Spaces:
Running
on
A10G
Running
on
A10G
patrickvonplaten
commited on
Commit
•
5af82ca
1
Parent(s):
75eef29
finalize
Browse files
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Finetuned Diffusion
|
3 |
+
emoji: 🪄🖼️
|
4 |
+
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.15.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
license: mit
|
11 |
+
duplicated_from: anzorq/finetuned_diffusion
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import utils
|
6 |
+
import datetime
|
7 |
+
import time
|
8 |
+
import psutil
|
9 |
+
import random
|
10 |
+
|
11 |
+
|
12 |
+
start_time = time.time()
|
13 |
+
is_colab = utils.is_google_colab()
|
14 |
+
state = None
|
15 |
+
current_steps = 25
|
16 |
+
|
17 |
+
class Model:
|
18 |
+
def __init__(self, name, path=""):
|
19 |
+
self.name = name
|
20 |
+
self.path = path
|
21 |
+
self.pipe_t2i = None
|
22 |
+
self.pipe_i2i = None
|
23 |
+
|
24 |
+
models = [
|
25 |
+
Model("2.2", "darkstorm2150/Protogen_v2.2_Official_Release"),
|
26 |
+
Model("3.4", "darkstorm2150/Protogen_x3.4_Official_Release"),
|
27 |
+
Model("5.3", "darkstorm2150/Protogen_v5.3_Official_Release"),
|
28 |
+
Model("5.8", "darkstorm2150/Protogen_x5.8_Official_Release"),
|
29 |
+
Model("Dragon", "darkstorm2150/Protogen_Dragon_Official_Release"),
|
30 |
+
]
|
31 |
+
|
32 |
+
custom_model = None
|
33 |
+
if is_colab:
|
34 |
+
models.insert(0, Model("Custom model"))
|
35 |
+
custom_model = models[0]
|
36 |
+
|
37 |
+
last_mode = "txt2img"
|
38 |
+
current_model = models[1] if is_colab else models[0]
|
39 |
+
current_model_path = current_model.path
|
40 |
+
|
41 |
+
if is_colab:
|
42 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
43 |
+
current_model.path,
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
46 |
+
safety_checker=lambda images, clip_input: (images, False)
|
47 |
+
)
|
48 |
+
|
49 |
+
else:
|
50 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
51 |
+
current_model.path,
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
54 |
+
)
|
55 |
+
|
56 |
+
if torch.cuda.is_available():
|
57 |
+
pipe = pipe.to("cuda")
|
58 |
+
pipe.enable_xformers_memory_efficient_attention()
|
59 |
+
|
60 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
61 |
+
|
62 |
+
def error_str(error, title="Error"):
|
63 |
+
return f"""#### {title}
|
64 |
+
{error}""" if error else ""
|
65 |
+
|
66 |
+
def update_state(new_state):
|
67 |
+
global state
|
68 |
+
state = new_state
|
69 |
+
|
70 |
+
def update_state_info(old_state):
|
71 |
+
if state and state != old_state:
|
72 |
+
return gr.update(value=state)
|
73 |
+
|
74 |
+
def custom_model_changed(path):
|
75 |
+
models[0].path = path
|
76 |
+
global current_model
|
77 |
+
current_model = models[0]
|
78 |
+
|
79 |
+
def on_model_change(model_name):
|
80 |
+
|
81 |
+
prefix = "Enter prefix"
|
82 |
+
|
83 |
+
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
84 |
+
|
85 |
+
def on_steps_change(steps):
|
86 |
+
global current_steps
|
87 |
+
current_steps = steps
|
88 |
+
|
89 |
+
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
90 |
+
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
91 |
+
|
92 |
+
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
93 |
+
|
94 |
+
update_state(" ")
|
95 |
+
|
96 |
+
print(psutil.virtual_memory()) # print memory usage
|
97 |
+
|
98 |
+
global current_model
|
99 |
+
for model in models:
|
100 |
+
if model.name == model_name:
|
101 |
+
current_model = model
|
102 |
+
model_path = current_model.path
|
103 |
+
|
104 |
+
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
105 |
+
if seed == 0:
|
106 |
+
seed = random.randint(0, 2147483647)
|
107 |
+
|
108 |
+
generator = torch.Generator('cuda').manual_seed(seed)
|
109 |
+
|
110 |
+
try:
|
111 |
+
if img is not None:
|
112 |
+
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
113 |
+
else:
|
114 |
+
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
115 |
+
except Exception as e:
|
116 |
+
return None, error_str(e)
|
117 |
+
|
118 |
+
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
119 |
+
|
120 |
+
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
121 |
+
|
122 |
+
global last_mode
|
123 |
+
global pipe
|
124 |
+
global current_model_path
|
125 |
+
if model_path != current_model_path or last_mode != "txt2img":
|
126 |
+
current_model_path = model_path
|
127 |
+
|
128 |
+
update_state(f"Loading {current_model.name} text-to-image model...")
