Spaces:
Sleeping
Sleeping
File size: 14,964 Bytes
75c80a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
from turtle import forward
from torch import Tensor
import torch.nn.functional as F
import torch.nn as nn
import torch
import copy
import math
from transformers import DistilBertForQuestionAnswering, DistilBertConfig
from transformers import AutoModelForQuestionAnswering
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, dim, dropout_prob):
super().__init__()
# self.n_heads = config.n_heads
# self.dim = config.dim
# self.dropout = nn.Dropout(p=config.attention_dropout)
self.n_heads = n_heads
self.dim = dim
self.dropout = nn.Dropout(p=dropout_prob)
assert self.dim % self.n_heads == 0
self.q_lin = nn.Linear(in_features=self.dim, out_features=self.dim)
self.k_lin = nn.Linear(in_features=self.dim, out_features=self.dim)
self.v_lin = nn.Linear(in_features=self.dim, out_features=self.dim)
self.out_lin = nn.Linear(in_features=self.dim, out_features=self.dim)
def forward(self, query, key, value, mask, head_mask=None, output_attentions=False):
"""
Parameters:
query: torch.tensor(bs, seq_length, dim)
key: torch.tensor(bs, seq_length, dim)
value: torch.tensor(bs, seq_length, dim)
mask: torch.tensor(bs, seq_length)
Returns:
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs,
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True`
"""
bs, q_length, dim = query.size()
k_length = key.size(1)
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
# assert key.size() == value.size()
dim_per_head = self.dim // self.n_heads
mask_reshp = (bs, 1, 1, k_length)
def shape(x):
"""separate heads"""
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
def unshape(x):
"""group heads"""
return (
x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
)
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head)
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head)
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head)
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head)
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, q_length, k_length)
mask = (
(mask == 0).view(mask_reshp).expand_as(scores)
) # (bs, n_heads, q_length, k_length)
scores = scores.masked_fill(
mask, -float("inf")
) # (bs, n_heads, q_length, k_length)
weights = nn.functional.softmax(
scores, dim=-1
) # (bs, n_heads, q_length, k_length)
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head)
context = unshape(context) # (bs, q_length, dim)
context = self.out_lin(context) # (bs, q_length, dim)
if output_attentions:
return (context, weights)
else:
return context
class FeedForward(nn.Module):
def __init__(self, dim_input: int = 768, dim_feedforward: int = 4 * 768):
super().__init__()
self.linear1 = nn.Linear(dim_input, dim_feedforward)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(dim_feedforward, dim_input)
def forward(self, x):
return self.linear2(self.relu(self.linear1(x)))
class SwitchFeedForward(nn.Module):
"""
## Routing among multiple FFNs
"""
def __init__(
self,
*,
capacity_factor: float,
drop_tokens: bool,
is_scale_prob: bool,
n_experts: int,
expert: FeedForward,
d_model: int
):
"""
* `capacity_factor` is the capacity of each expert as a factor relative to ideally balanced load
* `drop_tokens` specifies whether to drop tokens if more tokens are routed to an expert than the capacity
* `is_scale_prob` specifies whether to multiply the input to the FFN by the routing probability
* `n_experts` is the number of experts
* `expert` is the expert layer, a [FFN module](../feed_forward.html)
* `d_model` is the number of features in a token embedding
* `d_ff` is the number of features in the hidden layer of the FFN
* `dropout` is dropout probability in the FFN
"""
super().__init__()
self.capacity_factor = capacity_factor
self.is_scale_prob = is_scale_prob
self.n_experts = n_experts
self.drop_tokens = drop_tokens
# make copies of the FFNs
self.experts = nn.ModuleList([copy.deepcopy(expert) for _ in range(n_experts)])
# Routing layer and softmax
self.switch = nn.Linear(d_model, n_experts)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x: torch.Tensor):
"""
* `x` is the input to the switching module with shape `[seq_len, batch_size, d_model]`
"""
# Capture the shape to change shapes later
seq_len, batch_size, d_model = x.shape
# Flatten the sequence and batch dimensions
x = x.view(-1, d_model)
# Get routing probabilities for each of the tokens.
# $$p_i(x) = \frac{e^{h(x)_i}}{\sum^N_j e^{h(x)_j}}$$
# where $N$ is the number of experts `n_experts` and
# $h(\cdot)$ is the linear transformation of token embeddings.
route_prob = self.softmax(self.switch(x))
# Get the maximum routing probabilities and the routes.
# We route to the expert with highest probability
route_prob_max, routes = torch.max(route_prob, dim=-1)
# Get indexes of tokens going to each expert
indexes_list = [
torch.eq(routes, i).nonzero(as_tuple=True)[0] for i in range(self.n_experts)
]
# Initialize an empty tensor to store outputs
final_output = x.new_zeros(x.shape)
