,
|
212 |
+
dropout=dropout,
|
213 |
+
dropatt=dropatt,
|
214 |
+
is_training=is_training,
|
215 |
+
kernel_initializer=initializer)
|
216 |
+
|
217 |
+
output = positionwise_FF(
|
218 |
+
inp=output,
|
219 |
+
d_model=d_model,
|
220 |
+
d_inner=d_inner,
|
221 |
+
dropout=dropout,
|
222 |
+
kernel_initializer=initializer,
|
223 |
+
is_training=is_training)
|
224 |
+
|
225 |
+
output = tf.keras.layers.Dropout(dropout)(output, training=is_training)
|
226 |
+
|
227 |
+
loss, logits = normal_softmax(
|
228 |
+
hidden=output,
|
229 |
+
target=target,
|
230 |
+
n_token=n_token,
|
231 |
+
params=shared_params)
|
232 |
+
|
233 |
+
return loss, logits, new_mems
|