|
129 |
+
|
130 |
+
if is_colab or current_model == custom_model:
|
131 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
132 |
+
current_model_path,
|
133 |
+
torch_dtype=torch.float16,
|
134 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
135 |
+
safety_checker=lambda images, clip_input: (images, False)
|
136 |
+
)
|
137 |
+
else:
|
138 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
139 |
+
current_model_path,
|
140 |
+
torch_dtype=torch.float16,
|
141 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
142 |
+
)
|
143 |
+
# pipe = pipe.to("cpu")
|
144 |
+
# pipe = current_model.pipe_t2i
|
145 |
+
|
146 |
+
if torch.cuda.is_available():
|
147 |
+
pipe = pipe.to("cuda")
|
148 |
+
pipe.enable_xformers_memory_efficient_attention()
|
149 |
+
last_mode = "txt2img"
|
150 |
+
|
151 |
+
result = pipe(
|
152 |
+
prompt,
|
153 |
+
negative_prompt = neg_prompt,
|
154 |
+
num_images_per_prompt=n_images,
|
155 |
+
num_inference_steps = int(steps),
|
156 |
+
guidance_scale = guidance,
|
157 |
+
width = width,
|
158 |
+
height = height,
|
159 |
+
generator = generator,
|
160 |
+
callback=pipe_callback)
|
161 |
+
|
162 |
+
# update_state(f"Done. Seed: {seed}")
|
163 |
+
|
164 |
+
return replace_nsfw_images(result)
|
165 |
+
|
166 |
+
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
167 |
+
|
168 |
+
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
169 |
+
|
170 |
+
global last_mode
|
171 |
+
global pipe
|
172 |
+
global current_model_path
|
173 |
+
if model_path != current_model_path or last_mode != "img2img":
|
174 |
+
current_model_path = model_path
|
175 |
+
|
176 |
+
update_state(f"Loading {current_model.name} image-to-image model...")
|
177 |
+
|
178 |
+
if is_colab or current_model == custom_model:
|
179 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
180 |
+
current_model_path,
|
181 |
+
torch_dtype=torch.float16,
|
182 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
183 |
+
safety_checker=lambda images, clip_input: (images, False)
|
184 |
+
)
|
185 |
+
else:
|
186 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
187 |
+
current_model_path,
|
188 |
+
torch_dtype=torch.float16,
|
189 |
+
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
190 |
+
)
|
191 |
+
# pipe = pipe.to("cpu")
|
192 |
+
# pipe = current_model.pipe_i2i
|
193 |
+
|
194 |
+
if torch.cuda.is_available():
|
195 |
+
pipe = pipe.to("cuda")
|
196 |
+
pipe.enable_xformers_memory_efficient_attention()
|
197 |
+
last_mode = "img2img"
|
198 |
+
|
199 |
+
ratio = min(height / img.height, width / img.width)
|
200 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
201 |
+
result = pipe(
|
202 |
+
prompt,
|
203 |
+
negative_prompt = neg_prompt,
|
204 |
+
num_images_per_prompt=n_images,
|
205 |
+
image = img,
|
206 |
+
num_inference_steps = int(steps),
|
207 |
+
strength = strength,
|
208 |
+
guidance_scale = guidance,
|
209 |
+
# width = width,
|
210 |
+
# height = height,
|
211 |
+
generator = generator,
|
212 |
+
callback=pipe_callback)
|
213 |
+
|
214 |
+
# update_state(f"Done. Seed: {seed}")
|
215 |
+
|
216 |
+
return replace_nsfw_images(result)
|
217 |
+
|
218 |
+
def replace_nsfw_images(results):
|
219 |
+
|
220 |
+
if is_colab:
|
221 |
+
return results.images
|
222 |
+
|
223 |
+
for i in range(len(results.images)):
|
224 |
+
if results.nsfw_content_detected[i]:
|
225 |
+
results.images[i] = Image.open("nsfw.png")
|
226 |
+
return results.images
|
227 |
+
|
228 |
+
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
229 |
+
# """
|
230 |
+
with gr.Blocks(css="style.css") as demo:
|
231 |
+
gr.HTML(
|
232 |
+
f"""
|
233 |
+
<div class="finetuned-diffusion-div">
|
234 |
+
<div>
|
235 |
+
<h1>Protogen Diffusion</h1>
|
236 |
+
</div>
|
237 |
+
<p>
|
238 |
+
Demo for multiple fine-tuned Protogen Stable Diffusion models + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
239 |
+
</p>
|
240 |
+
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
241 |
+
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
242 |
+
</p>
|
243 |
+
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
|
244 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
245 |
+
</div>
|
246 |
+
"""
|
247 |
+
)
|
248 |
+
with gr.Row():
|
249 |
+
|
250 |
+
with gr.Column(scale=55):
|
251 |
+
with gr.Group():
|
252 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