# Capacity of each expert.
# $$\mathrm{expert\;capacity} =
# \frac{\mathrm{tokens\;per\;batch}}{\mathrm{number\;of\;experts}}
# \times \mathrm{capacity\;factor}$$
capacity = int(self.capacity_factor * len(x) / self.n_experts)
# Number of tokens routed to each expert.
counts = x.new_tensor([len(indexes_list[i]) for i in range(self.n_experts)])
# Initialize an empty list of dropped tokens
dropped = []
# Only drop tokens if `drop_tokens` is `True`.
if self.drop_tokens:
# Drop tokens in each of the experts
for i in range(self.n_experts):
# Ignore if the expert is not over capacity
if len(indexes_list[i]) <= capacity:
continue
# Shuffle indexes before dropping
indexes_list[i] = indexes_list[i][torch.randperm(len(indexes_list[i]))]
# Collect the tokens over capacity as dropped tokens
dropped.append(indexes_list[i][capacity:])
# Keep only the tokens upto the capacity of the expert
indexes_list[i] = indexes_list[i][:capacity]
# Get outputs of the expert FFNs
expert_output = [
self.experts[i](x[indexes_list[i], :]) for i in range(self.n_experts)
]
# Assign to final output
for i in range(self.n_experts):
final_output[indexes_list[i], :] = expert_output[i]
# Pass through the dropped tokens
if dropped:
dropped = torch.cat(dropped)
final_output[dropped, :] = x[dropped, :]
if self.is_scale_prob:
# Multiply by the expert outputs by the probabilities $y = p_i(x) E_i(x)$
final_output = final_output * route_prob_max.view(-1, 1)
else:
# Don't scale the values but multiply by $\frac{p}{\hat{p}} = 1$ so that the gradients flow
# (this is something we experimented with).
final_output = final_output * (
route_prob_max / route_prob_max.detach()
).view(-1, 1)
# Change the shape of the final output back to `[seq_len, batch_size, d_model]`
final_output = final_output.view(seq_len, batch_size, d_model)
# Return
#
# * the final output
# * number of tokens routed to each expert
# * sum of probabilities for each expert
# * number of tokens dropped.
# * routing probabilities of the selected experts
#
# These are used for the load balancing loss and logging
return final_output, counts, route_prob.sum(0), len(dropped), route_prob_max
class SwitchTransformerLayer(nn.Module):
"""
# Switch Transformer Block
This is the same as [normal transformer block](../models.html#TransformerLayer)
with handling extra outputs of switch feedforward module.
"""
def __init__(
self,
*,
d_model: int,
attn: MultiHeadAttention,
feed_forward: SwitchFeedForward,
dropout_prob: float
):
"""
* `d_model` is the token embedding size
* `attn` is the attention module
* `feed_forward` is the feed forward module (which is the switching module in this case)
* `dropout_prob` is the probability of dropping out after self attention and FFN
"""
super().__init__()
self.size = d_model
self.attn = attn
self.feed_forward = feed_forward
self.dropout = nn.Dropout(dropout_prob)
self.norm_self_attn = nn.LayerNorm([d_model])
self.norm_ff = nn.LayerNorm([d_model])
def forward(self, *, x: torch.Tensor, mask: torch.Tensor):
# Normalize the vectors before doing self attention
z = self.norm_self_attn(x)
# Run through self attention, i.e. keys and values are from self
self_attn = self.attn(query=z, key=z, value=z, mask=mask)
# Add the self attention results
x = x + self.dropout(self_attn)
# Normalize for feed-forward
z = self.norm_ff(x)
# Pass through the switching feed-forward network
ff, counts, route_prob, n_dropped, route_prob_max = self.feed_forward(z)
# Add the feed-forward results back
x = x + self.dropout(ff)
return x, counts, route_prob, n_dropped, route_prob_max
class SwitchTransformer(nn.Module):
"""
## Switch Transformer
"""
def __init__(self, layer, n_layers, n_experts, device, load_balancing_loss_ceof):
super().__init__()
# Make copies of the transformer layer
self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(n_layers)])
# Final normalization layer
self.norm = nn.LayerNorm([layer.size])
self.qa_outputs = nn.Linear(768, 2)
model = AutoModelForQuestionAnswering.from_pretrained("Kyrmasch/kaz-roberta-squad2-kaz").to(device)
self.base_model = model
self.device = device
self.load_balancing_loss_ceof = load_balancing_loss_ceof
self.n_experts = n_experts # used to calculate lb loss
def freeze_base_model(self):
for param in self.base_model.parameters():
param.requires_grad = False
def freeze_experts(self):
# TODO: find how to freeze the experts in the SwitchTransformer
pass
# def forward(self, x: torch.Tensor, mask: torch.Tensor):
def forward(self, batch):
input_ids = batch["input_ids"].to(self.device)
attention_mask = batch["attention_mask"].to(self.device)
start_positions = (
batch["start_positions"].to(self.device)
if "start_positions" in batch.keys()
else None
)
end_positions = (
batch["end_positions"].to(self.device)
if "end_positions" in batch.keys()
else None
)
outputs = self.base_model(
input_ids,
attention_mask=attention_mask,
start_positions=None,
end_positions=None,
output_hidden_states=True,
)
x = outputs.hidden_states[-1]
# Run through each transformer layer
counts, route_prob, n_dropped, route_prob_max = [], [], [], []
for layer in self.layers:
x, f, p, n_d, p_max = layer(x=x, mask=attention_mask)
counts.append(f)
route_prob.append(p)
n_dropped.append(n_d)
route_prob_max.append(p_max)
# Finally, normalize the vectors
output = self.norm(x)
logits = self.qa_outputs(output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous() # (bs, max_query_len)
end_logits = end_logits.squeeze(-1).contiguous() # (bs, max_query_len)
loss = None
if start_positions is not None and end_positions is not None:
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
loss = (start_loss + end_loss) / 2
counts = torch.stack(counts)
route_prob = torch.stack(route_prob)
route_prob_max = torch.stack(route_prob_max)
total = counts.sum(dim=-1, keepdims=True)
route_frac = counts / total
route_prob = route_prob / total
load_balancing_loss = self.n_experts * (route_frac * route_prob).sum()
loss = (
load_balancing_loss
if loss is None
else loss + self.load_balancing_loss_ceof * load_balancing_loss
)
return start_logits, end_logits, loss
|