"
],
"text/plain": [
" limit_balance sex education_level marital_status age pay_0 pay_2 \\\n",
"100 150000 1 1 2 33 0 0 \n",
"101 170000 1 1 2 39 0 0 \n",
"102 290000 1 1 2 40 0 0 \n",
"103 360000 1 1 1 36 0 0 \n",
"104 500000 1 1 1 48 0 0 \n",
"105 280000 1 1 2 30 0 0 \n",
"106 230000 1 1 2 30 0 0 \n",
"107 230000 1 1 2 32 0 0 \n",
"108 180000 1 1 2 32 0 0 \n",
"109 470000 1 1 2 33 0 0 \n",
"110 160000 1 1 2 28 0 0 \n",
"111 170000 1 1 1 41 0 0 \n",
"112 400000 1 1 2 34 0 0 \n",
"113 380000 1 1 2 33 0 0 \n",
"114 370000 1 1 2 30 0 0 \n",
"\n",
" pay_3 pay_4 pay_5 pay_6 bill_amt_1 bill_amt_2 bill_amt_3 \\\n",
"100 0 0 0 0 78038 63176 52807 \n",
"101 0 0 0 0 171160 187853 171095 \n",
"102 0 0 0 0 135527 134414 140607 \n",
"103 0 0 0 0 28291 31055 33788 \n",
"104 0 0 0 0 107595 109605 113409 \n",
"105 0 0 0 0 100740 104055 106380 \n",
"106 0 0 0 0 101874 97302 97383 \n",
"107 0 0 0 0 44734 47178 29582 \n",
"108 0 0 0 0 154374 153018 146396 \n",
"109 0 0 0 0 72083 68136 69036 \n",
"110 0 0 0 0 157921 144659 154012 \n",
"111 0 0 0 0 149941 68912 72741 \n",
"112 0 0 0 0 26912 24967 13810 \n",
"113 0 0 0 0 70591 76715 80080 \n",
"114 0 0 0 0 333930 280727 285705 \n",
"\n",
" bill_amt_4 bill_amt_5 bill_amt_6 pay_amt_1 pay_amt_2 pay_amt_3 \\\n",
"100 34199 32061 23682 5000 10116 5000 \n",
"101 137986 141319 139463 13000 6154 15000 \n",
"102 131933 135606 132906 8000 10000 5000 \n",
"103 36491 41179 45823 3000 3000 3000 \n",
"104 114191 117285 120388 5000 5571 4152 \n",
"105 112596 114235 117232 5000 4000 8000 \n",
"106 97487 96588 95221 8000 5016 5000 \n",
"107 38426 42500 43531 10120 20000 10000 \n",
"108 136531 138502 136665 7500 7000 5000 \n",
"109 71466 67538 70400 5031 5500 5000 \n",
"110 151403 115731 113635 6000 25409 30000 \n",
"111 76149 84474 92400 3200 6000 5000 \n",
"112 18230 25050 10209 10016 6000 10000 \n",
"113 81162 89571 96627 10000 5000 5000 \n",
"114 295747 250158 255956 13000 11000 15000 \n",
"\n",
" pay_amt_4 pay_amt_5 pay_amt_6 default_payment_next_month \n",
"100 6000 3000 7000 0 \n",
"101 6000 7000 5000 0 \n",
"102 6000 4700 5000 0 \n",
"103 5000 5000 5000 0 \n",
"104 5000 5000 5000 0 \n",
"105 5000 5000 18000 0 \n",
"106 5000 5000 5200 0 \n",
"107 5000 5000 5000 0 \n",
"108 5000 6000 5137 0 \n",
"109 5000 4000 5000 0 \n",
"110 5000 5000 4500 0 \n",
"111 10000 10000 780 0 \n",
"112 10000 5000 4000 0 \n",
"113 10000 10000 10000 0 \n",
"114 10000 10000 12000 0 "
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilan Data Pada Rentang Tertentu \n",
"df.iloc[100:115]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['limit_balance', 'sex', 'education_level', 'marital_status', 'age',\n",
" 'pay_0', 'pay_2', 'pay_3', 'pay_4', 'pay_5', 'pay_6', 'bill_amt_1',\n",
" 'bill_amt_2', 'bill_amt_3', 'bill_amt_4', 'bill_amt_5', 'bill_amt_6',\n",
" 'pay_amt_1', 'pay_amt_2', 'pay_amt_3', 'pay_amt_4', 'pay_amt_5',\n",
" 'pay_amt_6', 'default_payment_next_month'],\n",
" dtype='object')"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilkan Kolom pada Data\n",
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(2965, 24)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilkan Jumlah Baris dan Kolom\n",
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 2965 entries, 0 to 2964\n",
"Data columns (total 24 columns):\n",
" # Column Non-Null Count Dtype\n",
"--- ------ -------------- -----\n",
" 0 limit_balance 2965 non-null int64\n",
" 1 sex 2965 non-null int64\n",
" 2 education_level 2965 non-null int64\n",
" 3 marital_status 2965 non-null int64\n",
" 4 age 2965 non-null int64\n",
" 5 pay_0 2965 non-null int64\n",
" 6 pay_2 2965 non-null int64\n",
" 7 pay_3 2965 non-null int64\n",
" 8 pay_4 2965 non-null int64\n",
" 9 pay_5 2965 non-null int64\n",
" 10 pay_6 2965 non-null int64\n",
" 11 bill_amt_1 2965 non-null int64\n",
" 12 bill_amt_2 2965 non-null int64\n",
" 13 bill_amt_3 2965 non-null int64\n",
" 14 bill_amt_4 2965 non-null int64\n",
" 15 bill_amt_5 2965 non-null int64\n",
" 16 bill_amt_6 2965 non-null int64\n",
" 17 pay_amt_1 2965 non-null int64\n",
" 18 pay_amt_2 2965 non-null int64\n",
" 19 pay_amt_3 2965 non-null int64\n",
" 20 pay_amt_4 2965 non-null int64\n",
" 21 pay_amt_5 2965 non-null int64\n",
" 22 pay_amt_6 2965 non-null int64\n",
" 23 default_payment_next_month 2965 non-null int64\n",
"dtypes: int64(24)\n",
"memory usage: 556.1 KB\n"
]
}
],
"source": [
"# Menampilkan informasi data\n",
"df.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Insight* :\n",
"\n",
"Adapun keterangan untuk masing masing kolom yakni:\n",
"\n",
"Kolom | Keterangan\n",
"--- | ---\n",
"limit_balance | Jumlah kredit yang diberikan dalam Dolar NT (termasuk kredit individu dan keluarga)\n",
"sex | Jenis Kelamin (1 = male, 2 = female)\n",
"education_level | Tingkat Pendidikan (1 = graduate school, 2 = university, 3 = high school, 4 = others, 5 = unknown, 6 = unknown)\n",
"marital_status | Status Pernikahan (1 = married, 2 = single, 3 = others)\n",
"age | Umur\n",
"pay_0 | Status pelunasan bulan September 2005 (-1=bayar lunas, 1=keterlambatan pembayaran selama satu bulan, 2=keterlambatan pembayaran selama dua bulan, ... 8=keterlambatan pembayaran selama delapan bulan, 9=keterlambatan pembayaran selama sembilan bulan ke atas)\n",
"pay_2 | Status pelunasan bulan Agustus 2005 (-1=bayar lunas, 1=keterlambatan pembayaran selama satu bulan, 2=keterlambatan pembayaran selama dua bulan, ... 8=keterlambatan pembayaran selama delapan bulan, 9=keterlambatan pembayaran selama sembilan bulan ke atas)\n",
"pay_3 | Status pelunasan bulan Juli 2005 (-1=bayar lunas, 1=keterlambatan pembayaran selama satu bulan, 2=keterlambatan pembayaran selama dua bulan, ... 8=keterlambatan pembayaran selama delapan bulan, 9=keterlambatan pembayaran selama sembilan bulan ke atas)\n",
"pay_4 | Status pelunasan bulan Juni 2005 (-1=bayar lunas, 1=keterlambatan pembayaran selama satu bulan, 2=keterlambatan pembayaran selama dua bulan, ... 8=keterlambatan pembayaran selama delapan bulan, 9=keterlambatan pembayaran selama sembilan bulan ke atas)\n",
"pay_5 | Status pelunasan bulan Mei 2005 (-1=bayar lunas, 1=keterlambatan pembayaran selama satu bulan, 2=keterlambatan pembayaran selama dua bulan, ... 8=keterlambatan pembayaran selama delapan bulan, 9=keterlambatan pembayaran selama sembilan bulan ke atas)\n",
"pay_6 | Status pelunasan bulan April 2005 (-1=bayar lunas, 1=keterlambatan pembayaran selama satu bulan, 2=keterlambatan pembayaran selama dua bulan, ... 8=keterlambatan pembayaran selama delapan bulan, 9=keterlambatan pembayaran selama sembilan bulan ke atas)\n",
"bill_amt_1 | Jumlah tagihan bulan September 2005 (Dolar NT)\n",
"bill_amt_2 | Jumlah tagihan bulan Agustus 2005 (Dolar NT)\n",
"bill_amt_3 | Jumlah tagihan bulan Juli 2005 (Dolar NT)\n",
"bill_amt_4 | Jumlah tagihan bulan Juni 2005 (Dolar NT)\n",
"bill_amt_5 | Jumlah tagihan bulan Mei 2005 (Dolar NT)\n",
"bill_amt_6 | Jumlah tagihan bulan April 2005 (Dolar NT)\n",
"pay_amt_1 | Jumlah pembayaran sebelumnya pada bulan September 2005 (Dolar NT)\n",
"pay_amt_2 | Jumlah pembayaran sebelumnya pada bulan Agustus 2005 (Dolar NT)\n",
"pay_amt_3 | Jumlah pembayaran sebelumnya pada bulan Juli 2005 (Dolar NT)\n",
"pay_amt_4 | Jumlah pembayaran sebelumnya pada bulan Juni 2005 (Dolar NT)\n",
"pay_amt_5 | Jumlah pembayaran sebelumnya pada bulan Mei 2005 (Dolar NT)\n",
"pay_amt_6 | Jumlah pembayaran sebelumnya pada bulan April 2005 (Dolar NT)\n",
"default_payment_next_month | Gagal membayar tagihan (1 = yes, 0 = no)\n"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# Mengganti Nama Kolom\n",
"df.rename(columns={'pay_0': 'pay_1'}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"# Mengganti Isi kolom ke dalam Kolom Lain\n",
"df['education_level'] = df['education_level'].replace(to_replace=[0, 5, 6], value=4)\n",
"df['marital_status'] = df['marital_status'].replace(to_replace=0, value=3)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilkan Duplikat\n",
"df.duplicated().sum()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"limit_balance 0\n",
"sex 0\n",
"education_level 0\n",
"marital_status 0\n",
"age 0\n",
"pay_1 0\n",
"pay_2 0\n",
"pay_3 0\n",
"pay_4 0\n",
"pay_5 0\n",
"pay_6 0\n",
"bill_amt_1 0\n",
"bill_amt_2 0\n",
"bill_amt_3 0\n",
"bill_amt_4 0\n",
"bill_amt_5 0\n",
"bill_amt_6 0\n",
"pay_amt_1 0\n",
"pay_amt_2 0\n",
"pay_amt_3 0\n",
"pay_amt_4 0\n",
"pay_amt_5 0\n",
"pay_amt_6 0\n",
"default_payment_next_month 0\n",
"dtype: int64"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilkan Nilai Missing Value\n",
"df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
limit_balance
\n",
"
sex
\n",
"
education_level
\n",
"
marital_status
\n",
"
age
\n",
"
pay_1
\n",
"
pay_2
\n",
"
pay_3
\n",
"
pay_4
\n",
"
pay_5
\n",
"
pay_6
\n",
"
bill_amt_1
\n",
"
bill_amt_2
\n",
"
bill_amt_3
\n",
"
bill_amt_4
\n",
"
bill_amt_5
\n",
"
bill_amt_6
\n",
"
pay_amt_1
\n",
"
pay_amt_2
\n",
"
pay_amt_3
\n",
"
pay_amt_4
\n",
"
pay_amt_5
\n",
"
pay_amt_6
\n",
"
default_payment_next_month
\n",
"
\n",
" \n",
" \n",
"
\n",
"
2806
\n",
"
200000
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
34
\n",
"
1
\n",
"
-2
\n",
"
-2
\n",
"
-2
\n",
"
-2
\n",
"
-2
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
2815
\n",
"
200000
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
34
\n",
"
1
\n",
"
-2
\n",
"
-2
\n",
"
-2
\n",
"
-2
\n",
"
-2
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" limit_balance sex education_level marital_status age pay_1 pay_2 \\\n",
"2806 200000 2 1 1 34 1 -2 \n",
"2815 200000 2 1 1 34 1 -2 \n",
"\n",
" pay_3 pay_4 pay_5 pay_6 bill_amt_1 bill_amt_2 bill_amt_3 \\\n",
"2806 -2 -2 -2 -2 0 0 0 \n",
"2815 -2 -2 -2 -2 0 0 0 \n",
"\n",
" bill_amt_4 bill_amt_5 bill_amt_6 pay_amt_1 pay_amt_2 pay_amt_3 \\\n",
"2806 0 0 0 0 0 0 \n",
"2815 0 0 0 0 0 0 \n",
"\n",
" pay_amt_4 pay_amt_5 pay_amt_6 default_payment_next_month \n",
"2806 0 0 0 0 \n",
"2815 0 0 0 0 "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Melakukan Permeriksaan Terhadap Data Duplikasi\n",
"duplicated_data = df.duplicated(keep=False)\n",
"duplicate_rows = df[duplicated_data]\n",
"duplicate_rows"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Pada dataframe `credit_card_default.csv` dapat ditemukan:\n",
"\n",
"- Terdapat 2965 baris dan 24 kolom \n",
"\n",