253 |
+
with gr.Box(visible=False) as custom_model_group:
|
254 |
+
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release", interactive=True)
|
255 |
+
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
256 |
+
|
257 |
+
with gr.Row():
|
258 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt.").style(container=False)
|
259 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
260 |
+
|
261 |
+
|
262 |
+
# image_out = gr.Image(height=512)
|
263 |
+
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
264 |
+
|
265 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
266 |
+
error_output = gr.Markdown()
|
267 |
+
|
268 |
+
with gr.Column(scale=45):
|
269 |
+
with gr.Tab("Options"):
|
270 |
+
with gr.Group():
|
271 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
272 |
+
|
273 |
+
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
274 |
+
|
275 |
+
with gr.Row():
|
276 |
+
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
277 |
+
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=75, step=1)
|
278 |
+
|
279 |
+
with gr.Row():
|
280 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
281 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
282 |
+
|
283 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
284 |
+
|
285 |
+
with gr.Tab("Image to image"):
|
286 |
+
with gr.Group():
|
287 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
288 |
+
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
289 |
+
|
290 |
+
if is_colab:
|
291 |
+
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
292 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
293 |
+
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
294 |
+
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
295 |
+
|
296 |
+
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
297 |
+
outputs = [gallery, error_output]
|
298 |
+
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
299 |
+
generate.click(inference, inputs=inputs, outputs=outputs)
|
300 |
+
|
301 |
+
ex = gr.Examples([
|
302 |
+
[models[2].name, "Brad Pitt with sunglasses, highly realistic", 7.5, 25],
|
303 |
+
[models[1].name, "Johnny Deep with red hair", 7.0, 35],
|
304 |
+
[models[0].name, "portrait of a beautiful alyx vance half life", 10, 25],
|
305 |
+
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
306 |
+
|
307 |
+
gr.HTML("""
|
308 |
+
<div style="border-top: 1px solid #303030;">
|
309 |
+
<br>
|
310 |
+
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
|
311 |
+
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
|
312 |
+
<p>Space by: Darkstorm (Victor Espinoza)<br>
|
313 |
+
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
|
314 |
+
</div>
|
315 |
+
""")
|
316 |
+
|
317 |
+
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
318 |
+
|
319 |
+
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
320 |
+
|
321 |
+
# if not is_colab:
|
322 |
+
demo.queue(concurrency_count=1)
|
323 |
+
demo.launch(debug=is_colab, share=is_colab)
|
nsfw.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch
|
3 |
+
torchvision==0.13.1+cu113
|
4 |
+
#diffusers
|
5 |
+
git+https://github.com/huggingface/diffusers.git
|
6 |
+
#transformers
|
7 |
+
git+https://github.com/huggingface/transformers
|
8 |
+
scipy
|
9 |
+
ftfy
|
10 |
+
psutil
|
11 |
+
accelerate==0.12.0
|
12 |
+
#OmegaConf
|
13 |
+
#pytorch_lightning
|
14 |
+
triton==2.0.0.dev20220701
|
15 |
+
#https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
|
16 |
+
https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl
|
style.css
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.finetuned-diffusion-div div{
|
2 |
+
display:inline-flex;
|
3 |
+
align-items:center;
|
4 |
+
gap:.8rem;
|
5 |
+
font-size:1.75rem
|
6 |
+
}
|
7 |
+
.finetuned-diffusion-div div h1{
|
8 |
+
font-weight:900;
|
9 |
+
margin-bottom:7px
|
10 |
+
}
|
11 |
+
.finetuned-diffusion-div p{
|
12 |
+
margin-bottom:10px;
|
13 |
+
font-size:94%
|
14 |
+
}
|
15 |
+
a{
|
16 |
+
text-decoration:underline
|
17 |
+
}
|
18 |
+
.tabs{
|
19 |
+
margin-top:0;
|
20 |
+
margin-bottom:0
|
21 |
+
}
|
22 |
+
#gallery{
|
23 |
+
min-height:20rem
|
24 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def is_google_colab():
|
2 |
+
try:
|
3 |
+
import google.colab
|
4 |
+
return True
|
5 |
+
except:
|
6 |
+
return False
|