almost
Browse files
app.py
CHANGED
@@ -15,10 +15,12 @@ model.eval()
|
|
15 |
processor = ChameleonProcessor.from_pretrained(model_path)
|
16 |
tokenizer = processor.tokenizer
|
17 |
|
|
|
18 |
multimodal_file = tuple[str, str]
|
|
|
19 |
multimodal_message = list[str | multimodal_file] | multimodal_file
|
20 |
# todo: verify this type with gr.ChatInterface
|
21 |
-
message_t = str |
|
22 |
history_t = list[tuple[str, str] | list[tuple[multimodal_message, multimodal_message]]]
|
23 |
|
24 |
def history_to_prompt(
|
@@ -28,9 +30,10 @@ def history_to_prompt(
|
|
28 |
image_placeholder = "<image>"
|
29 |
):
|
30 |
|
31 |
-
prompt = ""
|
32 |
-
images = []
|
33 |
-
|
|
|
34 |
print("turn:", turn)
|
35 |
# turn should be a tuple of user message and assistant message
|
36 |
for message in turn:
|
@@ -51,7 +54,7 @@ def history_to_prompt(
|
|
51 |
prompt += eot_id
|
52 |
return prompt, images
|
53 |
|
54 |
-
@spaces.GPU(duration=
|
55 |
def respond(
|
56 |
message,
|
57 |
history: history_t,
|
@@ -72,7 +75,7 @@ def respond(
|
|
72 |
|
73 |
inputs = processor(prompt, images=images, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
74 |
|
75 |
-
streamer = TextIteratorStreamer(tokenizer)
|
76 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
|
77 |
|
78 |
try:
|
|
|
15 |
processor = ChameleonProcessor.from_pretrained(model_path)
|
16 |
tokenizer = processor.tokenizer
|
17 |
|
18 |
+
# file_name, alt
|
19 |
multimodal_file = tuple[str, str]
|
20 |
+
# {'text': 'message here', 'files': []}
|
21 |
multimodal_message = list[str | multimodal_file] | multimodal_file
|
22 |
# todo: verify this type with gr.ChatInterface
|
23 |
+
message_t = dict[str, str | list[multimodal_file]]
|
24 |
history_t = list[tuple[str, str] | list[tuple[multimodal_message, multimodal_message]]]
|
25 |
|
26 |
def history_to_prompt(
|
|
|
30 |
image_placeholder = "<image>"
|
31 |
):
|
32 |
|
33 |
+
prompt = message["text"]
|
34 |
+
images = [Image.open(f) for f in message["files"]]
|
35 |
+
|
36 |
+
for turn in history:
|
37 |
print("turn:", turn)
|
38 |
# turn should be a tuple of user message and assistant message
|
39 |
for message in turn:
|
|
|
54 |
prompt += eot_id
|
55 |
return prompt, images
|
56 |
|
57 |
+
@spaces.GPU(duration=30)
|
58 |
def respond(
|
59 |
message,
|
60 |
history: history_t,
|
|
|
75 |
|
76 |
inputs = processor(prompt, images=images, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
|
77 |
|
78 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
79 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20)
|
80 |
|
81 |
try:
|