"- Ditemukan data yang mengalami duplikasi dan ditemukan 1 data yang mengalami duplikasi. Namun data ini tidak dihapus dengan pertimbangan nasabah pada data ini kebetulan mengalami situasi hal yang sama dari semua aspek \n",
"\n",
"- Tidak ditemukan data yang mengalami *missing value*\n",
"\n",
"- Pada kolom `pay_0` akan dilakukan perubahan nama menjadi `pay_1` dikarenakan untuk menyesuaikan dengan kolom `bill_amt_1` dan `pay_amt_1`\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ***Exploratory Data Analysis***\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### **Visualisasi Data Sedehana**\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCN0lEQVR4nO3df3yN9f/H8efZtI3NZn5tprWZifwYIkuIT6ZNfs2XwkfGFKUoxqpVjPRpfiUVH0olCyUSKa1YRjIJSSplGgrzm7VhY7u+f3Tb+Tg27Mzs2NXjfrudW7ve1/u8r9f7ao6n69exGIZhCAAAAOWek6MLAAAAQOkg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2MF0xo8fL4vFomPHjjm6lH+UwMBADRo0yNFlFMlisWj8+PGm3naHDh3UoUOH674dlNy7774ri8WivXv3OroUmBjBDg5R8AG3ZcuWItd36NBBjRs3LuOqzKm8Bd2UlBRZLBYtXbrUpj03N1ddu3aVk5OT3nnnHQdVhxtRTk6OXn/9dbVt21be3t5ycXGRn5+funfvrvfff195eXmOLtEuBX9mC15OTk6qVauWunbtqk2bNjm6PNzgKji6AADm8Ouvv8rJ6fr8W/H8+fPq3bu3Vq1apblz52rw4MHXZTvXw9mzZ1WhAh+118vRo0fVuXNnbd26VeHh4Xr++edVtWpVZWRkaM2aNfr3v/+ttLQ0jR071tGl2m327Nny8PBQfn6+/vjjD82dO1d33323Nm/erGbNmjm6PNyg+LQBUCpcXV2vy7jnz5/XAw88oE8//VRvvPGGHnrooeuynevFzc3N0SWY2oABA/T999/ro48+0v/93//ZrIuLi9OWLVv066+/Oqi6a9O7d29Vr17duhwZGanGjRtryZIlN2Swu3DhgvLz8+Xi4uLoUv7ROBWLcmHv3r2yWCx69913C6273DVMx44d0wMPPCBPT09Vq1ZNTz75pM6dO1eiMQtOjaSlpWnQoEGqUqWKvLy8FB0drTNnzti89+zZs3riiSdUvXp1Va5cWd27d9eBAwcKjblv3z499thjql+/vipWrKhq1arp/vvvL3T9TcFp62+++UYxMTGqUaOG3N3d1bNnTx09erQ4u69I3377rSIiIuTl5aVKlSqpffv2+uabb2z62DPvS6+xO3/+vCZMmKB69erJzc1N1apVU9u2bbV69epi13jhwgX17dtXK1as0OzZszVkyBCb9adOndLIkSPl7+8vV1dXBQcHa/LkycrPz7/iuPbu+w0bNuiJJ55QjRo1VKVKFT3yyCPKzc3VqVOnFBUVJW9vb3l7e+upp56SYRg2Y1zL79LlvPnmm6pbt64qVqyoVq1a6euvvy6yX05OjuLj4xUcHCxXV1f5+/vrqaeeUk5OTqEahw8fruXLl6tx48ZydXVVo0aNlJSUVGjMlJQUtWzZUm5ubqpbt67eeOMN65wuNm/ePN1zzz2qWbOmXF1d1bBhQ82ePbvQeIGBgeratas2bNigVq1ayc3NTUFBQUpMTLzqfkhNTdUXX3yhoUOHFgp1BVq2bKn+/ftbl3NzczVu3Di1aNFCXl5ecnd3V7t27bR27dpC7z1+/LgGDBggT09PValSRQMHDtQPP/xQ6HNjx44dGjRokIKCguTm5iZfX18NHjxYx48fv+oc7OHr6ytJNkeAizMfwzAUGBioHj16FBrz3Llz8vLy0iOPPFLs8aT/fX5OmzZNM2bMUN26deXq6qqff/65VOcM+3HEDg51+vTpIq/9On/+/DWP/cADDygwMFAJCQnatGmTXnvtNZ08ebJYf2Fcacw6deooISFB27Zt01tvvaWaNWtq8uTJ1j6DBg3Shx9+qAEDBujOO+/UunXr1KVLl0Jjfffdd9q4caP69u2rm2++WXv37tXs2bPVoUMH/fzzz6pUqZJN/xEjRsjb21vx8fHau3evZsyYoeHDh2vx4sV2z+Orr75S586d1aJFC8XHx8vJycn6F/HXX3+tVq1a2T3vS40fP14JCQl6+OGH1apVK2VmZmrLli3atm2bOnXqdNUaL1y4oH79+unjjz/WrFmzrH/xFDhz5ozat2+vAwcO6JFHHtEtt9yijRs3Ki4uTocOHdKMGTMuO3ZJ9r2vr68mTJigTZs26c0331SVKlW0ceNG3XLLLXrppZe0atUqTZ06VY0bN1ZUVNRV51eSfSpJb7/9th555BHdddddGjlypH7//Xd1795dVatWlb+/v7Vffn6+unfvrg0bNmjo0KG67bbb9OOPP+qVV17Rb7/9puXLl9uMu2HDBi1btkyPPfaYKleurNdee029evXS/v37Va1aNUnS999/r4iICNWqVUsTJkxQXl6eXnjhBdWoUaNQnbNnz1ajRo3UvXt3VahQQStXrtRjjz2m/Px8Pf744zZ909LS1Lt3bz300EMaOHCg3nnnHQ0aNEgtWrRQo0aNLrsvVq5cKUl68MEHr7jPLpaZmam33npL/fr105AhQ/TXX3/p7bffVnh4uM0pzvz8fHXr1k2bN2/WsGHD1KBBA61YsUIDBw4sNObq1av1+++/Kzo6Wr6+vvrpp5/05ptv6qefftKmTZsKhd7iOnHihLWWAwcOaOLEiXJzc9MDDzxg13wsFosefPBBTZkyRSdOnFDVqlWt71+5cqUyMzOt+7C4+6fAvHnzdO7cOQ0dOlSurq42Y8NBDMAB5s2bZ0i64qtRo0bW/unp6YYkY968eYXGkmTEx8dbl+Pj4w1JRvfu3W36PfbYY4Yk44cffijxmIMHD7bp17NnT6NatWrW5a1btxqSjJEjR9r0GzRoUKExz5w5U2i7qamphiQjMTGx0L4KCwsz8vPzre2jRo0ynJ2djVOnThUa52IFtR89etQwDMPIz8836tWrZ4SHh9uMd+bMGaNOnTpGp06d7J63YRhGQECAMXDgQOty06ZNjS5dulyxtqKsXbvWkGQEBAQYkoxZs2YV2W/ixImGu7u78dtvv9m0P/PMM4azs7Oxf/9+a9u17vtL91Xr1q0Ni8ViPProo9a2CxcuGDfffLPRvn17m3FL+rtUlNzcXKNmzZpGs2bNjJycHGv7m2++aUiy2fZ7771nODk5GV9//bXNGHPmzDEkGd98841NjS4uLkZaWpq17YcffjAkGa+//rq1rVu3bkalSpWMAwcOWNt2795tVKhQwbj0r5Oi9nF4eLgRFBRk01bw/3n9+vXWtiNHjhiurq7G6NGjr7g/evbsaUgq9Gfg7NmzxtGjR62vkydPWtdduHDBZt8ZhmGcPHnS8PHxsfl/8tFHHxmSjBkzZljb8vLyjHvuuafQ50ZRc33//fcLzavg9yk9Pf2K8yr4Hbn0VaVKFSMpKcmmb3Hn8+uvvxqSjNmzZ9v07d69uxEYGGj9/S7ueAWfn56ensaRI0euOB+ULU7FwqFmzZql1atXF3qFhIRc89iXHhUYMWKEJGnVqlUlHvPRRx+1WW7Xrp2OHz+uzMxMSbKeunrssceK3PbFKlasaP35/PnzOn78uIKDg1WlShVt27atUP+hQ4fa/Mu/Xbt2ysvL0759++yaw/bt27V79279+9//1vHjx3Xs2DEdO3ZM2dnZ6tixo9avX1/oVObV5l2UKlWq6KefftLu3bvtqq/A4cOHVaFCBdWpU6fI9UuWLFG7du3k7e1tncOxY8cUFhamvLw8rV+//rJj27vvH3roIZt9HxoaKsMwbK73c3Z2VsuWLfX7778Xa34l2adbtmzRkSNH9Oijj9pcxzRo0CB5eXnZ9F2yZIluu+02NWjQwGb/3HPPPZJU6NRaWFiY6tata10OCQmRp6endT55eXlas2aNIiMj5efnZ+0XHByszp07F6r14n1ccGS+ffv2+v3333X69Gmbvg0bNlS7du2syzVq1FD9+vWvui8L9pWHh4dN+5w5c1SjRg3rq23bttZ1zs7O1n2Xn5+vEydO6MKFC2rZsqXN//ukpCTddNNNNqf/nZycCn2uXDrXc+fO6dixY7rzzjslqcjfp+L66KOPtHr1an355ZeaN2+ebr31VvXq1UsbN260ez633nqrQkNDtXDhQmvbiRMn9Pnnn6t///7W3+/ijlegV69eRR6xheNwKhYO1apVK7Vs2bJQe8Ff1teiXr16Nst169aVk5PTNT1D6pZbbrFZ9vb2liSdPHlSnp6e2rdvn5ycnAqFkeDg4EJjnT17VgkJCZo3b54OHDhgc23WpX/xXW3b9igIWkWdUrp4+wXjX23bnp6eRY7xwgsvqEePHrr11lvVuHFjRUREaMCAAcUO7VOmTNGMGTPUu3dvffnll2rTpk2heezYseOyf6kcOXLksmNf674vCFEXn/osaC/u/4+S7NOCEH/p7/ZNN92koKAgm7bdu3frl19+Kfb+ubSegpoK5nPkyBGdPXu2yN/lotq++eYbxcfHKzU1tdC1g6dPn7YJolfb9uVUrlxZkpSVlWUzXq9evayPSxo9enShx53Mnz9fL7/8snbt2mVz2cfFf2737dunWrVqFTotX9RcT5w4oQkTJuiDDz4otF+L+n0qrrvvvtvm5onevXurXr16GjFihLZu3WrXfCQpKipKw4cP1759+xQQEKAlS5bo/PnzGjBggE2/4o53uTY4FsEO5cLlrlGx5/lUl45RkjGdnZ2LbDcuuWC+OEaMGKF58+Zp5MiRat26tby8vGSxWNS3b98iL/4vrW0XjD116tTL3ll36RGQkmz77rvv1p49e7RixQp9+eWXeuutt/TKK69ozpw5evjhh69aZ61atbR69Wq1bdtWXbp00bp169S0aVObeXTq1ElPPfVUke+/9dZbLzt2ae37otqL+/+jNH+XipKfn68mTZpo+vTpRa6/NJSWZj179uxRx44d1aBBA02fPl3+/v5ycXHRqlWr9MorrxTaxyXddoMGDSRJO3futAn+/v7+1vld+o/EBQsWaNCgQYqMjFRsbKxq1qwpZ2dnJSQkaM+ePXbPVfr7esmNGzcqNjZWzZo1sz6iJCIi4qo38tjDw8NDoaGhWrFihbKzs+Xu7m7XfPr27atRo0Zp4cKFevbZZ7VgwQK1bNlS9evXt/axd/9cfLQSNwaCHcqFgqMZp06dsmm/0mnI3bt32/xrMi0tTfn5+QoMDCzxmFcTEBCg/Px8paen2xxVSUtLK9R36dKlGjhwoF5++WVr27lz5wrVU9oKTrd5enoqLCzsum6ratWqio6OVnR0tLKysnT33Xdr/PjxxQp2khQUFKQvvvhC7du3V3h4uL7++mvrfq1bt66ysrJKNAdH7ftrFRAQIOnv3+2CU6rS36eT09PTbYJv3bp19cMPP6hjx44lvnj/YjVr1pSbm1uRv8uXtq1cuVI5OTn65JNPbI7GFXXn6bXo2rWrJk2apIULFxY6ons5S5cuVVBQkJYtW2azX+Lj4236BQQEaO3atTpz5ozNUbtL53ry5EklJydrwoQJGjdunLW9pJcgXM2FCxck/X2U0t3dvdjzkf7+89ilSxctXLhQ/fv31zfffFPoJiN7xsONiWvsUC54enqqevXqha6b+u9//3vZ98yaNctm+fXXX5ck6/VAJRnzasLDw4sco2DbF3N2di50ROL111+/7k/Jb9GiherWratp06YpKyur0PpreYTKxS591IOHh4eCg4MLPWrjapo0aaLPPvtMWVlZ6tSpkw4cOCDp76MkBY+7uNSpU6esfwEWxVH7/lq1bNlSNWrU0Jw5c5Sbm2ttf/fddwuF0gceeEAHDhzQ3LlzC41z9uxZZWdn27VtZ2dnhYWFafny5Tp48KC1PS0tTZ9//nmhvpIKneKeN2+eXdu8mjZt2qhTp0568803tWLFiiL7XPr/uajavv32W6Wmptr0Cw8P1/nz5232X35+fqHPlaLGk3TFu7JL6sSJE9q4caN8fX1Vs2bNy26/qPkUGDBggH7++WfFxsbK2dlZffv2tVlv73i48XDEDuXGww8/rEmTJunhhx9Wy5YttX79ev3222+X7Z+enq7u3bsrIiJCqampWrBggf7973/bHNWwd8yradGihXr16qUZM2bo+PHj1sedFIx58b+Au3btqvfee09eXl5q2LChUlNTtWbNGuujJa4XJycnvfXWW+rcubMaNWqk6Oho1a5dWwcOHNDatWvl6elpfYzEtWjYsKE6dOigFi1aqGrVqtqyZYuWLl2q4cOH2z1W69attWzZMnXr1k2dOnXS119/rdjYWH3yySfq2rWr9dEY2dnZ+vHHH7V06VLt3bvX5vqkizlq31+rm266SS+++KIeeeQR3XPPPerTp4/S09M1b968QtfYDRgwQB9++KEeffRRrV27Vm3atFFeXp527dqlDz/8UF988UWR17deyfjx463XOw4bNkx5eXmaOXOmGjdurO3bt1v73XvvvXJxcVG3bt30yCOPKCsrS3PnzlXNmjV16NCh0tgVVgsWLFBERIQiIyPVuXNnhYWFydvb2/rNE+vXr7e5uaNr165atmyZevbsqS5duig9PV1z5sxRw4YNbf6hExkZqVatWmn06NFKS0tTgwYN9Mknn1gfQVLwZ9nT01N33323pkyZovPnz6t27dr68ssvlZ6efs1zW7p0qTw8PGQYhg4ePKi3335bJ0+e1Jw5c6zbL+58CnTp0kXVqlXTkiVL1LlzZ2tAtHf/4MZFsEO5MW7cOB09elRLly7Vhx9+qM6dO+vzzz8v9MFUYPHixRo3bpyeeeYZVahQQcOHD9fUqVOvacziSExMlK+vr95//319/PHHCgsL0+LFi1W/fn2bbyF49dVX5ezsrIULF+rcuXNq06aN1qxZYz3qV1oK/uV98XVMHTp0UGpqqiZOnKiZM2cqKytLvr6+Cg0NLfS8uJJ64okn9Mknn+jLL79UTk6OAgIC9OKLLyo2NrZE4917771677331K9fP3Xu3FnJyclat26dXnrpJS1ZskSJiYny9PTUrbfeqgkTJhS6S/RiZbXvr4ehQ4cqLy9PU6dOVWxsrJo0aaJPPvmk0FdmOTk5afny5XrllVeUmJiojz/+WJUqVVJQUJCefPLJK16DeDktWrTQ559/rjFjxmjs2LHy9/fXCy+8oF9++UW7du2y9qtfv76WLl2q559/XmPGjJGvr6+GDRumGjVqlPrXwdWsWVMbN27UG2+8ocWLF2vChAk6c+aMqlevrpYtW2rhwoXq06ePtf+gQYOUkZGhN954Q1988YUaNmyoBQsWaMmSJUpJSbH2c3Z21meffaYnn3xS8+fPl5OTk3r27Kn4+Hi1adPG5s/yokWLNGLECM2aNUuGYejee+/V559/bnP3cEkMGzbM+rO7u7tCQkL0n//8R/fff7/d8yng4uKiPn366L///W+hmyZKMh5uPBajtK7UBXBZ27dvV/PmzbVgwQKbp+CXhZiYGL366qs6d+6cbrrppjLdNv4ZIiMjr+nRNuXJ8uXL1bNnT23YsKHY1/XdaEaNGqW3335bGRkZhe76RfnHNXZAKTt79myhthkzZsjJyUl33313mdfz3XffKTg4mFCHUnHp7/fu3bu1atUqdejQwTEFXUeXzjUvL0+vv/66PD09dfvttzuoqmtz7tw5LViwQL169SLUmRSnYoFSNmXKFG3dulX/+te/VKFCBX3++ef6/PPPNXTo0EKPmLie5s2bp6+++kobNmzQf/7znzLbLswtKCjI+r2o+/bt0+zZs+Xi4nLZx86UZyNGjNDZs2fVunVr5eTkaNmyZdq4caNeeumlcveYjyNHjmjNmjVaunSpjh8/rieffNLRJeE64VQsUMpWr16tCRMm6Oeff1ZWVpZuueUWDRgwQM8995zNl3dfb05OTvL19dWAAQP00ksvXfZZYYA9oqOjtXbtWmVkZMjV1VWtW7fWSy+9VG6PYF3JokWL9PLLLystLU3nzp1TcHCwhg0bVqIbgBwtJSVF//rXv1SzZk2NHTu2XM4BxUOwAwAAMAmusQMAADAJgh0AAIBJcPNEEfLz83Xw4EFVrly5VL6KBwAAoKQMw9Bff/0lPz8/OTld+Zgcwa4IBw8eLNO7FwEAAK7mjz/+0M0333zFPgS7IlSuXFnS3zvQ09PTwdUAAIB/sszMTPn7+1vzyZUQ7Ipw8XcAEuwAAMCNoDiXh3HzBAAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEncEMFu1qxZCgwMlJubm0JDQ7V58+bL9p07d67atWsnb29veXt7KywsrFD/QYMGyWKx2LwiIiKu9zQAAAAcyuHBbvHixYqJiVF8fLy2bdumpk2bKjw8XEeOHCmyf0pKivr166e1a9cqNTVV/v7+uvfee3XgwAGbfhERETp06JD19f7775fFdAAAABzGYhiG4cgCQkNDdccdd2jmzJmSpPz8fPn7+2vEiBF65plnrvr+vLw8eXt7a+bMmYqKipL09xG7U6dOafny5SWqKTMzU15eXjp9+jTfFQsAABzKnlzi0CN2ubm52rp1q8LCwqxtTk5OCgsLU2pqarHGOHPmjM6fP6+qVavatKekpKhmzZqqX7++hg0bpuPHj192jJycHGVmZtq8AAAAyhuHBrtjx44pLy9PPj4+Nu0+Pj7KyMgo1hhPP/20/Pz8bMJhRESEEhMTlZycrMmTJ2vdunXq3Lmz8vLyihwjISFBXl5e1pe/v3/JJwUAAOAgFRxdwLWYNGmSPvjgA6WkpMjNzc3a3rdvX+vPTZo0UUhIiOrWrauUlBR17Nix0DhxcXGKiYmxLmdmZhLucEWGYSg7O9u67O7uLovF4sCKAABwcLCrXr26nJ2ddfjwYZv2w4cPy9fX94rvnTZtmiZNmqQ1a9YoJCTkin2DgoJUvXp1paWlFRnsXF1d5erqav8E8I+VnZ2tHj16WJdXrFghDw8PB1YEAICDT8W6uLioRYsWSk5Otrbl5+crOTlZrVu3vuz7pkyZookTJyopKUktW7a86nb+/PNPHT9+XLVq1SqVugEAAG5EDn/cSUxMjObOnav58+frl19+0bBhw5Sdna3o6GhJUlRUlOLi4qz9J0+erLFjx+qdd95RYGCgMjIylJGRoaysLElSVlaWYmNjtWnTJu3du1fJycnq0aOHgoODFR4e7pA5AgAAlAWHX2PXp08fHT16VOPGjVNGRoaaNWumpKQk6w0V+/fvl5PT//Ln7NmzlZubq969e9uMEx8fr/Hjx8vZ2Vk7duzQ/PnzderUKfn5+enee+/VxIkTOd0KAABMzeHPsbsR8Rw7XE1WVhbX2AEAykS5eY4dAAAASg/BDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJVHB0AQAA/FMZhqHs7Gzrsru7uywWiwMrQnlHsLtBtIhNdHQJsIPlQq68LlruMPYDGRVcHFYP7LN1apSjSwAkSdnZ2erRo4d1ecWKFfLw8HBgRSjvOBULAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk6jg6AIAAKWnRWyio0uAHSwXcuV10XKHsR/IqODisHpgn61ToxxdQiEcsQMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk7ghgt2sWbMUGBgoNzc3hYaGavPmzZftO3fuXLVr107e3t7y9vZWWFhYof6GYWjcuHGqVauWKlasqLCwMO3evft6TwMAAMChHB7sFi9erJiYGMXHx2vbtm1q2rSpwsPDdeTIkSL7p6SkqF+/flq7dq1SU1Pl7++ve++9VwcOHLD2mTJlil577TXNmTNH3377rdzd3RUeHq5z586V1bQAAADKnMOD3fTp0zVkyBBFR0erYcOGmjNnjipVqqR33nmnyP4LFy7UY489pmbNmqlBgwZ66623lJ+fr+TkZEl/H62bMWOGnn/+efXo0UMhISFKTEzUwYMHtXz58jKcGQAAQNlyaLDLzc3V1q1bFRYWZm1zcnJSWFiYUlNTizXGmTNndP78eVWtWlWSlJ6eroyMDJsxvby8FBoaetkxc3JylJmZafMCAAAobxwa7I4dO6a8vDz5+PjYtPv4+CgjI6NYYzz99NPy8/OzBrmC99kzZkJCgry8vKwvf39/e6cCAADgcA4/FXstJk2apA8++EAff/yx3NzcSjxOXFycTp8+bX398ccfpVglAABA2XDod8VWr15dzs7OOnz4sE374cOH5evre8X3Tps2TZMmTdKaNWsUEhJibS943+HDh1WrVi2bMZs1a1bkWK6urnJ1dS3hLPBPZDjfpNMh/WyWAQBwNIcesXNxcVGLFi2sNz5Ist4I0bp168u+b8qUKZo4caKSkpLUsmVLm3V16tSRr6+vzZiZmZn69ttvrzgmYBeLRUYFF+tLFoujKwIAwLFH7CQpJiZGAwcOVMuWLdWqVSvNmDFD2dnZio6OliRFRUWpdu3aSkhIkCRNnjxZ48aN06JFixQYGGi9bs7Dw0MeHh6yWCwaOXKkXnzxRdWrV0916tTR2LFj5efnp8jISEdNEwAA4LpzeLDr06ePjh49qnHjxikjI0PNmjVTUlKS9eaH/fv3y8npfwcWZ8+erdzcXPXu3dtmnPj4eI0fP16S9NRTTyk7O1tDhw7VqVOn1LZtWyUlJV3TdXgAAAA3OocHO0kaPny4hg8fXuS6lJQUm+W9e/dedTyLxaIXXnhBL7zwQilUBwAAUD6U67tiAQAA8D8EOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJjEDfFdsQAA/BMZzjfpdEg/m2XgWhDsAABwFItFRgUXR1cBE+FULAAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEnYFezOnz+vChUqaOfOnderHgAAAJSQXcHupptu0i233KK8vLzrVQ8AAABKyO5Tsc8995yeffZZnThx4nrUAwAAgBKqYO8bZs6cqbS0NPn5+SkgIEDu7u4267dt21ZqxQEAAKD47A52kZGR16EMAAAAXCu7g118fPz1qAMAAADXiMedAAAAmITdR+zy8vL0yiuv6MMPP9T+/fuVm5trs56bKgAAABzD7iN2EyZM0PTp09WnTx+dPn1aMTEx+r//+z85OTlp/Pjxdhcwa9YsBQYGys3NTaGhodq8efNl+/7000/q1auXAgMDZbFYNGPGjEJ9xo8fL4vFYvNq0KCB3XUBAACUN3YHu4ULF2ru3LkaPXq0KlSooH79+umtt97SuHHjtGnTJrvGWrx4sWJiYhQfH69t27apadOmCg8P15EjR4rsf+bMGQUFBWnSpEny9fW97LiNGjXSoUOHrK8NGzbYVRcAAEB5ZHewy8jIUJMmTSRJHh4eOn36tCSpa9eu+uyzz+waa/r06RoyZIiio6PVsGFDzZkzR5UqVdI777xTZP877rhDU6dOVd++feXq6nrZcStUqCBfX1/rq3r16nbVBQAAUB7ZHexuvvlmHTp0SJJUt25dffnll5Kk77777oph61K5ubnaunWrwsLC/leMk5PCwsKUmppqb1k2du/eLT8/PwUFBal///7av3//NY0HAABQHtgd7Hr27Knk5GRJ0ogRIzR27FjVq1dPUVFRGjx4cLHHOXbsmPLy8uTj42PT7uPjo4yMDHvLsgoNDdW7776rpKQkzZ49W+np6WrXrp3++uuvy74nJydHmZmZNi8AAIDyxu67YidNmmT9uU+fPgoICNDGjRtVr149devWrVSLK4nOnTtbfw4JCVFoaKgCAgL04Ycf6qGHHiryPQkJCZowYUJZlQgAAHBd2B3ssrOzbb5G7M4779Sdd95p94arV68uZ2dnHT582Kb98OHDV7wxwl5VqlTRrbfeqrS0tMv2iYuLU0xMjHU5MzNT/v7+pVYDAABAWbD7VKyPj48GDx58zXeauri4qEWLFtbTupKUn5+v5ORktW7d+prGvlhWVpb27NmjWrVqXbaPq6urPD09bV4AAADljd3BbsGCBTpx4oTuuece3XrrrZo0aZIOHjxYoo3HxMRo7ty5mj9/vn755RcNGzZM2dnZio6OliRFRUUpLi7O2j83N1fbt2/X9u3blZubqwMHDmj79u02R+PGjBmjdevWae/evdq4caN69uwpZ2dn9evXr0Q1AgAAlBd2B7vIyEgtX75cBw4c0KOPPqpFixYpICBAXbt21bJly3ThwoVij9WnTx9NmzZN48aNU7NmzbR9+3YlJSVZb6jYv3+/9Q5cSTp48KCaN2+u5s2b69ChQ5o2bZqaN2+uhx9+2Nrnzz//VL9+/VS/fn098MADqlatmjZt2qQaNWrYO1UAAIByxWIYhnGtg7z++uuKjY1Vbm6uqlevrkcffVTPPPOMKlWqVBo1lrnMzEx5eXnp9OnTZXZatkVsYplsB4C0dWqUo0u4bvgsAcpOWX2W2JNL7L55osDhw4c1f/58vfvuu9q3b5969+6thx56SH/++acmT56sTZs2WZ9xBwAAgOvP7mC3bNkyzZs3T1988YUaNmyoxx57TA8++KCqVKli7XPXXXfptttuK806AQAAcBV2B7vo6Gj17dtX33zzje64444i+/j5+em555675uIAAABQfHYHu0OHDl312rmKFSsqPj6+xEUBAADAfnYHu4tD3blz55Sbm2uznmfAAQAAOIbdjzvJzs7W8OHDVbNmTbm7u8vb29vmBQAAAMewO9g99dRT+uqrrzR79my5urrqrbfe0oQJE+Tn56fERG6zBwAAcBS7T8WuXLlSiYmJ6tChg6Kjo9WuXTsFBwcrICBACxcuVP/+/a9HnQAAALgKu4/YnThxQkFBQZL+vp7uxIkTkqS2bdtq/fr1pVsdAAAAis3uYBcUFKT09HRJUoMGDfThhx9K+vtI3sXPsgMAAEDZsjvYRUdH64cffpAkPfPMM5o1a5bc3Nw0atQoxcbGlnqBAAAAKB67r7EbNWqU9eewsDDt2rVLW7duVXBwsEJCQkq1OAAAABRfib8rtkBAQIACAgJKoxYAAABcA7tOxf7111/aunWrsrKyJEnbtm1TVFSU7r//fi1cuPC6FAgAAIDiKfYRu/Xr16tr167KysqSt7e33n//ffXu3Vu1a9eWs7Ozli1bpjNnzmjIkCHXs14AAABcRrGP2D3//PO6//779ccff2jkyJHq06ePhg8frl9++UU7d+7UhAkTNGvWrOtZKwAAAK6g2MFux44dio2NVe3atfX0008rMzNTffr0sa7v27ev9uzZc12KBAAAwNUVO9hlZmaqatWqkiQXFxdVqlRJlStXtq6vXLmyzpw5U/oVAgAAoFiKHewsFossFstllwEAAOBYxb55wjAMdezYURUq/P2WM2fOqFu3bnJxcZEkXbhw4fpUCAAAgGIpdrCLj4+3We7Ro0ehPr169br2igAAAFAiJQ52AAAAuLHY/V2xAAAAuDER7AAAAEyCYAcAAGASBDsAAACTINgBAACYRLHuin3ttdeKPeATTzxR4mIAAABQcsUKdq+88kqxBrNYLAQ7AAAABylWsEtPT7/edQAAAOAacY0dAACASRT7mycu9ueff+qTTz7R/v37lZuba7Nu+vTppVIYAAAA7GN3sEtOTlb37t0VFBSkXbt2qXHjxtq7d68Mw9Dtt99+PWoEAABAMdh9KjYuLk5jxozRjz/+KDc3N3300Uf6448/1L59e91///3Xo0YAAAAUg93B7pdfflFUVJQkqUKFCjp79qw8PDz0wgsvaPLkyaVeIAAAAIrH7mDn7u5uva6uVq1a2rNnj3XdsWPHSq8yAAAA2MXua+zuvPNObdiwQbfddpvuu+8+jR49Wj/++KOWLVumO++883rUCAAAgGKwO9hNnz5dWVlZkqQJEyYoKytLixcvVr169bgjFgAAwIHsDnZBQUHWn93d3TVnzpxSLQgAAAAlwwOKAQAATMLuI3be3t6yWCyF2i0Wi9zc3BQcHKxBgwYpOjq6VAoEAABA8dgd7MaNG6f//Oc/6ty5s1q1aiVJ2rx5s5KSkvT4448rPT1dw4YN04ULFzRkyJBSLxgAAABFszvYbdiwQS+++KIeffRRm/Y33nhDX375pT766COFhITotddeI9gBAACUIbuvsfviiy8UFhZWqL1jx4764osvJEn33Xeffv/992uvDgAAAMVmd7CrWrWqVq5cWah95cqVqlq1qiQpOztblStXvvbqAAAAUGx2n4odO3ashg0bprVr11qvsfvuu++0atUq66NPVq9erfbt25dupQAAALgiu4PdkCFD1LBhQ82cOVPLli2TJNWvX1/r1q3TXXfdJUkaPXp06VYJAACAq7I72ElSmzZt1KZNm9KuBQAAANegRMGuwLlz55Sbm2vT5unpeU0FAQAAoGTsvnnizJkzGj58uGrWrCl3d3d5e3vbvAAAAOAYdge72NhYffXVV5o9e7ZcXV311ltvacKECfLz81NiYuL1qBEAAADFYPep2JUrVyoxMVEdOnRQdHS02rVrp+DgYAUEBGjhwoXq37//9agTAAAAV2H3EbsTJ04oKChI0t/X0504cUKS1LZtW61fv750qwMAAECx2R3sgoKClJ6eLklq0KCBPvzwQ0l/H8mrUqVKqRYHAACA4rM72EVHR+uHH36QJD3zzDOaNWuW3NzcNGrUKMXGxpZ6gQAAACgeu6+xGzVqlPXnsLAw7dq1S1u3blVwcLBCQkJKtTgAAAAU3zU9x06SAgICFBAQUBq1AAAA4BoUO9idPXtWycnJ6tq1qyQpLi5OOTk51vXOzs6aOHGi3NzcSr9KAAAAXFWxg938+fP12WefWYPdzJkz1ahRI1WsWFGStGvXLvn5+dmcqgUAAEDZKfbNEwsXLtTQoUNt2hYtWqS1a9dq7dq1mjp1qvUOWQAAAJS9Yge7tLQ0NWnSxLrs5uYmJ6f/vb1Vq1b6+eefS7c6AAAAFFuxT8WeOnXK5pq6o0eP2qzPz8+3WQ8AAICyVewjdjfffLN27tx52fU7duzQzTffXCpFAQAAwH7FDnb33Xefxo0bp3PnzhVad/bsWU2YMEFdunSxu4BZs2YpMDBQbm5uCg0N1ebNmy/b96efflKvXr0UGBgoi8WiGTNmXPOYAAAAZlHsYPfss8/qxIkTql+/vqZOnaoVK1ZoxYoVmjJliurXr6+TJ0/q2WeftWvjixcvVkxMjOLj47Vt2zY1bdpU4eHhOnLkSJH9z5w5o6CgIE2aNEm+vr6lMiYAAIBZFDvY+fj4aOPGjbrtttv0zDPPqGfPnurZs6fi4uLUsGFDbdiwQT4+PnZtfPr06RoyZIiio6PVsGFDzZkzR5UqVdI777xTZP877rhDU6dOVd++feXq6loqYwIAAJiFXd88UadOHSUlJenEiRNKS0uTJAUHB6tq1ap2bzg3N1dbt25VXFyctc3JyUlhYWFKTU21e7xrGTMnJ8fmxo/MzMwSbR8AAMCRin3E7mJVq1ZVq1at1KpVqxKFOkk6duyY8vLyCh3l8/HxUUZGRpmOmZCQIC8vL+vL39+/RNsHAABwpBIFO7OJi4vT6dOnra8//vjD0SUBAADYza5TsaWpevXqcnZ21uHDh23aDx8+fNkbI67XmK6urpe9Zg8AAKC8cNgROxcXF7Vo0ULJycnWtvz8fCUnJ6t169Y3zJgAAADlhcOO2ElSTEyMBg4cqJYtW6pVq1aaMWOGsrOzFR0dLUmKiopS7dq1lZCQIOnvmyMKvrYsNzdXBw4c0Pbt2+Xh4aHg4OBijQkAAGBWDg12ffr00dGjRzVu3DhlZGSoWbNmSkpKst78sH//fpvvoz148KCaN29uXZ42bZqmTZum9u3bKyUlpVhjAgAAmJXFMAzD0UXcaDIzM+Xl5aXTp0/L09OzTLbZIjaxTLYDQNo6NcrRJVw3fJYAZaesPkvsySXcFQsAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEncEMFu1qxZCgwMlJubm0JDQ7V58+Yr9l+yZIkaNGggNzc3NWnSRKtWrbJZP2jQIFksFptXRETE9ZwCAACAwzk82C1evFgxMTGKj4/Xtm3b1LRpU4WHh+vIkSNF9t+4caP69eunhx56SN9//70iIyMVGRmpnTt32vSLiIjQoUOHrK/333+/LKYDAADgMA4PdtOnT9eQIUMUHR2thg0bas6cOapUqZLeeeedIvu/+uqrioiIUGxsrG677TZNnDhRt99+u2bOnGnTz9XVVb6+vtaXt7d3WUwHAADAYRwa7HJzc7V161aFhYVZ25ycnBQWFqbU1NQi35OammrTX5LCw8ML9U9JSVHNmjVVv359DRs2TMePH79sHTk5OcrMzLR5AQAAlDcODXbHjh1TXl6efHx8bNp9fHyUkZFR5HsyMjKu2j8iIkKJiYlKTk7W5MmTtW7dOnXu3Fl5eXlFjpmQkCAvLy/ry9/f/xpnBgAAUPYqOLqA66Fv377Wn5s0aaKQkBDVrVtXKSkp6tixY6H+cXFxiomJsS5nZmYS7gAAQLnj0CN21atXl7Ozsw4fPmzTfvjwYfn6+hb5Hl9fX7v6S1JQUJCqV6+utLS0Ite7urrK09PT5gUAAFDeODTYubi4qEWLFkpOTra25efnKzk5Wa1bty7yPa1bt7bpL0mrV6++bH9J+vPPP3X8+HHVqlWrdAoHAAC4ATn8rtiYmBjNnTtX8+fP1y+//KJhw4YpOztb0dHRkqSoqCjFxcVZ+z/55JNKSkrSyy+/rF27dmn8+PHasmWLhg8fLknKyspSbGysNm3apL179yo5OVk9evRQcHCwwsPDHTJHAACAsuDwa+z69Omjo0ePaty4ccrIyFCzZs2UlJRkvUFi//79cnL6X/686667tGjRIj3//PN69tlnVa9ePS1fvlyNGzeWJDk7O2vHjh2aP3++Tp06JT8/P917772aOHGiXF1dHTJHAACAsmAxDMNwdBE3mszMTHl5een06dNldr1di9jEMtkOAGnr1ChHl3Dd8FkClJ2y+iyxJ5c4/FQsAAAASgfBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABM4oYIdrNmzVJgYKDc3NwUGhqqzZs3X7H/kiVL1KBBA7m5ualJkyZatWqVzXrDMDRu3DjVqlVLFStWVFhYmHbv3n09pwAAAOBwDg92ixcvVkxMjOLj47Vt2zY1bdpU4eHhOnLkSJH9N27cqH79+umhhx7S999/r8jISEVGRmrnzp3WPlOmTNFrr72mOXPm6Ntvv5W7u7vCw8N17ty5spoWAABAmXN4sJs+fbqGDBmi6OhoNWzYUHPmzFGlSpX0zjvvFNn/1VdfVUREhGJjY3Xbbbdp4sSJuv322zVz5kxJfx+tmzFjhp5//nn16NFDISEhSkxM1MGDB7V8+fIynBkAAEDZcmiwy83N1datWxUWFmZtc3JyUlhYmFJTU4t8T2pqqk1/SQoPD7f2T09PV0ZGhk0fLy8vhYaGXnZMAAAAM6jgyI0fO3ZMeXl58vHxsWn38fHRrl27inxPRkZGkf0zMjKs6wvaLtfnUjk5OcrJybEunz59WpKUmZlpx2yuTV7O2TLbFvBPV5Z/tssanyVA2Smrz5KC7RiGcdW+Dg12N4qEhARNmDChULu/v78DqgFwvXm9/qijSwBgAmX9WfLXX3/Jy8vrin0cGuyqV68uZ2dnHT582Kb98OHD8vX1LfI9vr6+V+xf8N/Dhw+rVq1aNn2aNWtW5JhxcXGKiYmxLufn5+vEiROqVq2aLBaL3fPCP0NmZqb8/f31xx9/yNPT09HlACin+CzB1RiGob/++kt+fn5X7evQYOfi4qIWLVooOTlZkZGRkv4OVcnJyRo+fHiR72ndurWSk5M1cuRIa9vq1avVunVrSVKdOnXk6+ur5ORka5DLzMzUt99+q2HDhhU5pqurq1xdXW3aqlSpck1zwz+Hp6cnH8YArhmfJbiSqx2pK+DwU7ExMTEaOHCgWrZsqVatWmnGjBnKzs5WdHS0JCkqKkq1a9dWQkKCJOnJJ59U+/bt9fLLL6tLly764IMPtGXLFr355puSJIvFopEjR+rFF19UvXr1VKdOHY0dO1Z+fn7W8AgAAGBGDg92ffr00dGjRzVu3DhlZGSoWbNmSkpKst78sH//fjk5/e/m3bvuukuLFi3S888/r2effVb16tXT8uXL1bhxY2ufp556StnZ2Ro6dKhOnTqltm3bKikpSW5ubmU+PwAAgLJiMYpziwWAQnJycpSQkKC4uLhCp/IBoLj4LEFpItgBAACYhMO/eQIAAAClg2AHAABgEgQ7AAAAkyDYAXZav369unXrJj8/P1ksFi1fvtzRJQEoZxISEnTHHXeocuXKqlmzpiIjI/Xrr786uiyYAMEOsFN2draaNm2qWbNmOboUAOXUunXr9Pjjj2vTpk1avXq1zp8/r3vvvVfZ2dmOLg3lHHfFAtfAYrHo448/5uHXAK7J0aNHVbNmTa1bt0533323o8tBOcYROwAAHOz06dOSpKpVqzq4EpR3BDsAABwoPz9fI0eOVJs2bWy+RQkoCYd/pRgAAP9kjz/+uHbu3KkNGzY4uhSYAMEOAAAHGT58uD799FOtX79eN998s6PLgQkQ7AAAKGOGYWjEiBH6+OOPlZKSojp16ji6JJgEwQ6wU1ZWltLS0qzL6enp2r59u6pWrapbbrnFgZUBKC8ef/xxLVq0SCtWrFDlypWVkZEhSfLy8lLFihUdXB3KMx53AtgpJSVF//rXvwq1Dxw4UO+++27ZFwSg3LFYLEW2z5s3T4MGDSrbYmAqBDsAAACT4HEnAAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AP6xxo8fr2bNmjls+++++66qVKlimu0AcDyCHYByY9CgQYqMjCy18caMGaPk5OQSv99isWj58uXW5fPnz6tfv36qXbu2du7cWQoVlo4+ffrot99+c3QZAMpABUcXAACO4uHhIQ8Pj1IZ68yZM+rVq5d2796tDRs2qE6dOqUybmmoWLEiXywP/ENwxA5AuZSfn6+EhATVqVNHFStWVNOmTbV06VLr+pSUFFksFiUnJ6tly5aqVKmS7rrrLv3666/WPpeeik1JSVGrVq3k7u6uKlWqqE2bNtq3b99Vazl16pQ6deqkgwcP2oS6nJwcjRkzRrVr15a7u7tCQ0OVkpJy2XH27NmjHj16yMfHRx4eHrrjjju0Zs0amz6BgYF68cUXFRUVJQ8PDwUEBOiTTz7R0aNH1aNHD3l4eCgkJERbtmyxvufSU7EF837vvfcUGBgoLy8v9e3bV3/99ddV5wrgxkawA1AuJSQkKDExUXPmzNFPP/2kUaNG6cEHH9S6dets+j333HN6+eWXtWXLFlWoUEGDBw8ucrwLFy4oMjJS7du3144dO5SamqqhQ4fKYrFcsY6MjAy1b99ekrRu3Tr5+vpa1w0fPlypqan64IMPtGPHDt1///2KiIjQ7t27ixwrKytL9913n5KTk/X9998rIiJC3bp10/79+236vfLKK2rTpo2+//57denSRQMGDFBUVJQefPBBbdu2TXXr1lVUVJQMw7hs3Xv27NHy5cv16aef6tNPP9W6des0adKkK84VQDlgAEA5MXDgQKNHjx7GuXPnjEqVKhkbN260Wf/QQw8Z/fr1MwzDMNauXWtIMtasWWNd/9lnnxmSjLNnzxqGYRjx8fFG06ZNDcMwjOPHjxuSjJSUlGLXI8lwcXExGjRoYGRnZ9us27dvn+Hs7GwcOHDApr1jx45GXFycYRiGMW/ePMPLy+uK22jUqJHx+uuvW5cDAgKMBx980Lp86NAhQ5IxduxYa1tqaqohyTh06FCR24mPjzcqVapkZGZmWttiY2ON0NDQ4k0cwA2LI3YAyp20tDSdOXNGnTp1sl4n5+HhocTERO3Zs8emb0hIiPXnWrVqSZKOHDlSaMyqVatq0KBBCg8PV7du3fTqq6/q0KFDV62la9eu+u233/TGG2/YtP/444/Ky8vTrbfealPjunXrCtVYICsrS2PGjNFtt92mKlWqyMPDQ7/88kuhI3YXz8nHx0eS1KRJk0JtRc2zQGBgoCpXrmxdrlWr1hX7AygfuHkCQLmTlZUlSfrss89Uu3Ztm3Wurq42yzfddJP154LTqvn5+UWOO2/ePD3xxBNKSkrS4sWL9fzzz2v16tW68847L1vLgAED1L17dw0ePFiGYSgmJsZao7Ozs7Zu3SpnZ2eb91zuho0xY8Zo9erVmjZtmoKDg1WxYkX17t1bubm5V52TPfO8tH/Be67UH0D5QLADUO40bNhQrq6u2r9/v/X6ttLSvHlzNW/eXHFxcWrdurUWLVp0xWAnSQMHDpSTk5Oio6OVn5+vMWPGqHnz5srLy9ORI0fUrl27Ym37m2++0aBBg9SzZ09Jf4fDvXv3XuuUAPyDEOwAlDuVK1fWmDFjNGrUKOXn56tt27Y6ffq0vvnmG3l6emrgwIF2j5menq4333xT3bt3l5+fn3799Vft3r1bUVFRxXr/gAED5OTkpIEDB8owDMXGxqp///6KiorSyy+/rObNm+vo0aNKTk5WSEiIunTpUmiMevXqadmyZerWrZssFovGjh3LUTQAdiHYASg38vPzVaHC3x9bEydOVI0aNZSQkKDff/9dVapU0e23365nn322RGNXqlRJu3bt0vz583X8+HHVqlVLjz/+uB555JFij9G/f385OTlpwIABys/P17x58/Tiiy9q9OjROnDggKpXr64777xTXbt2LfL906dP1+DBg3XXXXepevXqevrpp5WZmVmi+QD4Z7IYxhXuhweAG0hERISCg4M1c+ZMR5cCADck7ooFcMM7efKkPv30U6WkpCgsLMzR5QDADYtTsQBueIMHD9Z3332n0aNHq0ePHo4uBwBuWJyKBQAAMAlOxQIAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJjE/wMRMZhhdQa6MwAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Hubungan Jenis Kelamin dengan Status Pembayaran\n",
"sns.barplot(x='sex', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Jenis Kelamin dengan Gagal Bayar')\n",
"plt.xlabel('Jenis Kelamin')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Ketika jenis kelamin dan gagal bayar diplot dalam tabel ditemukan bahwa nasabah pria cenderung mengalami kemungkinan untuk gagal bayar dibandingkan wanita \n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHNUlEQVR4nO3deVwV9f7H8fcBFBAUQRHEDbfcUim3NL1aYVhqkpXLrVAy66pYSi7RAprdC5V6zfRqm1tpLqVWvwozEr0puWCmXZfSNFdwSxBUUJjfHz44eQT1HAQPjq/n43EeOjPf+c5nzhmGN7Mdi2EYhgAAAHDTc3F2AQAAACgZBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDs4xbhx42SxWHT8+HFnl3JT6dKli7p06VKqy0hOTpbFYtGnn35aqsu5WQwcOFDBwcE24ywWi8aNG3fNeQu280sFBwdr4MCB1uE5c+bIYrFo06ZNJVBt6bF3neE8RW2ruPUQ7HBF1/qF06VLF91+++03uCpz2bdvnywWi12vffv2ObvcYvn6668dCgRdunSxWW8/Pz+1adNGs2bNUn5+fukVClzB0aNH9eKLL6p58+by9vaWh4eHGjRooMjISP3www/OLs9hl/+MlS9fXnXr1tUzzzyjAwcOOLs8XCc3ZxcA3Mr8/f310Ucf2YybNGmSDh48qH//+9+F2n777bc3srwS8fXXX2v69OkOhbuaNWsqPj5eknTs2DHNmzdPgwYN0q+//qqEhIRSqtR+Z8+elZtb8Xafu3btkosLf1PfLDZs2KDu3bvr9OnT6tevn/7xj3/I3d1de/fu1fLlyzVnzhytXr1af/vb35xdqkMu/RnLzc3V9u3bNXPmTK1YsUI7duxQhQoVnFwhiotgBziRl5eXnnjiCZtxCxcu1J9//llo/K3Ex8fHZv2fffZZNWrUSNOmTdOECRNUrlw5J1YneXh4FHted3f3EqwEpenPP/9UeHi43NzctGXLFjVu3Nhm+uuvv66FCxfK09PTSRUW3+U/Y5JUt25dRUVFae3ateratauTKruy7OxseXl5ObuMMo8/G1FiCk4rzpkzp9C0K12fc/z4cfXp00eVKlVSlSpV9Pzzz+vcuXPF6rPgeqbdu3dr4MCBqly5snx8fBQZGakzZ87YzHv27Fk999xzqlq1qipWrKiHHnpIhw4dKtTnH3/8oaFDh6pRo0by9PRUlSpV9NhjjxU6LVpw2nrt2rWKjo6Wv7+/vLy89PDDD+vYsWP2vH12ufwau4Lr4RYvXqx//vOfqlmzpjw8PHTfffdp9+7dheafPn266tWrJ09PT7Vt21b//e9/7bpuLycnRz169JCPj4/WrVsnSfrvf/+rxx57TLVr15a7u7tq1aqlkSNH6uzZs9b5Bg4cqOnTp0uSzakfR1WoUEF33XWXsrOzre/nqVOnNGLECNWqVUvu7u5q0KCB3njjDZvTtQXbz8SJE/Xee++pfv36cnd3V5s2bbRx48ZCy1m+fLluv/12eXh46Pbbb9eyZcuKrKeo7fmHH35QmzZt5OHhofr16+vdd98tct7Lr7Eryp9//qm2bduqZs2a2rVrlyTp888/V/fu3RUUFCR3d3fVr19fEyZMUF5ens28BZdIbN++Xffcc48qVKigGjVq6M0337zqMgvk5ORo5MiR8vf3t/5sHDx4sMi2hw4d0lNPPaWAgAC5u7urWbNmmjVrlk2b0thGc3NzFRsbq1atWsnHx0deXl7q1KmTVq1aZdOXo5//5WbOnKkjR45oypQphUKddHE76N+/v9q0aWMdZ+8+Q5K2bt2qzp07y9PTUzVr1tTrr7+u2bNnF7r0wt7P/noFBgZKks3RaHvW5/fff5fFYil0lkGS1q1bJ4vFok8++cTu/qS/9qmrV6/W0KFDVa1aNdWsWbNE19esOGKHa8rIyCjyJofz589fd999+vRRcHCw4uPj9eOPP2rq1Kn6888/NW/evOvqs27duoqPj9fmzZv1wQcfqFq1anrjjTesbQYOHKjFixfrySef1F133aXVq1ere/fuhfrauHGj1q1bp379+qlmzZrat2+fZsyYoS5dumj79u2FTlcMHz5cvr6+iouL0759+zRlyhRFRUVp0aJFxV4feyQkJMjFxUWjRo1SRkaG3nzzTT3++ONav369tc2MGTMUFRWlTp06aeTIkdq3b5/Cw8Pl6+t71R3m2bNn1atXL23atEnfffed9ZfYkiVLdObMGQ0ZMkRVqlTRhg0b9M477+jgwYNasmSJpItH2g4fPqyVK1cWOuXsqN9//12urq6qXLmyzpw5o86dO+vQoUN69tlnVbt2ba1bt04xMTHWX8SXWrBggU6fPq1nn31WFotFb775pnr37q3ff//devTv22+/1SOPPKKmTZsqPj5eJ06cUGRkpF2/TLZt26b7779f/v7+GjdunC5cuKC4uDgFBAQ4vJ7Hjx9X165ddfLkSa1evVr169eXdPEXnbe3t6Kjo+Xt7a3vv/9esbGxyszM1FtvvWXTx59//qlu3bqpd+/e6tOnjz799FONHTtWzZs31wMPPHDV5T/99NP6+OOP9fe//10dOnTQ999/X+TPRnp6uu666y5ZLBZFRUXJ399f33zzjQYNGqTMzEyNGDHCpn1JbqOZmZn64IMP1L9/fw0ePFinT5/Whx9+qLCwMG3YsEEhISE2y7bn8y/Kl19+KU9PT/Xu3fuq79ml7N1nHDp0SPfcc48sFotiYmLk5eWlDz74oMgjuo589vbKy8uz7tfPnz+vHTt2KC4uTg0aNNDdd9/t0PrUq1dPd999t+bPn6+RI0faLGf+/PmqWLGievXq5dD7U2Do0KHy9/dXbGyssrOzi7WutxwDuILZs2cbkq76atasmbX93r17DUnG7NmzC/UlyYiLi7MOx8XFGZKMhx56yKbd0KFDDUnGzz//XOw+n3rqKZt2Dz/8sFGlShXrcGpqqiHJGDFihE27gQMHFurzzJkzhZabkpJiSDLmzZtX6L0KDQ018vPzreNHjhxpuLq6GqdOnSrUz5V0797dqFOnTpHTOnfubHTu3Nk6vGrVKkOS0aRJEyMnJ8c6/u233zYkGdu2bTMMwzBycnKMKlWqGG3atDHOnz9vbTdnzhxDUpF9LlmyxDh9+rTRuXNno2rVqsZPP/1kU0tR7018fLxhsViMP/74wzpu2LBhhiO7ms6dOxuNGzc2jh07Zhw7dszYsWOH8dxzzxmSjJ49exqGYRgTJkwwvLy8jF9//dVm3hdffNFwdXU19u/fbxjGX9tPlSpVjJMnT1rbff7554Yk48svv7SOCwkJMapXr27zWX377beGpEKfx+XbSXh4uOHh4WGz3tu3bzdcXV0LrXudOnWMAQMGWIcLtp2NGzcaR44cMZo1a2bUq1fP2Ldvn818Rb3fzz77rFGhQgXj3LlzNu/f5dtnTk6OERgYaDzyyCOF+rjUli1bDEnG0KFDbcb//e9/L7TOgwYNMqpXr24cP37cpm2/fv0MHx8fa72lsY1euHDBpi/DMIw///zTCAgIsPn5d+TzL4qvr68REhJSaHxmZqZ1+zx27JiRlZVlnWbvPmP48OGGxWKx+bk6ceKE4efnZ0gy9u7de9U+i/rsBwwYcMV9x6UKtpHLX02aNDF+//13m7b2rs+7775rSDJ27NhhHZebm2tUrVrVZnt3dJ/asWNH48KFC9dcJ/yFU7G4punTp2vlypWFXi1atLjuvocNG2YzPHz4cEkXL7gvrn/84x82w506ddKJEyeUmZkpSUpMTJR08S/BopZ9qUuvnTl//rxOnDihBg0aqHLlytq8eXOh9s8884zNqcZOnTopLy9Pf/zxR7HXxx6RkZEqX768zXKli0e5JGnTpk06ceKEBg8ebHOa5fHHH5evr2+RfWZkZOj+++/Xzp07lZycXOgoyKXvTXZ2to4fP64OHTrIMAz99NNP17U+O3fulL+/v/z9/dWkSRO988476t69u/U035IlS9SpUyf5+vrq+PHj1ldoaKjy8vK0Zs0am/769u1rs56Xvz9HjhzRli1bNGDAAPn4+Fjbde3aVU2bNr1qrXl5eVqxYoXCw8NVu3Zt6/gmTZooLCzM7nU+ePCgOnfurPPnz2vNmjWqU6eOzfRL3+/Tp0/r+PHj6tSpk86cOaOdO3fatPX29ra5fqp8+fJq27atdX2vpODn7rnnnrMZf/nRN8Mw9Nlnn6lnz54yDMPmMwgLC1NGRkahn4+S3EZdXV2tfeXn5+vkyZO6cOGCWrduXeTP5bU+/yvJzMyUt7d3ofFPPvmkdfv09/fX2LFjrdPs3WckJiaqffv2Nj9Xfn5+evzxxwstz5HP3l7BwcHWffk333yjKVOmKCMjQw888IDN5SP2rk+fPn3k4eGh+fPnW8etWLFCx48ft9kWHd2nDh48WK6ursVax1sVp2JxTW3btlXr1q0LjS/4pXo9GjZsaDNcv359ubi4XNejPS795SrJukP/888/ValSJf3xxx9ycXFR3bp1bdo1aNCgUF9nz55VfHy8Zs+erUOHDskwDOu0jIwMh5Zdmq613IJgefk6urm5XfG5VyNGjNC5c+f0008/qVmzZoWm79+/X7Gxsfriiy8KrV9R740jgoOD9f7778tiscjDw0MNGzZUtWrVrNN/++03bd26Vf7+/kXOf/ToUZthe9+fy7dHSWrUqFGRv3AKHDt2TGfPnr3ivPb+kfLkk0/Kzc1NO3bssF7rdKn//e9/euWVV/T9999b/0gpcPn7XbNmzULXMvr6+mrr1q1XraHgZ6Pg9O+l63GpY8eO6dSpU3rvvff03nvvFdlXcT8De7fRuXPnatKkSdq5c6fNZSGX/1zbs+wrqVixorKysgqNf+211xQVFSVJhW4ysHef8ccff6h9+/aF+i5qP+TIZ28vLy8vhYaGWoe7deumjh07qnXr1kpISNCkSZMcWp/KlSurZ8+eWrBggSZMmCDp4mnYGjVq6N5777W2c3SfWtTniasj2KHEXOmieEcu8L28j+L0eaW/7i7dgdhr+PDhmj17tkaMGKH27dvLx8dHFotF/fr1K/KZaiW5bEeUxnJ79eqlhQsXKiEhQfPmzbN5REdeXp71OrCxY8eqcePG8vLy0qFDhzRw4MDrft7c5b90Lpefn6+uXbtqzJgxRU6/7bbbbIad9bk4onfv3po3b57efvtt62MoCpw6dUqdO3dWpUqV9Nprr6l+/fry8PDQ5s2bNXbs2ELvd2mvb8HynnjiCQ0YMKDINpcf0S/Jmj7++GMNHDhQ4eHhGj16tKpVqyZXV1fFx8drz549hdoXd9mNGzfWzz//rPPnz9tci3e1sxWO7jOuxdHP/noU3Ixy6RFvR9YnIiJCS5Ys0bp169S8eXN98cUXGjp0qM2+w9H352a849jZCHYoMQV/BZ86dcpm/NVOQ/722282f5Ht3r1b+fn51r/Qi9PntdSpU0f5+fnau3evzVGWou7Q+/TTTzVgwADrX6+SdO7cuUL1lHUFp/V2796te+65xzr+woUL2rdvX5G/qMLDw3X//fdr4MCBqlixombMmGGdtm3bNv3666+aO3euIiIirONXrlxZqJ/i3AV7LfXr11dWVtZVw58jCt6f3377rdC0grtSr8Tf31+enp7FmvdSw4cPV4MGDRQbGysfHx+9+OKL1mnJyck6ceKEli5davO8tL1799rdvz0Kfjb27Nljc5Tu8vUouGM2Ly+vxD8De7bRTz/9VPXq1dPSpUtttq+4uLgSqaVAjx499OOPP2rZsmXq06ePXfPYu8+oU6dOkfucy8fdqM++QF5ens1RSkf2gd26dZO/v7/mz5+vdu3a6cyZM3ryySdt2phln1qWcY0dSkylSpVUtWrVQtc3/ec//7niPAWPwijwzjvvSJL1zr3i9HktBdc9Xd5HwbIv5erqWuiv+nfeeafEHzNQ2lq3bq0qVaro/fff14ULF6zj58+ff9XTUREREZo6dapmzpxpcx1RwRGQS98bwzD09ttvF+qj4LlTJbnj7tOnj1JSUrRixYpC006dOmWzjvaoXr26QkJCNHfuXJvTQStXrtT27duvOq+rq6vCwsK0fPly7d+/3zp+x44dRdZ3Na+++qpGjRqlmJgYmyBd1Pudm5t7XT8HRSn4uZs6darN+MvvMnZ1ddUjjzyizz77TL/88kuhforziB9HttGi3o/169crJSXF4eVezZAhQxQQEKCRI0fq119/LTS9qCN+9u4zwsLClJKSoi1btljHnTx50uYatYL+Ll9WaXz2krRq1SplZWWpZcuWNsu3dx/o5uam/v37a/HixZozZ46aN29e5JFbM+xTyzKO2KFEPf3000pISNDTTz+t1q1ba82aNUXuEAvs3btXDz30kLp166aUlBTrYxYu3bE42ue1tGrVSo888oimTJmiEydOWB93UtDnpUcAevTooY8++kg+Pj5q2rSpUlJS9N1336lKlSrFXr4zlC9fXuPGjdPw4cN17733qk+fPtq3b5/mzJmj+vXrX/WoWlRUlDIzM/Xyyy/Lx8dHL730kho3bqz69etr1KhROnTokCpVqqTPPvusyJDYqlUrSRcvyA8LC5Orq6v69et3XeszevRoffHFF+rRo4cGDhyoVq1aKTs7W9u2bdOnn36qffv2qWrVqg71GR8fr+7du6tjx4566qmndPLkSb3zzjtq1qxZkddZXWr8+PFKTExUp06dNHToUF24cME677Wua7vcW2+9pYyMDA0bNkwVK1bUE088oQ4dOsjX11cDBgzQc889J4vFoo8++qjETyWHhISof//++s9//qOMjAx16NBBSUlJRR5ZSkhI0KpVq9SuXTsNHjxYTZs21cmTJ7V582Z99913OnnypEPLdmQb7dGjh5YuXaqHH35Y3bt31969ezVz5kw1bdr0mp+VI/z8/LRs2TL17NlTLVu2VL9+/dSmTRuVK1dOBw4csD7W59Jr+OzdZ4wZM0Yff/yxunbtquHDh1sfd1K7dm2dPHnSur6l9dlnZGTo448/lnTxqOiuXbs0Y8YMeXp62hwtdnQfWPDH4KpVq2weMVXc/lAMN+r2W9x8Ln0MQ1E6d+5s87gTw7h4K/ugQYMMHx8fo2LFikafPn2Mo0ePXvHRJNu3bzceffRRo2LFioavr68RFRVlnD179rr6PHbsWJHrcenjA7Kzs41hw4YZfn5+hre3txEeHm7s2rXLkGQkJCRY2/35559GZGSkUbVqVcPb29sICwszdu7cedVHVlyq4FEPq1atuso7bas4jztZsmSJTbsrPSZm6tSpRp06dQx3d3ejbdu2xtq1a41WrVoZ3bp1u2afY8aMMSQZ06ZNMwzj4uM8QkNDDW9vb6Nq1arG4MGDjZ9//rnQci9cuGAMHz7c8Pf3NywWyzUffVLUdlWU06dPGzExMUaDBg2M8uXLG1WrVjU6dOhgTJw40cjNzbV5H956661C81++/RiGYXz22WdGkyZNDHd3d6Np06bG0qVLi3yERFHzrl692mjVqpVRvnx5o169esbMmTOt2+Sl7Nl28vLyjP79+xtubm7G8uXLDcMwjLVr1xp33XWX4enpaQQFBRljxowxVqxYUWj7utL7Z++jMM6ePWs899xzRpUqVQwvLy+jZ8+exoEDB4pc5/T0dGPYsGFGrVq1jHLlyhmBgYHGfffdZ7z33nvWNqWxjebn5xv/+te/rO3uuOMO4//+7/8KraOjn/+VHDlyxBg9erTRtGlTw9PT03B3dzfq1atnREREGGvWrLFpa+8+wzAM46effjI6depkuLu7GzVr1jTi4+ONqVOnGpKMtLQ0azt7P/viPu7EYrEYfn5+xkMPPWSkpqYWe30KNGvWzHBxcTEOHjxYaNr17lNxbRbDKENXDwNOtGXLFt1xxx36+OOPi3zkgBnl5+fL399fvXv31vvvv+/scoBCbrVtdMSIEXr33XeVlZV10z7m44477pCfn5+SkpKcXcotiWvscEu69GuvCkyZMkUuLi433Zd52+vcuXOFTt/MmzdPJ0+evOZXigE3wq22jV6+Hzpx4oQ++ugjdezY8aYNdZs2bdKWLVtsbqrCjcURO9ySxo8fr9TUVN1zzz1yc3PTN998o2+++UbPPPPMFb/j82aXnJyskSNH6rHHHlOVKlW0efNmffjhh2rSpIlSU1NtHh4LOMOtto2GhISoS5cuatKkidLT0/Xhhx/q8OHDSkpKuun+wPzll1+UmpqqSZMm6fjx4/r999/l4eHh7LJuSdw8gVtShw4dtHLlSk2YMEFZWVmqXbu2xo0bp5dfftnZpZWa4OBg1apVS1OnTtXJkyfl5+eniIgIJSQkmO4XJm5Ot9o2+uCDD+rTTz/Ve++9J4vFojvvvFMffvjhTRfqpIuPMXnttdfUqFEjffLJJ4Q6J+KIHQAAgElwjR0AAIBJEOwAAABMgmvsipCfn6/Dhw+rYsWKpfJ1SAAAAPYyDEOnT59WUFCQzXfvFoVgV4TDhw+rVq1azi4DAADA6sCBA6pZs+ZV2xDsilCxYkVJF9/ASpUqObkaAABwK8vMzFStWrWs+eRqCHZFKDj9WqlSJYIdAAAoE+y5PIybJwAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJuHm7AIAALcGwzCUnZ1tHfby8pLFYnFiRYD5EOwAADdEdna2evXqZR3+/PPP5e3t7cSKAPPhVCwAAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmAR3xQK4bjzGAgDKBoIdgOvGYywAoGzgVCwAAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEmUi2E2fPl3BwcHy8PBQu3bttGHDhiu2ff/999WpUyf5+vrK19dXoaGhhdoPHDhQFovF5tWtW7fSXg0AAACncnqwW7RokaKjoxUXF6fNmzerZcuWCgsL09GjR4tsn5ycrP79+2vVqlVKSUlRrVq1dP/99+vQoUM27bp166YjR45YX5988smNWB0AAACncXqwmzx5sgYPHqzIyEg1bdpUM2fOVIUKFTRr1qwi28+fP19Dhw5VSEiIGjdurA8++ED5+flKSkqyaefu7q7AwEDry9fX90asDgAAgNM4Ndjl5uYqNTVVoaGh1nEuLi4KDQ1VSkqKXX2cOXNG58+fl5+fn8345ORkVatWTY0aNdKQIUN04sSJEq0dAACgrHFz5sKPHz+uvLw8BQQE2IwPCAjQzp077epj7NixCgoKsgmH3bp1U+/evVW3bl3t2bNHL730kh544AGlpKTI1dW1UB85OTnKycmxDmdmZhZzjQAAAJzHqcHueiUkJGjhwoVKTk6Wh4eHdXy/fv2s/2/evLlatGih+vXrKzk5Wffdd1+hfuLj4zV+/PgbUjMAAEBpceqp2KpVq8rV1VXp6ek249PT0xUYGHjVeSdOnKiEhAR9++23atGixVXb1qtXT1WrVtXu3buLnB4TE6OMjAzr68CBA46tCAAAQBng1GBXvnx5tWrVyubGh4IbIdq3b3/F+d58801NmDBBiYmJat269TWXc/DgQZ04cULVq1cvcrq7u7sqVapk8wIAALjZOP2u2OjoaL3//vuaO3euduzYoSFDhig7O1uRkZGSpIiICMXExFjbv/HGG3r11Vc1a9YsBQcHKy0tTWlpacrKypIkZWVlafTo0frxxx+1b98+JSUlqVevXmrQoIHCwsKcso4AAAA3gtOvsevbt6+OHTum2NhYpaWlKSQkRImJidYbKvbv3y8Xl7/y54wZM5Sbm6tHH33Upp+4uDiNGzdOrq6u2rp1q+bOnatTp04pKChI999/vyZMmCB3d/cbum4AAAA3ktODnSRFRUUpKiqqyGnJyck2w/v27btqX56enlqxYkUJVQYAAHDzcPqpWAAAAJSMMnHEDriVtBo9z9kllDjLhVz5XDLc5dWFMtzKO62e0pD6VoSzSwCAa+KIHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYhJuzCwAAFNZq9Dxnl1DiLBdy5XPJcJdXF8pwK++0ekpD6lsRzi4BtziO2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJNwc3YBAG5+hms5ZbTobzMMALjxCHYArp/FIsOtvLOrAIBbHqdiAQAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmUSaC3fTp0xUcHCwPDw+1a9dOGzZsuGLb999/X506dZKvr698fX0VGhpaqL1hGIqNjVX16tXl6emp0NBQ/fbbb6W9GgAAAE7l9GC3aNEiRUdHKy4uTps3b1bLli0VFhamo0ePFtk+OTlZ/fv316pVq5SSkqJatWrp/vvv16FDh6xt3nzzTU2dOlUzZ87U+vXr5eXlpbCwMJ07d+5GrRYAAMAN5/RgN3nyZA0ePFiRkZFq2rSpZs6cqQoVKmjWrFlFtp8/f76GDh2qkJAQNW7cWB988IHy8/OVlJQk6eLRuilTpuiVV15Rr1691KJFC82bN0+HDx/W8uXLb+CaAQAA3FhODXa5ublKTU1VaGiodZyLi4tCQ0OVkpJiVx9nzpzR+fPn5efnJ0nau3ev0tLSbPr08fFRu3bt7O4TAADgZuTmzIUfP35ceXl5CggIsBkfEBCgnTt32tXH2LFjFRQUZA1yaWlp1j4u77Ng2uVycnKUk5NjHc7MzLR7HQAAAMoKp5+KvR4JCQlauHChli1bJg8Pj2L3Ex8fLx8fH+urVq1aJVglAADAjeHUYFe1alW5uroqPT3dZnx6eroCAwOvOu/EiROVkJCgb7/9Vi1atLCOL5jPkT5jYmKUkZFhfR04cKA4qwMAAOBUTg125cuXV6tWraw3Pkiy3gjRvn37K8735ptvasKECUpMTFTr1q1tptWtW1eBgYE2fWZmZmr9+vVX7NPd3V2VKlWyeQEAANxsnHqNnSRFR0drwIABat26tdq2baspU6YoOztbkZGRkqSIiAjVqFFD8fHxkqQ33nhDsbGxWrBggYKDg63XzXl7e8vb21sWi0UjRozQ66+/roYNG6pu3bp69dVXFRQUpPDwcGetJgAAQKlzerDr27evjh07ptjYWKWlpSkkJESJiYnWmx/2798vF5e/DizOmDFDubm5evTRR236iYuL07hx4yRJY8aMUXZ2tp555hmdOnVKHTt2VGJi4nVdhwcAAFDWOT3YSVJUVJSioqKKnJacnGwzvG/fvmv2Z7FY9Nprr+m1114rgeoAAABuDmUi2AEAzM9wLaeMFv1thgGULIIdrskwDGVnZ1uHvby8ZLFYnFgRgJuSxSLDrbyzqwBMjWCHa8rOzlavXr2sw59//rm8vb2dWBEAACjKTf2AYgAAAPyFYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEzCoWB3/vx5ubm56ZdffimtegAAAFBMDgW7cuXKqXbt2srLyyutegAAAFBMDp+Kffnll/XSSy/p5MmTpVEPAAAAisnN0RmmTZum3bt3KygoSHXq1JGXl5fN9M2bN5dYcQAAALCfw8EuPDy8FMoAAADA9XI42MXFxZVGHQAAALhODgc7XF2r0fOcXUKJs1zIlc8lw11eXSjDrbzT6ikNqW9FOLsEAACum8PBLi8vT//+97+1ePFi7d+/X7m5uTbTuakCAADAORy+K3b8+PGaPHmy+vbtq4yMDEVHR6t3795ycXHRuHHjSqFEAAAA2MPhYDd//ny9//77euGFF+Tm5qb+/fvrgw8+UGxsrH788cfSqBEAAAB2cDjYpaWlqXnz5pIkb29vZWRkSJJ69Oihr776qmSrAwAAgN0cDnY1a9bUkSNHJEn169fXt99+K0nauHGj3N3dS7Y6AAAA2M3hYPfwww8rKSlJkjR8+HC9+uqratiwoSIiIvTUU0+VeIEAAACwj8N3xSYkJFj/37dvX9WpU0fr1q1Tw4YN1bNnzxItDgAAAPZzONhlZ2fbfI3YXXfdpbvuuqtEiwIAALcewzCUnZ1tHfby8pLFYnFiRTcfh0/FBgQE6KmnntIPP/xQGvUAAIBbVHZ2tnr16mV9XRryYB+Hg93HH3+skydP6t5779Vtt92mhIQEHT58uDRqAwAAgAMcDnbh4eFavny5Dh06pH/84x9asGCB6tSpox49emjp0qW6cOFCadQJAACAa3A42BXw9/dXdHS0tm7dqsmTJ+u7777To48+qqCgIMXGxurMmTMlWScAAACuweGbJwqkp6dr7ty5mjNnjv744w89+uijGjRokA4ePKg33nhDP/74o/UZdwAAACh9Dge7pUuXavbs2VqxYoWaNm2qoUOH6oknnlDlypWtbTp06KAmTZqUZJ0AAAC4BoeDXWRkpPr166e1a9eqTZs2RbYJCgrSyy+/fN3FAQAAwH4OB7sjR46oQoUKV23j6empuLi4YhcFAAAAxzkc7C4NdefOnVNubq7N9EqVKl1/VQAAAHCYw3fFZmdnKyoqStWqVZOXl5d8fX1tXgAAAHAOh4PdmDFj9P3332vGjBlyd3fXBx98oPHjxysoKEjz5s0rjRoBAABgB4dPxX755ZeaN2+eunTposjISHXq1EkNGjRQnTp1NH/+fD3++OOlUScAAACuweEjdidPnlS9evUkXbye7uTJk5Kkjh07as2aNSVbHQAAAOzmcLCrV6+e9u7dK0lq3LixFi9eLOnikbxLn2Vnr+nTpys4OFgeHh5q166dNmzYcMW2//vf//TII48oODhYFotFU6ZMKdRm3LhxslgsNq/GjRs7XBcAAMDNxuFgFxkZqZ9//lmS9OKLL2r69Ony8PDQyJEjNXr0aIf6WrRokaKjoxUXF6fNmzerZcuWCgsL09GjR4tsf+bMGdWrV08JCQkKDAy8Yr/NmjXTkSNHrK8ffvjBoboAAABuRg5fYzdy5Ejr/0NDQ7Vz506lpqaqQYMGatGihUN9TZ48WYMHD1ZkZKQkaebMmfrqq680a9Ysvfjii4Xat2nTxvpQ5KKmF3Bzc7tq8AMAADAjh4/YXa5OnTrq3bu3w6EuNzdXqampCg0N/asYFxeFhoYqJSXlumr67bffFBQUpHr16unxxx/X/v37r6s/AACAm4FDwe706dNKTU1VVlaWJGnz5s2KiIjQY489pvnz5zu04OPHjysvL08BAQE24wMCApSWluZQX5dq166d5syZo8TERM2YMUN79+5Vp06ddPr06SvOk5OTo8zMTJsXAADAzcbuU7Fr1qxRjx49lJWVJV9fX33yySd69NFHVaNGDbm6umrp0qU6c+aMBg8eXJr1XtMDDzxg/X+LFi3Url071alTR4sXL9agQYOKnCc+Pl7jx4+/USUCAACUCruP2L3yyit67LHHdODAAY0YMUJ9+/ZVVFSUduzYoV9++UXjx4/X9OnT7V5w1apV5erqqvT0dJvx6enpJXp9XOXKlXXbbbdp9+7dV2wTExOjjIwM6+vAgQMltnwAAIAbxe5gt3XrVo0ePVo1atTQ2LFjlZmZqb59+1qn9+vXT3v27LF7weXLl1erVq2UlJRkHZefn6+kpCS1b9/e7n6uJSsrS3v27FH16tWv2Mbd3V2VKlWyeQEAANxs7D4Vm5mZKT8/P0kXQ1mFChVUsWJF6/SKFSvqzJkzDi08OjpaAwYMUOvWrdW2bVtNmTJF2dnZ1rtkIyIiVKNGDcXHx0u6eMPF9u3brf8/dOiQtmzZIm9vbzVo0ECSNGrUKPXs2VN16tTR4cOHFRcXJ1dXV/Xv39+h2gAAAG42dge7gof9Xmm4OPr27atjx44pNjZWaWlpCgkJUWJiovWGiv3798vF5a+DiocPH9Ydd9xhHZ44caImTpyozp07Kzk5WZJ08OBB9e/fXydOnJC/v786duyoH3/8Uf7+/tdVKwAAQFlnd7AzDEP33Xef3NwuznLmzBn17NlT5cuXlyRduHChWAVERUUpKiqqyGkFYa1AcHCwDMO4an8LFy4sVh0AAAA3O7uDXVxcnM1wr169CrV55JFHrr8iAAAAFEuxgx1uHYZrOWW06G8zDAAAyh6Hv1IMtyCLRYZbeWdXAQAAruG6v1IMAAAAZQPBDgAAwCQIdgAAACZBsAMAADAJu26emDp1qt0dPvfcc8UuBgAAAMVnV7D797//bVdnFouFYAcAAOAkdgW7vXv3lnYdAAAAuE5cYwcAAGASxXpA8cGDB/XFF19o//79ys3NtZk2efLkEikMAAAAjnE42CUlJemhhx5SvXr1tHPnTt1+++3at2+fDMPQnXfeWRo1AgAAwA4On4qNiYnRqFGjtG3bNnl4eOizzz7TgQMH1LlzZz322GOlUSMAAADs4HCw27FjhyIiIiRJbm5uOnv2rLy9vfXaa6/pjTfeKPECAQAAYB+Hg52Xl5f1urrq1atrz5491mnHjx8vucoAAADgEIevsbvrrrv0ww8/qEmTJnrwwQf1wgsvaNu2bVq6dKnuuuuu0qgRAAAAdnA42E2ePFlZWVmSpPHjxysrK0uLFi1Sw4YNuSMWAADAiRwOdvXq1bP+38vLSzNnzizRggAAAFA8PKAYAADAJBw+Yufr6yuLxVJovMVikYeHhxo0aKCBAwcqMjKyRAoEAACAfRwOdrGxsfrnP/+pBx54QG3btpUkbdiwQYmJiRo2bJj27t2rIUOG6MKFCxo8eHCJFwwAAICiORzsfvjhB73++uv6xz/+YTP+3Xff1bfffqvPPvtMLVq00NSpUwl2AAAAN5DD19itWLFCoaGhhcbfd999WrFihSTpwQcf1O+//3791QEAAMBuDgc7Pz8/ffnll4XGf/nll/Lz85MkZWdnq2LFitdfHQAAAOzm8KnYV199VUOGDNGqVaus19ht3LhRX3/9tfXRJytXrlTnzp1LtlIAAABclcPBbvDgwWratKmmTZumpUuXSpIaNWqk1atXq0OHDpKkF154oWSrBAAAwDU5HOwk6e6779bdd99d0rUAAADgOhQr2BU4d+6ccnNzbcZVqlTpugoCAABA8Th888SZM2cUFRWlatWqycvLS76+vjYvAAAAOIfDwW706NH6/vvvNWPGDLm7u+uDDz7Q+PHjFRQUpHnz5pVGjQAAALCDw6div/zyS82bN09dunRRZGSkOnXqpAYNGqhOnTqaP3++Hn/88dKoEwAAANfg8BG7kydPql69epIuXk938uRJSVLHjh21Zs2akq0OAAAAdnM42NWrV0979+6VJDVu3FiLFy+WdPFIXuXKlUu0OAAAANjP4WAXGRmpn3/+WZL04osvavr06fLw8NDIkSM1evToEi8QAAAA9nH4GruRI0da/x8aGqqdO3cqNTVVDRo0UIsWLUq0OAAAANjvup5jJ0l16tRRnTp1SqIWAAAAXAe7g93Zs2eVlJSkHj16SJJiYmKUk5Njne7q6qoJEybIw8Oj5KsEAADANdkd7ObOnauvvvrKGuymTZumZs2aydPTU5K0c+dOBQUF2ZyqBQAAwI1j980T8+fP1zPPPGMzbsGCBVq1apVWrVqlt956y3qHLAAAAG48u4Pd7t271bx5c+uwh4eHXFz+mr1t27bavn17yVYHAAAAu9l9KvbUqVM219QdO3bMZnp+fr7NdAAAANxYdh+xq1mzpn755ZcrTt+6datq1qxZIkUBAADAcXYHuwcffFCxsbE6d+5coWlnz57V+PHj1b179xItDgAAAPaz+1TsSy+9pMWLF6tRo0aKiorSbbfdJknatWuXpk2bpgsXLuill14qtUIBAABwdXYHu4CAAK1bt05DhgzRiy++KMMwJEkWi0Vdu3bVf/7zHwUEBJRaoQAAALg6h755om7dukpMTNTJkye1e/duSVKDBg3k5+dXKsUBAADAfsX6SjE/Pz+1bdu2pGsBAADAdbD75gkAAACUbQQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMwunBbvr06QoODpaHh4fatWunDRs2XLHt//73Pz3yyCMKDg6WxWLRlClTrrtPAAAAs3BqsFu0aJGio6MVFxenzZs3q2XLlgoLC9PRo0eLbH/mzBnVq1dPCQkJCgwMLJE+AQAAzMKpwW7y5MkaPHiwIiMj1bRpU82cOVMVKlTQrFmzimzfpk0bvfXWW+rXr5/c3d1LpE8AAACzcFqwy83NVWpqqkJDQ/8qxsVFoaGhSklJKTN9AgAA3CzcnLXg48ePKy8vTwEBATbjAwICtHPnzhvaZ05OjnJycqzDmZmZxVo+AACAMzn95omyID4+Xj4+PtZXrVq1nF0SAACAw5wW7KpWrSpXV1elp6fbjE9PT7/ijRGl1WdMTIwyMjKsrwMHDhRr+QAAAM7ktGBXvnx5tWrVSklJSdZx+fn5SkpKUvv27W9on+7u7qpUqZLNCwAA4GbjtGvsJCk6OloDBgxQ69at1bZtW02ZMkXZ2dmKjIyUJEVERKhGjRqKj4+XdPHmiO3bt1v/f+jQIW3ZskXe3t5q0KCBXX0CAACYlVODXd++fXXs2DHFxsYqLS1NISEhSkxMtN78sH//frm4/HVQ8fDhw7rjjjuswxMnTtTEiRPVuXNnJScn29UnAACAWTk12ElSVFSUoqKiipxWENYKBAcHyzCM6+oTAADArLgrFgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACbh5uwCAACA41qNnufsEkqc5UKufC4Z7vLqQhlu5Z1WT2lIfSuiVPvniB0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmESZCHbTp09XcHCwPDw81K5dO23YsOGq7ZcsWaLGjRvLw8NDzZs319dff20zfeDAgbJYLDavbt26leYqAAAAOJ3Tg92iRYsUHR2tuLg4bd68WS1btlRYWJiOHj1aZPt169apf//+GjRokH766SeFh4crPDxcv/zyi027bt266ciRI9bXJ598ciNWBwAAwGmcHuwmT56swYMHKzIyUk2bNtXMmTNVoUIFzZo1q8j2b7/9trp166bRo0erSZMmmjBhgu68805NmzbNpp27u7sCAwOtL19f3xuxOgAAAE7j1GCXm5ur1NRUhYaGWse5uLgoNDRUKSkpRc6TkpJi016SwsLCCrVPTk5WtWrV1KhRIw0ZMkQnTpwo+RUAAAAoQ9ycufDjx48rLy9PAQEBNuMDAgK0c+fOIudJS0srsn1aWpp1uFu3burdu7fq1q2rPXv26KWXXtIDDzyglJQUubq6FuozJydHOTk51uHMzMzrWS0AAACncGqwKy39+vWz/r958+Zq0aKF6tevr+TkZN13332F2sfHx2v8+PE3skQAAIAS59RTsVWrVpWrq6vS09NtxqenpyswMLDIeQIDAx1qL0n16tVT1apVtXv37iKnx8TEKCMjw/o6cOCAg2sCAADgfE4NduXLl1erVq2UlJRkHZefn6+kpCS1b9++yHnat29v016SVq5cecX2knTw4EGdOHFC1atXL3K6u7u7KlWqZPMCAAC42Tj9rtjo6Gi9//77mjt3rnbs2KEhQ4YoOztbkZGRkqSIiAjFxMRY2z///PNKTEzUpEmTtHPnTo0bN06bNm1SVFSUJCkrK0ujR4/Wjz/+qH379ikpKUm9evVSgwYNFBYW5pR1BAAAuBGcfo1d3759dezYMcXGxiotLU0hISFKTEy03iCxf/9+ubj8lT87dOigBQsW6JVXXtFLL72khg0bavny5br99tslSa6urtq6davmzp2rU6dOKSgoSPfff78mTJggd3d3p6wjAADAjeD0YCdJUVFR1iNul0tOTi407rHHHtNjjz1WZHtPT0+tWLGiJMsDAAC4KTj9VCwAAABKBsEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTKBPBbvr06QoODpaHh4fatWunDRs2XLX9kiVL1LhxY3l4eKh58+b6+uuvbaYbhqHY2FhVr15dnp6eCg0N1W+//VaaqwAAAOB0Tg92ixYtUnR0tOLi4rR582a1bNlSYWFhOnr0aJHt161bp/79+2vQoEH66aefFB4ervDwcP3yyy/WNm+++aamTp2qmTNnav369fLy8lJYWJjOnTt3o1YLAADghnN6sJs8ebIGDx6syMhINW3aVDNnzlSFChU0a9asItu//fbb6tatm0aPHq0mTZpowoQJuvPOOzVt2jRJF4/WTZkyRa+88op69eqlFi1aaN68eTp8+LCWL19+A9cMAADgxnJqsMvNzVVqaqpCQ0Ot41xcXBQaGqqUlJQi50lJSbFpL0lhYWHW9nv37lVaWppNGx8fH7Vr1+6KfQIAAJiBmzMXfvz4ceXl5SkgIMBmfEBAgHbu3FnkPGlpaUW2T0tLs04vGHelNpfLyclRTk6OdTgjI0OSlJmZ6cDaXJSXc9bheeB8xfmsi4tt5OZ0I7cRie3kZsW+5PpYLuTqwoUL1uG8nLMy8vKcWFHJK842UjCPYRjXbOvUYFdWxMfHa/z48YXG16pVywnVwBl83vmHs0tAGcc2AnuwnZSwNWucXUGJu55t5PTp0/Lx8blqG6cGu6pVq8rV1VXp6ek249PT0xUYGFjkPIGBgVdtX/Bvenq6qlevbtMmJCSkyD5jYmIUHR1tHc7Pz9fJkydVpUoVWSwWh9fLjDIzM1WrVi0dOHBAlSpVcnY5KIPYRmAPthNcC9tIYYZh6PTp0woKCrpmW6cGu/Lly6tVq1ZKSkpSeHi4pIuhKikpSVFRUUXO0759eyUlJWnEiBHWcStXrlT79u0lSXXr1lVgYKCSkpKsQS4zM1Pr16/XkCFDiuzT3d1d7u7uNuMqV658XetmVpUqVeIHDVfFNgJ7sJ3gWthGbF3rSF0Bp5+KjY6O1oABA9S6dWu1bdtWU6ZMUXZ2tiIjIyVJERERqlGjhuLj4yVJzz//vDp37qxJkyape/fuWrhwoTZt2qT33ntPkmSxWDRixAi9/vrratiwoerWratXX31VQUFB1vAIAABgRk4Pdn379tWxY8cUGxurtLQ0hYSEKDEx0Xrzw/79++Xi8tfNux06dNCCBQv0yiuv6KWXXlLDhg21fPly3X777dY2Y8aMUXZ2tp555hmdOnVKHTt2VGJiojw8PG74+gEAANwoFsOeWyxwy8vJyVF8fLxiYmIKnbYGJLYR2IftBNfCNnJ9CHYAAAAm4fRvngAAAEDJINgBAACYBMEOAADAJAh2uKo1a9aoZ8+eCgoKksVi0fLly51dEsqY+Ph4tWnTRhUrVlS1atUUHh6uXbt2ObsslCEzZsxQixYtrM8la9++vb755htnl4UyLiEhwfoIM9iPYIerys7OVsuWLTV9+nRnl4IyavXq1Ro2bJh+/PFHrVy5UufPn9f999+v7OxsZ5eGMqJmzZpKSEhQamqqNm3apHvvvVe9evXS//73P2eXhjJq48aNevfdd9WiRQtnl3LT4a5Y2M1isWjZsmU86BlXdezYMVWrVk2rV6/W3/72N2eXgzLKz89Pb731lgYNGuTsUlDGZGVl6c4779R//vMfvf766woJCdGUKVOcXdZNgyN2AEpURkaGpIu/uIHL5eXlaeHChcrOzrZ+FSRwqWHDhql79+4KDQ11dik3Jad/8wQA88jPz9eIESN0991323wbDLBt2za1b99e586dk7e3t5YtW6amTZs6uyyUMQsXLtTmzZu1ceNGZ5dy0yLYASgxw4YN0y+//KIffvjB2aWgjGnUqJG2bNmijIwMffrppxowYIBWr15NuIPVgQMH9Pzzz2vlypV8Beh14Bo72I1r7HA1UVFR+vzzz7VmzRrVrVvX2eWgjAsNDVX9+vX17rvvOrsUlBHLly/Xww8/LFdXV+u4vLw8WSwWubi4KCcnx2YaisYROwDXxTAMDR8+XMuWLVNycjKhDnbJz89XTk6Os8tAGXLfffdp27ZtNuMiIyPVuHFjjR07llBnJ4IdriorK0u7d++2Du/du1dbtmyRn5+fateu7cTKUFYMGzZMCxYs0Oeff66KFSsqLS1NkuTj4yNPT08nV4eyICYmRg888IBq166t06dPa8GCBUpOTtaKFSucXRrKkIoVKxa6NtfLy0tVqlThml0HEOxwVZs2bdI999xjHY6OjpYkDRgwQHPmzHFSVShLZsyYIUnq0qWLzfjZs2dr4MCBN74glDlHjx5VRESEjhw5Ih8fH7Vo0UIrVqxQ165dnV0aYDpcYwcAAGASPMcOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOgNMMHDhQ4eHhJdrnvn37ZLFYtGXLlhLttyy5/H3r0qWLRowYcdV5goODNWXKFOuwxWLR8uXLJd0a7xlwq+ArxQCUCovFctXpcXFxevvtt1UWv/xm4MCBOnXqlDX4XK3d3LlzJUnlypVT7dq1FRERoZdeeklubjdu97p06VKVK1fOoXmOHDkiX1/fUqoIgLMQ7ACUiiNHjlj/v2jRIsXGxmrXrl3Wcd7e3vL29nZGaSWqW7dumj17tnJycvT1119r2LBhKleunGJiYm5YDX5+fg7PExgYWAqVAHA2TsUCKBWBgYHWl4+PjywWi804b2/vIk8pPvfccxozZoz8/PwUGBiocePG2fS7c+dOdezYUR4eHmratKm+++47m9OKl8vLy9NTTz2lxo0ba//+/crLy9OgQYNUt25deXp6qlGjRnr77bet7ceNG6e5c+fq888/l8VikcViUXJy8hXX093dXYGBgapTp46GDBmi0NBQffHFF5KknJwcjRo1SjVq1JCXl5fatWtn09ecOXNUuXJlrVixQk2aNJG3t7e6detmE4rz8vIUHR2typUrq0qVKhozZkyho5yXn4o9evSoevbsKU9PT9WtW1fz588vVHdJvmfSX6eHJ06cqOrVq6tKlSoaNmyYzp8/f8X3DkDJ44gdgDJl7ty5io6O1vr165WSkqKBAwfq7rvvVteuXZWXl6fw8HDVrl1b69ev1+nTp/XCCy9csa+cnBz1799f+/bt03//+1/5+/vr/PnzqlmzppYsWaIqVapo3bp1euaZZ1S9enX16dNHo0aN0o4dO5SZmanZs2dLcuyImKenp06cOCFJioqK0vbt27Vw4UIFBQVp2bJl6tatm7Zt26aGDRtKks6cOaOJEyfqo48+kouLi5544gmNGjXKGsYmTZqkOXPmaNasWWrSpIkmTZqkZcuW6d57771iDQMHDtThw4e1atUqlStXTs8995yOHj1qV/3Fec8KrFq1StWrV9eqVau0e/du9e3bVyEhIRo8eLDd7x+A60OwA1CmtGjRQnFxcZKkhg0batq0aUpKSlLXrl21cuVK7dmzR8nJydZTif/85z/VtWvXQv1kZWWpe/fuysnJ0apVq+Tj4yPp4rVw48ePt7arW7euUlJStHjxYvXp00fe3t7y9PRUTk6OQ6crDcNQUlKSVqxYoeHDh2v//v2aPXu29u/fr6CgIEnSqFGjlJiYqNmzZ+tf//qXJOn8+fOaOXOm6tevL+liGHzttdes/U6ZMkUxMTHq3bu3JGnmzJlasWLFFev49ddf9c0332jDhg1q06aNJOnDDz9UkyZNrrkOxX3PCvj6+mratGlydXVV48aN1b17dyUlJRHsgBuIYAegTGnRooXNcPXq1a1Hm3bt2qVatWrZBK62bdsW2U///v1Vs2ZNff/99/L09LSZNn36dM2aNUv79+/X2bNnlZubq5CQkGLV+3//93/y9vbW+fPnlZ+fr7///e8aN26ckpOTlZeXp9tuu82mfU5OjqpUqWIdrlChgjXUXb6+GRkZOnLkiNq1a2ed7ubmptatW1/xppMdO3bIzc1NrVq1so5r3LixKleufM11ud73rFmzZnJ1dbVZl23btl1zuQBKDsEOQJly+d2dFotF+fn5Dvfz4IMP6uOPP1ZKSorNacuFCxdq1KhRmjRpktq3b6+KFSvqrbfe0vr164tV7z333KMZM2aofPnyCgoKst4Nm5WVJVdXV6WmptqEHUk2N40Utb7OulP4et+zkvrsABQfwQ7ATaNRo0Y6cOCA0tPTFRAQIEnauHFjkW2HDBmi22+/XQ899JC++uorde7cWZK0du1adejQQUOHDrW23bNnj8285cuXV15enl01eXl5qUGDBoXG33HHHcrLy9PRo0fVqVMnu/q6nI+Pj6pXr67169frb3/7myTpwoULSk1N1Z133lnkPI0bN7a2KTgVu2vXLp06deqay7ue9wxA2cBdsQBuGl27dlX9+vU1YMAAbd26VWvXrtUrr7wiqejn5g0fPlyvv/66evTooR9++EHSxev2Nm3apBUrVujXX3/Vq6++WigcBgcHa+vWrdq1a5eOHz9erDs7b7vtNj3++OOKiIjQ0qVLtXfvXm3YsEHx8fH66quv7O7n+eefV0JCgpYvX66dO3dq6NChVw1pjRo1Urdu3fTss89q/fr1Sk1N1dNPP13o1OqVFPc9A1A2EOwA3DRcXV21fPlyZWVlqU2bNnr66af18ssvS5I8PDyKnGfEiBEaP368HnzwQa1bt07PPvusevfurb59+6pdu3Y6ceKEzZEoSRo8eLAaNWqk1q1by9/fX2vXri1WvbNnz1ZERIReeOEFNWrUSOHh4dq4caNq165tdx8vvPCCnnzySQ0YMMB6GvThhx++5nKDgoLUuXNn9e7dW88884yqVatm9zKL854BKBssRll87DsA2Gnt2rXq2LGjdu/ebXMTAgDcigh2AG4qy5Ytk7e3txo2bKjdu3fr+eefl6+vr/W0IQDcyrh5AsBN5fTp0xo7dqz279+vqlWrKjQ0VJMmTXJ2WQBQJnDEDgAAwCS4eQIAAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAk/h9ggrB6LNJmGAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Tingkat Pendidikan dengan Gagal Bayar\n",
"sns.barplot(x='education_level', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Tingkat Pendidikan dengan Gagal Bayar')\n",
"plt.xlabel('Tingkat Pendidikan')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Pada grafik tingkat pendidikan dan gagal bayar ditemukan nasabah yang tidak diketahui tingkat pendidikannya (pada kolom 6) memiliki tingkat kemungkinan gagal bayar dibandingkan dengan tingkat pendidikan lainnya \n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABH50lEQVR4nO3deXxM9/7H8fckkUVCJJZE0MROat8ppW3a0FJULbltkSq3SHtJqaZFLO2NpVV1q7TUdlG6WG5/t6WE1EVsUVUtLhq1JiIpkSBIzu8PN1MjQYbEcPp6Ph7zqHPOd77n8505mb7nbGMxDMMQAAAA7ntOji4AAAAAhYNgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgB4cbM2aMLBaLTp8+7ehS8CeXuy1ey2KxKCIiolD6nzdvniwWi3bs2FEo/RUli8WiMWPGOLoM3ETfvn0VFBTk6DJwjyHYoUBu9T+kdu3aqU6dOne5KvPauHGjOnTooAoVKsjd3V0PPPCAOnXqpMWLF1vbnD9/XmPGjFFcXNxtr2fz5s0aM2aMzpw5c+dF2yl3m8p9uLu7q0aNGoqIiFBycvJdrwfIderUKb3xxhuqW7euvLy85O7urmrVqik8PFwbN250dHl2a9eunc3fmqurqypXrqwBAwbo6NGjji4PhczF0QUAsPXFF1+oZ8+eatCggf72t7/Jx8dHiYmJ2rBhg2bNmqW//OUvkq4Gu7Fjx0q6+sF9OzZv3qyxY8eqb9++KlWqVCGNwD7jxo1T5cqVdfHiRW3cuFEzZszQN998oz179qh48eJ3tZaRI0fqjTfeuKvrxL1l27Zteuqpp3Tu3Dn16tVLL7/8stzc3JSYmKgVK1Zo3rx5+v777/Xwww87ulS7VKxYUTExMZKkS5cu6ZdfftHMmTO1evVq7d27967/raHoEOyAe8yYMWMUHBysLVu2yNXV1WbZqVOnHFRV0enQoYOaNGkiSXrppZdUunRpTZkyRStXrlRYWNgd9X3+/Hm7/ofl4uIiFxc+Fv+sfv/9d3Xp0kUuLi7atWuXatWqZbP87bff1pIlS+Th4eGgCm+ft7e3nn/+eZt5lStXVkREhDZt2qTHH3/cQZXdWGZmpjw9PR1dxn2HQ7EoEocPH5bFYtG8efPyLLvRuTunT59Wjx49VLJkSZUuXVp/+9vfdPHixdvqM/dcqYMHD1r3Rnl7eys8PFznz5+3ee6FCxf06quvqkyZMipRooSefvppHT9+PE+fv/32mwYNGqSaNWvKw8NDpUuXVvfu3XX48GGb/nIPMW7atEmRkZEqW7asPD091bVrV6WkpNzytTt06JCaNm2aJ9RJUrly5ayvRdmyZSVJY8eOtR5iya139+7d6tu3r6pUqSJ3d3f5+/vrxRdfVGpqqs1rNHz4cElXP+Bz+zh8+LBdr/W5c+c0ZMgQBQUFyc3NTeXKldPjjz+unTt33nKs+Xn00UclSYmJidZ5CxcuVOPGjeXh4SFfX1/16tUrzyGk3NMBEhIS9PDDD6t48eJ68803rWN599139cknn6hq1apyc3NT06ZNtX37dps+8jvHLj9vv/22nJyc9I9//ENSwbeNXFlZWbfcNlauXKmnnnpKAQEBcnNzU9WqVTV+/HhlZ2fnO+5ffvlFjzzyiIoXL64KFSpo0qRJtxxHbi1Dhw5V2bJlrdv/sWPH8m17/Phxvfjii/Lz85Obm5sefPBBzZkzx6ZNXFycLBaLPv/8c73zzjuqWLGi3N3d9dhjj+ngwYN5+pw+fbqqVKkiDw8PNWvWTP/5z3/Url07m73Qly5d0ujRo9W4cWN5e3vL09NTbdq00fr16236sue9zs/MmTN18uRJTZ06NU+ok65u+2FhYWratKl1nj3v/e7du9W2bVt5eHioYsWKevvttzV37lzr312ugr73d8rf31+SbL7MFGQ8v/76qywWi95///08fW7evFkWi0WfffZZgfuT/vjc/P777zVo0CCVK1dOFStWLNTx/lnw1RR2OXv2bL4XOVy+fPmO++7Ro4eCgoIUExOjLVu2aNq0afr999+1YMGCO+qzcuXKiomJ0c6dOzV79myVK1dOEydOtLbp27evPv/8c73wwgtq0aKFvv/+ez311FN5+tq+fbs2b96sXr16qWLFijp8+LBmzJihdu3a6ZdffsmzZ+iVV16Rj4+PoqOjdfjwYU2dOlURERFaunTpTWsODAxUbGysjh07dsMPtrJly2rGjBkaOHCgunbtqmeeeUaSVK9ePUnSmjVr9Ouvvyo8PFz+/v76+eef9cknn+jnn3/Wli1bZLFY9Mwzz+i///2vPvvsM73//vsqU6aMte+CBNBcL7/8sr788ktFREQoODhYqamp2rhxo/bu3atGjRoVuJ9chw4dkiSVLl1akvTOO+9o1KhR6tGjh1566SWlpKToH//4hx5++GH98MMPNoeQU1NT1aFDB/Xq1UvPP/+8/Pz8rMsWL16sc+fO6a9//assFosmTZqkZ555Rr/++quKFStW4PpGjhypv//97/r444/Vv39/SUWzbcybN09eXl6KjIyUl5eX1q1bp9GjRys9PV2TJ0+26e/3339X+/bt9cwzz6hHjx768ssvNWLECNWtW1cdOnS46XheeuklLVy4UH/5y1/UqlUrrVu3Lt/tPzk5WS1atLBeTFK2bFl9++236tevn9LT0zVkyBCb9hMmTJCTk5OGDRums2fPatKkSXruuee0detWa5sZM2YoIiJCbdq00dChQ3X48GF16dJFPj4+Ntt+enq6Zs+erbCwMPXv31/nzp3Tp59+qtDQUG3btk0NGjSwWfftvtdff/21PDw8rH9PBVHQ9/748eN65JFHZLFYFBUVJU9PT82ePVtubm55+rTnvS+o7Oxs62f35cuXtXfvXkVHR6tatWp66KGH7BpPlSpV9NBDD2nRokUaOnSozXoWLVqkEiVKqHPnzna9PrkGDRqksmXLavTo0crMzLytsf7pGUABzJ0715B008eDDz5obZ+YmGhIMubOnZunL0lGdHS0dTo6OtqQZDz99NM27QYNGmRIMn788cfb7vPFF1+0ade1a1ejdOnS1umEhARDkjFkyBCbdn379s3T5/nz5/OsNz4+3pBkLFiwIM9rFRISYuTk5FjnDx061HB2djbOnDmTp59rffrpp4Ykw9XV1XjkkUeMUaNGGf/5z3+M7Oxsm3YpKSl5arxZrZ999pkhydiwYYN13uTJkw1JRmJiok1be15rb29vY/DgwTcdU35yX6e1a9caKSkpxtGjR40lS5YYpUuXNjw8PIxjx44Zhw8fNpydnY133nnH5rk//fST4eLiYjO/bdu2hiRj5syZ+Y6ldOnSRlpamnX+ypUrDUnG119/bZ2Xu91cP97c8b322muGk5OTMW/ePJs2RbFt5NfnX//6V6N48eLGxYsX84z72vVkZWUZ/v7+Rrdu3fL0ca1du3YZkoxBgwbZzP/LX/6S533u16+fUb58eeP06dM2bXv16mV4e3tb612/fr0hyahdu7aRlZVlbffBBx8YkoyffvrJWmPp0qWNpk2bGpcvX7a2mzdvniHJaNu2rXXelStXbPoyDMP4/fffDT8/P5u/cXve6/z4+PgYDRo0yDM/PT3dSElJsT4yMjKsywr63r/yyiuGxWIxfvjhB+u81NRUw9fXN8/fYEHf+z59+hiBgYE3HZNh/LGNXP+oXbu28euvv9q0Leh4Pv74Y0OSsXfvXuu8S5cuGWXKlDH69Oljd3+5fxutW7c2rly5cssx4cY4FAu7TJ8+XWvWrMnzyN1TdCcGDx5sM/3KK69Ikr755pvb7vPll1+2mW7Tpo1SU1OVnp4uSVq1apWkq98S81v3ta49r+by5ctKTU1VtWrVVKpUqXwPOw4YMMDmsF6bNm2UnZ2t33777aY1v/jii1q1apXatWunjRs3avz48WrTpo2qV6+uzZs332LEeWu9ePGiTp8+rRYtWkjSbR8ivZFSpUpp69atOnHixG09PyQkRGXLllWlSpXUq1cveXl5afny5apQoYKWLVumnJwc9ejRQ6dPn7Y+/P39Vb169TyH4tzc3BQeHp7venr27CkfHx/rdJs2bSRdPax0K4ZhKCIiQh988IEWLlyoPn362Cwvim3j2j7PnTun06dPq02bNjp//rz27dtn05+Xl5fN+VOurq5q1qzZLceW+7f16quv2sy/fu+bYRj66quv1KlTJxmGYfNehIaG6uzZs3nGGR4ebnM6wfWv944dO5Samqr+/fvbHAp87rnnbN4nSXJ2drb2lZOTo7S0NF25ckVNmjTJ9/W93fc6PT1dXl5eeea/8MILKlu2rPUxYsQI67KCvverVq1Sy5YtbfYu+vr66rnnnsuzPnve+4IKCgqyfl5/++23mjp1qs6ePasOHTrY7KEv6Hh69Oghd3d3LVq0yDpv9erVOn36tM22aO/fRv/+/eXs7HxbY8RVHIqFXZo1a2Y90f1aPj4+d3wfuurVq9tMV61aVU5OTjc8T6kgHnjgAZvp3A/733//XSVLltRvv/0mJycnVa5c2aZdtWrV8vR14cIFxcTEaO7cuTp+/LgMw7AuO3v2rF3rvpXQ0FCFhobq/PnzSkhI0NKlSzVz5kx17NhR+/bts55rdyNpaWkaO3aslixZkueCi/xqvROTJk1Snz59VKlSJTVu3FhPPvmkevfurSpVqhTo+dOnT1eNGjXk4uIiPz8/1axZU05OV79zHjhwQIZh5Nk2cl1/WK1ChQr5npso3dn7sWDBAmVkZGjGjBn5XtBRFNvGzz//rJEjR2rdunXWLyI36rNixYp5zg308fHR7t27bzqu3O2/atWqNvNr1qxpM52SkqIzZ87ok08+0SeffJJvX9dvZ7caY26Ivf5vzcXFJd97s82fP1/vvfee9u3bZ3Pqx/V/uwVZ942UKFFCGRkZeeaPGzfOei/D6y8yKOh7/9tvv6lly5Z5+s7vs8ae976gPD09FRISYp1u3769WrdurSZNmmjChAl677337BpPqVKlrLdgGj9+vKSrh2ErVKhgPU/Wnv5y5fd+wj4EOxSJG52Abs/Jv/ndKNbePm/0ze/aD5eCeuWVVzR37lwNGTJELVu2lLe3tywWi3r16qWcnJwiWXfx4sXVpk0btWnTRmXKlNHYsWP17bff5tljdL0ePXpo8+bNGj58uBo0aCAvLy/l5OSoffv2+dZ6PXte6x49eqhNmzZavny5vvvuO02ePFkTJ07UsmXLbnl+l3TjLwvS1b0zFotF3377bb6v5/V7V252teKdvB8PPfSQdu3apQ8//FA9evSQr6+vzfLC3jbOnDmjtm3bqmTJkho3bpyqVq0qd3d37dy5UyNGjMjTZ2Fu5/nJXd/zzz9/w23v+r32hVnTwoUL1bdvX3Xp0kXDhw9XuXLl5OzsrJiYGOs5mYWx7lq1aunHH3/U5cuXbb403OyIhL3v/a3Y+97fidyLUTZs2HBb4+ndu7e++OILbd68WXXr1tW//vUvDRo0yPrFzN7+pJv/DaNgCHYoErnfkK+/8e3NDkMeOHDA5tvawYMHlZOTY/32fjt93kpgYKBycnKUmJhos1cov6v3vvzyS/Xp08f6zVa6epjzbt3cNzf8nDx5UtKNw9fvv/+u2NhYjR07VqNHj7bOP3DgQJ62N+rD3te6fPnyGjRokAYNGqRTp06pUaNGeueddwoU7G6matWqMgxDlStXVo0aNe6orztRrVo1TZo0Se3atVP79u0VGxurEiVKWJcX9rYRFxen1NRULVu2zOZ+addeKVwYcrf/Q4cO2eyl279/v0273Ctms7Ozbfb63Om6pat/a4888oh1/pUrV3T48GGbMPXll1+qSpUqWrZsmc02Gx0dXSi15OrYsaO2bNmi5cuXq0ePHgV6TkHf+8DAwHw/V66fd7fe+1zZ2dk2eynt2Zbbt2+vsmXLatGiRWrevLnOnz+vF154waaNoz83/4w4xw5FomTJkipTpozNN0FJ+uijj274nOnTp9tM595KIjcc3E6ftxIaGppvH7nrvpazs3Oeb/z/+Mc/Cv0WBLGxsfnOzz0fKvd/wLlXk13/AZm7t+L6WqdOnZqnz9x7RF3fR0Ff6+zs7DyHU8qVK6eAgABlZWXlOw57PPPMM3J2dtbYsWPzjMcwDJvbtxS1evXq6ZtvvtHevXvVqVMnXbhwwbqssLeN/N7DS5cu3dG2np/cv61p06bZzL9+W3F2dla3bt301Vdfac+ePXn6secq6lxNmjRR6dKlNWvWLF25csU6f9GiRXkOmeb3emzdulXx8fF2r/dmBg4cKD8/Pw0dOlT//e9/8yzPb49fQd/70NBQxcfHa9euXdZ5aWlpNueo5fZ3/bqK4r2XpPXr1ysjI0P169e3WX9Bt2UXFxeFhYXp888/17x581S3bt1899zejc9N/IE9digyL730kiZMmKCXXnpJTZo00YYNG/L9sMyVmJiop59+Wu3bt1d8fLz1FgzXfujY2+etNG7cWN26ddPUqVOVmppqvd1Jbp/X7h3o2LGj/vnPf8rb21vBwcGKj4/X2rVrrbflKCydO3dW5cqV1alTJ1WtWlWZmZlau3atvv76azVt2lSdOnWSdPWQRXBwsJYuXaoaNWrI19dXderUUZ06dfTwww9r0qRJunz5sipUqKDvvvsu32/8jRs3liS99dZb6tWrl4oVK6ZOnTrJ09OzQK/1uXPnVLFiRT377LOqX7++vLy8tHbtWm3fvt3mG/rtqlq1qt5++21FRUVZb4VRokQJJSYmavny5RowYICGDRt2x+spqBYtWmjlypV68skn9eyzz2rFihUqVqxYoW8brVq1ko+Pj/r06aNXX31VFotF//znPwvt0GquBg0aKCwsTB999JHOnj2rVq1aKTY2Nt89SxMmTND69evVvHlz9e/fX8HBwUpLS9POnTu1du1apaWl2bVuV1dXjRkzRq+88ooeffRR9ejRQ4cPH9a8efNUtWrVPH97y5YtU9euXfXUU08pMTFRM2fOVHBwcL7nxN0uX19fLV++XJ06dVL9+vXVq1cvNW3aVMWKFdPRo0f1xRdfSLI9h6+g7/3rr7+uhQsX6vHHH9crr7xivd3JAw88oLS0NOt4i+q9P3v2rBYuXCjp6l7R/fv3a8aMGfLw8LD5tRV7t+XevXtr2rRpWr9+vc1tpG63PxSCu3DlLUwg91L07du357u8bdu2Nrc7MYyrl7n369fP8Pb2NkqUKGH06NHDOHXq1A1vTfLLL78Yzz77rFGiRAnDx8fHiIiIMC5cuHBHfaakpOQ7jmtvLZCZmWkMHjzY8PX1Nby8vIwuXboY+/fvNyQZEyZMsLb7/fffjfDwcKNMmTKGl5eXERoaauzbt88IDAy0ubz/Rq9V7m0g1q9ff5NX+uptSXr16mVUrVrV8PDwMNzd3Y3g4GDjrbfeMtLT023abt682WjcuLHh6upq8xocO3bM6Nq1q1GqVCnD29vb6N69u3HixIl8b48yfvx4o0KFCoaTk5PNa1OQ1zorK8sYPny4Ub9+faNEiRKGp6enUb9+feOjjz666Rhv9jrl56uvvjJat25teHp6Gp6enkatWrWMwYMHG/v377e2yW8bNIw/boExefLkPMtutN1c3+b627msXLnScHFxMXr27GlkZ2cXybaxadMmo0WLFoaHh4cREBBgvP7668bq1avztLvRuAt6K4wLFy4Yr776qlG6dGnD09PT6NSpk3H06NF8t5Xk5GRj8ODBRqVKlYxixYoZ/v7+xmOPPWZ88sknecbyxRdf2Dz3RrfQmTZtmhEYGGi4ubkZzZo1MzZt2mQ0btzYaN++vbVNTk6O8fe//93armHDhsb//d//5RmjPe/1zZw8edIYPny4ERwcbHh4eBhubm5GlSpVjN69e9vcLsgwCv65YBiG8cMPPxht2rQx3NzcjIoVKxoxMTHGtGnTDElGUlKStV1B3/vbvd2JxWIxfH19jaefftpISEi47fHkevDBBw0nJyfj2LFjeZbd6d8G7GcxjEL+CgiYwK5du9SwYUMtXLgw39sRACgaOTk5Klu2rJ555hnNmjXL0eUUuSFDhujjjz9WRkbGfXubj4YNG8rX1/eGp5Hg7uIcO/zpXXuuVK6pU6fKycnpvvuhb+B+cvHixTyHGBcsWKC0tDSbnxQzi+s/a1JTU/XPf/5TrVu3vm9D3Y4dO7Rr1y717t3b0aXgfzjHDn96kyZNUkJCgh555BG5uLjo22+/1bfffqsBAwaoUqVKji4PMK0tW7Zo6NCh6t69u0qXLq2dO3fq008/VZ06ddS9e3dHl1foWrZsqXbt2ql27dpKTk7Wp59+qvT0dI0aNcrRpdltz549SkhI0Hvvvafy5curZ8+eji4J/0Oww59eq1attGbNGo0fP14ZGRl64IEHNGbMGL311luOLg0wtaCgIFWqVEnTpk1TWlqafH191bt3b02YMOGGN5q+nz355JP68ssv9cknn8hisahRo0b69NNP78sjA19++aXGjRunmjVr6rPPPpO7u7ujS8L/cI4dAACASXCOHQAAgEkQ7AAAAEyCc+zykZOToxMnTqhEiRI3/MklAACAu8EwDJ07d04BAQE2v8WbH4JdPk6cOMHVkAAA4J5y9OhRVaxY8aZtCHb5yP1x76NHj6pkyZIOrgYAAPyZpaenq1KlStZ8cjMEu3zkHn4tWbIkwQ4AANwTCnJ6GBdPAAAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMwsXRBQAAgPuHYRjKzMy0Tnt6espisTiwIlyLYAcAAAosMzNTnTt3tk6vXLlSXl5eDqwI1+JQLAAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYxD0R7KZPn66goCC5u7urefPm2rZt2w3bzpo1S23atJGPj498fHwUEhKSp33fvn1lsVhsHu3bty/qYQAAADiUw4Pd0qVLFRkZqejoaO3cuVP169dXaGioTp06lW/7uLg4hYWFaf369YqPj1elSpX0xBNP6Pjx4zbt2rdvr5MnT1ofn3322d0YDgAAgMM4PNhNmTJF/fv3V3h4uIKDgzVz5kwVL15cc+bMybf9okWLNGjQIDVo0EC1atXS7NmzlZOTo9jYWJt2bm5u8vf3tz58fHzuxnAAAAAcxqHB7tKlS0pISFBISIh1npOTk0JCQhQfH1+gPs6fP6/Lly/L19fXZn5cXJzKlSunmjVrauDAgUpNTb1hH1lZWUpPT7d5AAAA3G8cGuxOnz6t7Oxs+fn52cz38/NTUlJSgfoYMWKEAgICbMJh+/bttWDBAsXGxmrixIn6/vvv1aFDB2VnZ+fbR0xMjLy9va2PSpUq3f6gYBfDMJSRkWF9GIbh6JIAALhvuTi6gDsxYcIELVmyRHFxcXJ3d7fO79Wrl/XfdevWVb169VS1alXFxcXpsccey9NPVFSUIiMjrdPp6emEu7skMzNTnTt3tk6vXLlSXl5eDqwIAID7l0P32JUpU0bOzs5KTk62mZ+cnCx/f/+bPvfdd9/VhAkT9N1336levXo3bVulShWVKVNGBw8ezHe5m5ubSpYsafMAAAC43zg02Lm6uqpx48Y2Fz7kXgjRsmXLGz5v0qRJGj9+vFatWqUmTZrccj3Hjh1TamqqypcvXyh1AwAA3IscflVsZGSkZs2apfnz52vv3r0aOHCgMjMzFR4eLknq3bu3oqKirO0nTpyoUaNGac6cOQoKClJSUpKSkpKUkZEhScrIyNDw4cO1ZcsWHT58WLGxsercubOqVaum0NBQh4wRAADgbnD4OXY9e/ZUSkqKRo8eraSkJDVo0ECrVq2yXlBx5MgROTn9kT9nzJihS5cu6dlnn7XpJzo6WmPGjJGzs7N2796t+fPn68yZMwoICNATTzyh8ePHy83N7a6ODQAA4G5yeLCTpIiICEVEROS7LC4uzmb68OHDN+3Lw8NDq1evLqTKAAAA7h8OPxQLAACAwkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYhIujCzC7xsMXOLqEe5rlyiV5XzPdbtQSGS6uDqvnXpYwubejSwAA3OPYYwcAAGASBDsAAACT4FAsABQBwzCUmZlpnfb09JTFYnFgRQD+DAh2AFAEMjMz1blzZ+v0ypUr5eXl5cCKAPwZcCgWAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTcHF0AQDuX42HL3B0Cfcsy5VL8r5mut2oJTJcXB1Wz70sYXJvR5cAmAZ77AAAAEyCYAcAAGAS90Swmz59uoKCguTu7q7mzZtr27ZtN2w7a9YstWnTRj4+PvLx8VFISEie9oZhaPTo0Spfvrw8PDwUEhKiAwcOFPUwcBsM52I6Wy/M+jCcizm6JAAA7lsOD3ZLly5VZGSkoqOjtXPnTtWvX1+hoaE6depUvu3j4uIUFham9evXKz4+XpUqVdITTzyh48ePW9tMmjRJ06ZN08yZM7V161Z5enoqNDRUFy9evFvDQkFZLDJcXK0PWSyOrggAgPuWw4PdlClT1L9/f4WHhys4OFgzZ85U8eLFNWfOnHzbL1q0SIMGDVKDBg1Uq1YtzZ49Wzk5OYqNjZV0dW/d1KlTNXLkSHXu3Fn16tXTggULdOLECa1YseIujgwAAODucmiwu3TpkhISEhQSEmKd5+TkpJCQEMXHxxeoj/Pnz+vy5cvy9fWVJCUmJiopKcmmT29vbzVv3vyGfWZlZSk9Pd3mAQAAcL9xaLA7ffq0srOz5efnZzPfz89PSUlJBepjxIgRCggIsAa53OfZ02dMTIy8vb2tj0qVKtk7FAAAAIdz+KHYOzFhwgQtWbJEy5cvl7u7+233ExUVpbNnz1ofR48eLcQqAQAA7g6H3qC4TJkycnZ2VnJyss385ORk+fv73/S57777riZMmKC1a9eqXr161vm5z0tOTlb58uVt+mzQoEG+fbm5ucnNze02RwEAAHBvcOgeO1dXVzVu3Nh64YMk64UQLVu2vOHzJk2apPHjx2vVqlVq0qSJzbLKlSvL39/fps/09HRt3br1pn0CAADc7xz+k2KRkZHq06ePmjRpombNmmnq1KnKzMxUeHi4JKl3796qUKGCYmJiJEkTJ07U6NGjtXjxYgUFBVnPm/Py8pKXl5csFouGDBmit99+W9WrV1flypU1atQoBQQEqEuXLo4aJgAAQJFzeLDr2bOnUlJSNHr0aCUlJalBgwZatWqV9eKHI0eOyMnpjx2LM2bM0KVLl/Tss8/a9BMdHa0xY8ZIkl5//XVlZmZqwIABOnPmjFq3bq1Vq1bd0Xl4AAAA9zqHBztJioiIUERERL7L4uLibKYPHz58y/4sFovGjRuncePGFUJ1AAAA94f7+qpYAAAA/IFgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJiEi6MLAAAzMpyL6Wy9MJtpAChqBDsAKAoWiwwXV0dXAeBPhkOxAAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASdgW7y5cvy8XFRXv27CmqegAAAHCb7Ap2xYoV0wMPPKDs7OyiqgcAAAC3ye5DsW+99ZbefPNNpaWlFUU9AAAAuE1236D4ww8/1MGDBxUQEKDAwEB5enraLN+5c2ehFQcAAICCszvYdenSpQjKAAAAwJ2yO9hFR0cXRR0AAAC4Q9zuBAAAwCTs3mOXnZ2t999/X59//rmOHDmiS5cu2SznogoAAADHsHuP3dixYzVlyhT17NlTZ8+eVWRkpJ555hk5OTlpzJgxRVAiAAAACsLuYLdo0SLNmjVLr732mlxcXBQWFqbZs2dr9OjR2rJlS1HUCAAAgAKwO9glJSWpbt26kiQvLy+dPXtWktSxY0f9+9//LtzqAAAAUGB2B7uKFSvq5MmTkqSqVavqu+++kyRt375dbm5uhVsdAAAACszuYNe1a1fFxsZKkl555RWNGjVK1atXV+/evfXiiy8WeoEAAAAoGLuvip0wYYL13z179lRgYKA2b96s6tWrq1OnToVaHAAAAArO7mCXmZlp8zNiLVq0UIsWLQq1KAAAANjP7kOxfn5+evHFF7Vx48aiqAcAAAC3ye5gt3DhQqWlpenRRx9VjRo1NGHCBJ04caIoagMAAIAd7A52Xbp00YoVK3T8+HG9/PLLWrx4sQIDA9WxY0ctW7ZMV65cKYo6AQAAcAu3/VuxZcuWVWRkpHbv3q0pU6Zo7dq1evbZZxUQEKDRo0fr/PnzhVknAAAAbsHuiydyJScna/78+Zo3b55+++03Pfvss+rXr5+OHTumiRMnasuWLdZ73AEAAKDo2R3sli1bprlz52r16tUKDg7WoEGD9Pzzz6tUqVLWNq1atVLt2rULs04AAADcgt3BLjw8XL169dKmTZvUtGnTfNsEBATorbfeuuPiAAAAUHB2B7uTJ0+qePHiN23j4eGh6Ojo2y4KAAAA9rM72F0b6i5evKhLly7ZLC9ZsuSdVwUAAAC72X1VbGZmpiIiIlSuXDl5enrKx8fH5gEAAADHsDvYvf7661q3bp1mzJghNzc3zZ49W2PHjlVAQIAWLFhQFDUCAACgAOw+FPv1119rwYIFateuncLDw9WmTRtVq1ZNgYGBWrRokZ577rmiqBMAAAC3YPceu7S0NFWpUkXS1fPp0tLSJEmtW7fWhg0bCrc6AAAAFJjdwa5KlSpKTEyUJNWqVUuff/65pKt78q69lx0AAADuLruDXXh4uH788UdJ0htvvKHp06fL3d1dQ4cO1fDhwwu9QAAAABSM3efYDR061PrvkJAQ7du3TwkJCapWrZrq1atXqMUBAACg4G77t2JzBQYGKjAwsDBqAQAAwB2w61DsuXPnlJCQoIyMDEnSzp071bt3b3Xv3l2LFi0qkgIBAABQMAXeY7dhwwZ17NhRGRkZ8vHx0WeffaZnn31WFSpUkLOzs5YtW6bz58+rf//+RVkvAAAAbqDAwW7kyJHq3r27xo0bpzlz5qhnz56KiIjQ3//+d0nS22+/renTpxPsAAD3vcbDueH+jViuXJL3NdPtRi2R4eLqsHrudQmTe9/V9RX4UOzu3bs1fPhwVahQQSNGjFB6erp69uxpXd6rVy8dOnTI7gKmT5+uoKAgubu7q3nz5tq2bdsN2/7888/q1q2bgoKCZLFYNHXq1DxtxowZI4vFYvOoVauW3XUBAADcbwoc7NLT0+Xr6ytJcnV1VfHixVWiRAnr8hIlSuj8+fN2rXzp0qWKjIxUdHS0du7cqfr16ys0NFSnTp3Kt/358+dVpUoVTZgwQf7+/jfs98EHH9TJkyetj40bN9pVFwAAwP2owMEud+/XjaZvx5QpU9S/f3+Fh4crODhYM2fOVPHixTVnzpx82zdt2lSTJ09Wr1695ObmdsN+XVxc5O/vb32UKVPmjuoEAAC4HxT4HDvDMPTYY4/JxeXqU86fP69OnTrJ1fXqcfUrV67YteJLly4pISFBUVFR1nlOTk4KCQlRfHy8XX1d78CBAwoICJC7u7tatmypmJgYPfDAAzdsn5WVpaysLOt0enr6Ha0fAADAEQoc7KKjo22mO3funKdNt27dCrzi06dPKzs7W35+fjbz/fz8tG/fvgL3c73mzZtr3rx5qlmzpk6ePKmxY8eqTZs22rNnj82h42vFxMRo7Nixt71OAACAe8FtB7t7VYcOHaz/rlevnpo3b67AwEB9/vnn6tevX77PiYqKUmRkpHU6PT1dlSpVKvJaAQAACtMd//LE7SpTpoycnZ2VnJxsMz85OfmmF0bYq1SpUqpRo4YOHjx4wzZubm43PWcPAADgfmDXL08UJldXVzVu3FixsbHWeTk5OYqNjVXLli0LbT0ZGRk6dOiQypcvX2h9AgAA3IsctsdOkiIjI9WnTx81adJEzZo109SpU5WZmanw8HBJUu/evVWhQgXFxMRIunrBxS+//GL99/Hjx7Vr1y55eXmpWrVqkqRhw4apU6dOCgwM1IkTJxQdHS1nZ2eFhYU5ZpAAAAB3iUODXc+ePZWSkqLRo0crKSlJDRo00KpVq6wXVBw5ckROTn/sVDxx4oQaNmxonX733Xf17rvvqm3btoqLi5MkHTt2TGFhYUpNTVXZsmXVunVrbdmyRWXLlr2rYwMAALjbHBrsJCkiIkIRERH5LssNa7mCgoJkGMZN+1uyZElhlQYAAHBfKVCwmzZtWoE7fPXVV2+7GAAAANy+AgW7999/v0CdWSwWgh0AAICDFCjYJSYmFnUdAAAAuEMOu90JAAAACtdtXTxx7Ngx/etf/9KRI0d06dIlm2VTpkwplMIAAABgH7uDXWxsrJ5++mlVqVJF+/btU506dXT48GEZhqFGjRoVRY0AAAAoALsPxUZFRWnYsGH66aef5O7urq+++kpHjx5V27Zt1b1796KoEQAAAAVgd7Dbu3evevfuLUlycXHRhQsX5OXlpXHjxmnixImFXiAAAAAKxu5g5+npaT2vrnz58jp06JB12enTpwuvMgAAANjF7nPsWrRooY0bN6p27dp68skn9dprr+mnn37SsmXL1KJFi6KoEQAAAAVgd7CbMmWKMjIyJEljx45VRkaGli5dqurVq3NFLAAAgAPZHeyqVKli/benp6dmzpxZqAUBAADg9nCDYgAAAJOwe4+dj4+PLBZLnvkWi0Xu7u6qVq2a+vbtq/Dw8EIpEAAAAAVjd7AbPXq03nnnHXXo0EHNmjWTJG3btk2rVq3S4MGDlZiYqIEDB+rKlSvq379/oRcMAACA/Nkd7DZu3Ki3335bL7/8ss38jz/+WN99952++uor1atXT9OmTSPYAQAA3EV2n2O3evVqhYSE5Jn/2GOPafXq1ZKkJ598Ur/++uudVwcAAIACszvY+fr66uuvv84z/+uvv5avr68kKTMzUyVKlLjz6gAAAFBgdh+KHTVqlAYOHKj169dbz7Hbvn27vvnmG+utT9asWaO2bdsWbqUAAAC4KbuDXf/+/RUcHKwPP/xQy5YtkyTVrFlT33//vVq1aiVJeu211wq3SgAAANyS3cFOkh566CE99NBDhV0LAAAA7sBtBbtcFy9e1KVLl2zmlSxZ8o4KAgAAwO2x++KJ8+fPKyIiQuXKlZOnp6d8fHxsHgAAAHAMu4Pd8OHDtW7dOs2YMUNubm6aPXu2xo4dq4CAAC1YsKAoagQAAEAB2H0o9uuvv9aCBQvUrl07hYeHq02bNqpWrZoCAwO1aNEiPffcc0VRJwAAAG7B7j12aWlpqlKliqSr59OlpaVJklq3bq0NGzYUbnUAAAAoMLuDXZUqVZSYmChJqlWrlj7//HNJV/fklSpVqlCLAwAAQMHZHezCw8P1448/SpLeeOMNTZ8+Xe7u7ho6dKiGDx9e6AUCAACgYOw+x27o0KHWf4eEhGjfvn1KSEhQtWrVVK9evUItDgAAAAV3R/exk6TAwEAFBgYWRi0AAAC4AwUOdhcuXFBsbKw6duwoSYqKilJWVpZ1ubOzs8aPHy93d/fCrxIAAAC3VOBgN3/+fP373/+2BrsPP/xQDz74oDw8PCRJ+/btU0BAgM2hWgAAANw9Bb54YtGiRRowYIDNvMWLF2v9+vVav369Jk+ebL1CFgAAAHdfgYPdwYMHVbduXeu0u7u7nJz+eHqzZs30yy+/FG51AAAAKLACH4o9c+aMzTl1KSkpNstzcnJslgMAAODuKvAeu4oVK2rPnj03XL57925VrFixUIoCAACA/Qoc7J588kmNHj1aFy9ezLPswoULGjt2rJ566qlCLQ4AAAAFV+BDsW+++aY+//xz1axZUxEREapRo4Ykaf/+/frwww915coVvfnmm0VWKAAAAG6uwMHOz89Pmzdv1sCBA/XGG2/IMAxJksVi0eOPP66PPvpIfn5+RVYoAAAAbs6uX56oXLmyVq1apbS0NB08eFCSVK1aNfn6+hZJcQAAACi42/pJMV9fXzVr1qywawEAAMAdKPDFEwAAALi3EewAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk3B4sJs+fbqCgoLk7u6u5s2ba9u2bTds+/PPP6tbt24KCgqSxWLR1KlT77hPAAAAs3BosFu6dKkiIyMVHR2tnTt3qn79+goNDdWpU6fybX/+/HlVqVJFEyZMkL+/f6H0CQAAYBYODXZTpkxR//79FR4eruDgYM2cOVPFixfXnDlz8m3ftGlTTZ48Wb169ZKbm1uh9AkAAGAWDgt2ly5dUkJCgkJCQv4oxslJISEhio+Pv2f6BAAAuF+4OGrFp0+fVnZ2tvz8/Gzm+/n5ad++fXe1z6ysLGVlZVmn09PTb2v9AAAAjuTwiyfuBTExMfL29rY+KlWq5OiSAAAA7OawYFemTBk5OzsrOTnZZn5ycvINL4woqj6joqJ09uxZ6+Po0aO3tX4AAABHcliwc3V1VePGjRUbG2udl5OTo9jYWLVs2fKu9unm5qaSJUvaPAAAAO43DjvHTpIiIyPVp08fNWnSRM2aNdPUqVOVmZmp8PBwSVLv3r1VoUIFxcTESLp6ccQvv/xi/ffx48e1a9cueXl5qVq1agXqEwAAwKwcGux69uyplJQUjR49WklJSWrQoIFWrVplvfjhyJEjcnL6Y6fiiRMn1LBhQ+v0u+++q3fffVdt27ZVXFxcgfoEAAAwK4cGO0mKiIhQREREvstyw1quoKAgGYZxR30CAACYFVfFAgAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABM4p4IdtOnT1dQUJDc3d3VvHlzbdu27abtv/jiC9WqVUvu7u6qW7euvvnmG5vlffv2lcVisXm0b9++KIcAAADgcA4PdkuXLlVkZKSio6O1c+dO1a9fX6GhoTp16lS+7Tdv3qywsDD169dPP/zwg7p06aIuXbpoz549Nu3at2+vkydPWh+fffbZ3RgOAACAwzg82E2ZMkX9+/dXeHi4goODNXPmTBUvXlxz5szJt/0HH3yg9u3ba/jw4apdu7bGjx+vRo0a6cMPP7Rp5+bmJn9/f+vDx8fnbgwHAADAYRwa7C5duqSEhASFhIRY5zk5OSkkJETx8fH5Pic+Pt6mvSSFhobmaR8XF6dy5cqpZs2aGjhwoFJTUwt/AAAAAPcQF0eu/PTp08rOzpafn5/NfD8/P+3bty/f5yQlJeXbPikpyTrdvn17PfPMM6pcubIOHTqkN998Ux06dFB8fLycnZ3z9JmVlaWsrCzrdHp6+p0MCwAAwCEcGuyKSq9evaz/rlu3rurVq6eqVasqLi5Ojz32WJ72MTExGjt27N0sEQCA+5LhXExn64XZTOPe4dBDsWXKlJGzs7OSk5Nt5icnJ8vf3z/f5/j7+9vVXpKqVKmiMmXK6ODBg/kuj4qK0tmzZ62Po0eP2jkSAAD+JCwWGS6u1ocsFkdXhGs4NNi5urqqcePGio2Ntc7LyclRbGysWrZsme9zWrZsadNektasWXPD9pJ07Ngxpaamqnz58vkud3NzU8mSJW0eAAAA9xuHXxUbGRmpWbNmaf78+dq7d68GDhyozMxMhYeHS5J69+6tqKgoa/u//e1vWrVqld577z3t27dPY8aM0Y4dOxQRESFJysjI0PDhw7VlyxYdPnxYsbGx6ty5s6pVq6bQ0FCHjBEAAOBucPg5dj179lRKSopGjx6tpKQkNWjQQKtWrbJeIHHkyBE5Of2RP1u1aqXFixdr5MiRevPNN1W9enWtWLFCderUkSQ5Oztr9+7dmj9/vs6cOaOAgAA98cQTGj9+vNzc3BwyRgAAgLvB4cFOkiIiIqx73K4XFxeXZ1737t3VvXv3fNt7eHho9erVhVkeAADAfcHhh2IBAABQOAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGAS90Swmz59uoKCguTu7q7mzZtr27ZtN23/xRdfqFatWnJ3d1fdunX1zTff2Cw3DEOjR49W+fLl5eHhoZCQEB04cKAohwAAAOBwDg92S5cuVWRkpKKjo7Vz507Vr19foaGhOnXqVL7tN2/erLCwMPXr108//PCDunTpoi5dumjPnj3WNpMmTdK0adM0c+ZMbd26VZ6engoNDdXFixfv1rAAAADuOocHuylTpqh///4KDw9XcHCwZs6cqeLFi2vOnDn5tv/ggw/Uvn17DR8+XLVr19b48ePVqFEjffjhh5Ku7q2bOnWqRo4cqc6dO6tevXpasGCBTpw4oRUrVtzFkQEAANxdDg12ly5dUkJCgkJCQqzznJycFBISovj4+HyfEx8fb9NekkJDQ63tExMTlZSUZNPG29tbzZs3v2GfAAAAZuDiyJWfPn1a2dnZ8vPzs5nv5+enffv25fucpKSkfNsnJSVZl+fOu1Gb62VlZSkrK8s6ffbsWUlSenq6HaPJX3bWhTvuA5AKZ3ssbGzfKAxs2zCzwti+c/swDOOWbR0a7O4VMTExGjt2bJ75lSpVckA1QP68//Gyo0sAigTbNsysMLfvc+fOydvb+6ZtHBrsypQpI2dnZyUnJ9vMT05Olr+/f77P8ff3v2n73P8mJyerfPnyNm0aNGiQb59RUVGKjIy0Tufk5CgtLU2lS5eWxWKxe1ywT3p6uipVqqSjR4+qZMmSji4HKDRs2zArtu27yzAMnTt3TgEBAbds69Bg5+rqqsaNGys2NlZdunSRdDVUxcbGKiIiIt/ntGzZUrGxsRoyZIh13po1a9SyZUtJUuXKleXv76/Y2FhrkEtPT9fWrVs1cODAfPt0c3OTm5ubzbxSpUrd0dhgv5IlS/IBAVNi24ZZsW3fPbfaU5fL4YdiIyMj1adPHzVp0kTNmjXT1KlTlZmZqfDwcElS7969VaFCBcXExEiS/va3v6lt27Z677339NRTT2nJkiXasWOHPvnkE0mSxWLRkCFD9Pbbb6t69eqqXLmyRo0apYCAAGt4BAAAMCOHB7uePXsqJSVFo0ePVlJSkho0aKBVq1ZZL344cuSInJz+uHi3VatWWrx4sUaOHKk333xT1atX14oVK1SnTh1rm9dff12ZmZkaMGCAzpw5o9atW2vVqlVyd3e/6+MDAAC4WyxGQS6xAIpQVlaWYmJiFBUVleeQOHA/Y9uGWbFt37sIdgAAACbh8F+eAAAAQOEg2AEAAJgEwQ4AAMAkCHZwmA0bNqhTp04KCAiQxWLRihUrHF0SUChiYmLUtGlTlShRQuXKlVOXLl20f/9+R5cF3LEZM2aoXr161vvXtWzZUt9++62jy8I1CHZwmMzMTNWvX1/Tp093dClAofr+++81ePBgbdmyRWvWrNHly5f1xBNPKDMz09GlAXekYsWKmjBhghISErRjxw49+uij6ty5s37++WdHl4b/4apY3BMsFouWL1/OTaRhSikpKSpXrpy+//57Pfzww44uByhUvr6+mjx5svr16+foUqB74AbFAGB2Z8+elXT1f4CAWWRnZ+uLL75QZmam9Wc94XgEOwAoQjk5ORoyZIgeeughm1/IAe5XP/30k1q2bKmLFy/Ky8tLy5cvV3BwsKPLwv8Q7ACgCA0ePFh79uzRxo0bHV0KUChq1qypXbt26ezZs/ryyy/Vp08fff/994S7ewTBDgCKSEREhP7v//5PGzZsUMWKFR1dDlAoXF1dVa1aNUlS48aNtX37dn3wwQf6+OOPHVwZJIIdABQ6wzD0yiuvaPny5YqLi1PlypUdXRJQZHJycpSVleXoMvA/BDs4TEZGhg4ePGidTkxM1K5du+Tr66sHHnjAgZUBd2bw4MFavHixVq5cqRIlSigpKUmS5O3tLQ8PDwdXB9y+qKgodejQQQ888IDOnTunxYsXKy4uTqtXr3Z0afgfbncCh4mLi9MjjzySZ36fPn00b968u18QUEgsFku+8+fOnau+ffve3WKAQtSvXz/Fxsbq5MmT8vb2Vr169TRixAg9/vjjji4N/0OwAwAAMAl+eQIAAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4A7nFjxoxRgwYNrNN9+/ZVly5dbru/w4cPy2KxaNeuXXdcG4B7C8EOwF2RkpKigQMH6oEHHpCbm5v8/f0VGhqqTZs2WdtYLBatWLHC7r6DgoI0derUwiv2BiwWi/Xh7e2thx56SOvWrSvy9Q4bNkyxsbFFvh4A9z+CHYC7olu3bvrhhx80f/58/fe//9W//vUvtWvXTqmpqY4uzS5z587VyZMntWnTJpUpU0YdO3bUr7/+elt9Xbp0qUDtvLy8VLp06dtaB4A/F4IdgCJ35swZ/ec//9HEiRP1yCOPKDAwUM2aNVNUVJSefvppSVf3uklS165dZbFYrNOHDh1S586d5efnJy8vLzVt2lRr16619t2uXTv99ttvGjp0qHVvmpT38KUkTZ061dqvJMXFxalZs2by9PRUqVKl9NBDD+m333676VhKlSolf39/1alTRzNmzNCFCxe0Zs0aSdKePXvUoUMHeXl5yc/PTy+88IJOnz5tU2tERISGDBmiMmXKKDQ0VHFxcbJYLIqNjVWTJk1UvHhxtWrVSvv377c+L7+xXGv79u0qW7asJk6cKElatWqVWrdurVKlSql06dLq2LGjDh06lOd5v/76qx555BEVL15c9evXV3x8vHVZamqqwsLCVKFCBRUvXlx169bVZ599ZvP8du3a6dVXX9Xrr78uX19f+fv7a8yYMTd9/QAULYIdgCLn5eUlLy8vrVixQllZWfm22b59u6Q/9ojlTmdkZOjJJ59UbGysfvjhB7Vv316dOnXSkSNHJEnLli1TxYoVNW7cOJ08eVInT54sUE1XrlxRly5d1LZtW+3evVvx8fEaMGCANRgWhIeHh6Sre97OnDmjRx99VA0bNtSOHTu0atUqJScnq0ePHjbPmT9/vlxdXbVp0ybNnDnTOv+tt97Se++9px07dsjFxUUvvvhigWpYt26dHn/8cb3zzjsaMWKEJCkzM1ORkZHasWOHYmNj5eTkpK5duyonJ8fmuW+99ZaGDRumXbt2qUaNGgoLC9OVK1ckSRcvXlTjxo3173//W3v27NGAAQP0wgsvaNu2bXnG4+npqa1bt2rSpEkaN26cNegCcAADAO6CL7/80vDx8THc3d2NVq1aGVFRUcaPP/5o00aSsXz58lv29eCDDxr/+Mc/rNOBgYHG+++/b9MmOjraqF+/vs28999/3wgMDDQMwzBSU1MNSUZcXFyBx3BtfZmZmcagQYMMZ2dn48cffzTGjx9vPPHEEzbtjx49akgy9u/fbxiGYbRt29Zo2LChTZv169cbkoy1a9da5/373/82JBkXLlzIdyx9+vQxOnfubCxbtszw8vIylixZctO6U1JSDEnGTz/9ZBiGYSQmJhqSjNmzZ1vb/Pzzz4YkY+/evTfs56mnnjJee+0163Tbtm2N1q1b27Rp2rSpMWLEiJvWA6DosMcOwF3RrVs3nThxQv/617/Uvn17xcXFqVGjRpo3b95Nn5eRkaFhw4apdu3aKlWqlLy8vLR3717rHrvb5evrq759+yo0NFSdOnXSBx98UKC9fWFhYfLy8lKJEiX01Vdf6dNPP1W9evX0448/av369da9k15eXqpVq5Yk2RwGbdy4cb791qtXz/rv8uXLS5JOnTp1wzq2bt2q7t2765///Kd69uxps+zAgQMKCwtTlSpVVLJkSevh5+tfs5utMzs7W+PHj1fdunXl6+srLy8vrV69+qZ95PZzs7oBFC2CHYC7xt3dXY8//rhGjRqlzZs3q2/fvoqOjr7pc4YNG6bly5fr73//u/7zn/9o165dqlu37i0vPHBycpJhGDbzLl++bDM9d+5cxcfHq1WrVlq6dKlq1KihLVu23LTf999/X7t27VJSUpKSkpLUp08fSVcDaKdOnbRr1y6bx4EDB/Twww9bn+/p6Zlvv8WKFbP+O/dw8PWHTq9VtWpV1apVS3PmzMkzrk6dOiktLU2zZs3S1q1btXXrVkl5L9a42TonT56sDz74QCNGjND69eu1a9cuhYaG3rSP3H5uVjeAokWwA+AwwcHByszMtE4XK1ZM2dnZNm02bdqkvn37qmvXrqpbt678/f11+PBhmzaurq55nle2bFklJSXZhLv87tvWsGFDRUVFafPmzapTp44WL15805r9/f1VrVo1lS1b1mZ+o0aN9PPPPysoKEjVqlWzedwozN2JMmXKaN26dTp48KB69OhhDXepqanav3+/Ro4cqccee0y1a9fW77//bnf/mzZtUufOnfX888+rfv36qlKliv773/8W9jAAFDKCHYAil5qaqkcffVQLFy7U7t27lZiYqC+++EKTJk1S586dre2CgoIUGxurpKQkaxipXr26li1bpl27dunHH3/UX/7ylzx7hIKCgrRhwwYdP37cehVqu3btlJKSokmTJunQoUOaPn26vv32W+tzEhMTFRUVpfj4eP3222/67rvvdODAAdWuXfu2xjh48GClpaUpLCxM27dv16FDh7R69WqFh4fnCZ2FpVy5clq3bp327dtnvfDBx8dHpUuX1ieffKKDBw9q3bp1ioyMtLvv6tWra82aNdq8ebP27t2rv/71r0pOTi6CUQAoTAQ7AEXOy8tLzZs31/vvv6+HH35YderU0ahRo9S/f399+OGH1nbvvfee1qxZo0qVKqlhw4aSpClTpsjHx0etWrVSp06dFBoaqkaNGtn0P27cOB0+fFhVq1a17kmrXbu2PvroI02fPl3169fXtm3bNGzYMOtzihcvrn379qlbt26qUaOGBgwYoMGDB+uvf/3rbY0xICBAmzZtUnZ2tp544gnVrVtXQ4YMUalSpeTkVHQftf7+/lq3bp1++uknPffcczIMQ0uWLFFCQoLq1KmjoUOHavLkyXb3O3LkSDVq1EihoaFq166d/P397+jXLgDcHRbj+pNQAAAAcF9ijx0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk/h/PslyzbBIRSMAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='marital_status', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pernikahan dengan Gagal Bayar')\n",
"plt.xlabel('Status Pernikahan')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Status pernikahan juga mempengaruhi tingkat kemungkinan untuk gagal membayar, pada grafik ditunjukkan untuk mereka yang menikah memiliki potensi tinggi untuk kemungkinan mengalami gagal membayar tagihan dibanding lainnya\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbRklEQVR4nO3deVxN+f8H8Ndtu6VNaJGl7IQsmQgNQyNb9i2GZDAog4bBoMSQZZAvDWMZywwjQ8PYMiSMbVD2sY4sY0m2oijq8/vDrzOue+PeFreO1/PxuI9H53PP8j7n3nt63c9ZrkIIIUBERERERZ6BvgsgIiIiovzBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYFcETJ48GQqFAvfv39d3KVSE9e/fH87Ozvouo9Bav349SpQogadPn+q7lEKjefPmqFWr1ntZ1oMHD2Bubo7t27fnaT4rV66EQqHAtWvX8qcwKhAKhQKTJ0/WdxmyxGCXT7J3JsePH9f4/PvcQX4IDhw4gDZt2qBMmTIwNTVF+fLl4ePjg7Vr10rjpKWlYfLkydi7d2+ul3Po0CFMnjwZjx8/znvROsp+T2U/TE1NUbVqVQQGBiIxMfG91yNnmZmZCAkJwfDhw2FhYSG1Z2RkYP78+ahXrx6srKxQvHhx1KxZE4MHD8aFCxcKtKa1a9ciPDy8QJdRmJQsWRIDBw7EpEmT9F1Kkfbnn3+iR48eKFOmDExMTGBtbY2GDRtiypQpRW6/ce3aNZV9oEKhgJWVFerWrYuFCxciMzNT3yUWSkb6LoBIV7/++it69uyJunXrYsSIEbCxsUFCQgL279+PpUuXonfv3gBeBbvQ0FAAr4J1bhw6dAihoaHo378/ihcvnk9roJspU6agQoUKeP78OQ4cOIBFixZh+/btOHv2LIoVK6aXmuRmy5YtuHjxIgYPHqzS3rVrV+zYsQO+vr4YNGgQXrx4gQsXLmDr1q1o3LgxqlevXmA1rV27FmfPnsXIkSMLbBmFzZAhQ/C///0Pe/bsQYsWLfRdTpETHByMqVOnomLFiujfvz8qVqyI58+fIy4uDnPmzMGqVavwzz//6LtMnfn6+qJt27YAgOTkZGzfvh3Dhw/H9evXMXv2bD1XV/gw2FGRM3nyZLi4uODIkSMwMTFRee7evXt6qqrgtGnTBg0aNAAADBw4ECVLlsTcuXOxefNm+Pr66rk6eVixYgWaNGmCMmXKSG3Hjh3D1q1bMW3aNHzzzTcq4y9cuFAvvbhylJWVhYyMDJiamqJGjRqoVasWVq5cyWCno8jISEydOhU9evTATz/9pLZvnDdvHubNm6en6vKmfv36+Oyzz6ThYcOGoWHDhli7dm2hDXZpaWl6++LNQ7F6kt3FvHLlSrXncjr34P79++jRowesrKxQsmRJjBgxAs+fP8/VPLPP27ty5YrUG2VtbQ1/f3+kpaWpTPvs2TN8+eWXKFWqFCwtLdGhQwfcunVLbZ7Xr1/HsGHDUK1aNZiZmaFkyZLo3r272rku2YcYDx48iKCgINja2sLc3BydO3dGUlLSO7fdP//8g48++khtxwUAdnZ20rawtbUFAISGhkrd+Nn1nj59WvpGa2pqCgcHBwwYMAAPHjxQ2UZjxowBAFSoUEGax7Vr13Ta1k+ePMHIkSPh7OwMpVIJOzs7fPrpp4iPj3/numqS/Q8vISFBavv555/h5uYGMzMzlChRAr169cLNmzffOp+9e/dCoVCoHarWtG79+/eHhYUFbt26hU6dOsHCwgK2trYYPXq02uGQ7777Do0bN0bJkiVhZmYGNzc3bNiwQW35u3btQtOmTVG8eHFYWFigWrVqKgEqIyMDwcHBcHNzg7W1NczNzeHp6YnY2FiN9X733XdYsmQJKlWqBKVSiY8++gjHjh176zYAgOfPnyM6OhpeXl4q7dk9G02aNFGbxtDQECVLllRpu3XrFgYMGAB7e3solUrUrFkTP/74o8o42ds8MjIS33zzDRwcHGBubo4OHTqovF7NmzfHtm3bcP36del99/r5kenp6QgJCUHlypWhVCpRrlw5fP3110hPT1dZnkKhQGBgIH799Ve4uLjAzMwMHh4eOHPmDADghx9+QOXKlWFqaormzZvneF5aXFwcGjduDDMzM1SoUAGLFy9WG0fXmtasWYOaNWtCqVQiOjpaev7TTz/Fli1bIITQWMvrzp07hxYtWsDMzAxly5bFt99+i6ysLI3j7tixA56enjA3N4elpSXatWuHc+fOqYyjy/v8wYMH6Nu3r3SI3s/PD6dOnVL77GizrwF02ydrEhwcjFKlSmH58uUa943W1tZq/1c2b96Mdu3awdHREUqlEpUqVcLUqVM1HuKMiIhAxYoVYWZmBnd3d/z5559o3ry5ytEQbT+zeaVQKGBvbw8jI9W+KW3WJyQkBMbGxhr/1wwePBjFixeX/q9qu32yT7WKi4vDxx9/jGLFiql9GXyf2GOXz5KTkzVe5PDixYs8z7tHjx5wdnZGWFgYjhw5gv/973949OgRVq9enad5VqhQAWFhYYiPj8eyZctgZ2eHmTNnSuP0798f69evR9++fdGoUSPs27cP7dq1U5vXsWPHcOjQIfTq1Qtly5bFtWvXsGjRIjRv3hx///232reX4cOHw8bGBiEhIbh27RrCw8MRGBiIyMjIt9bs5OSEmJgY/PvvvyhbtqzGcWxtbbFo0SIMHToUnTt3RpcuXQAArq6uAF6FiqtXr8Lf3x8ODg44d+4clixZgnPnzuHIkSNQKBTo0qULLl26hF9++QXz5s1DqVKlpHlrE0CzDRkyBBs2bEBgYCBcXFzw4MEDHDhwAOfPn0f9+vW1nk+27MCRHSymTZuGSZMmoUePHhg4cCCSkpKwYMECfPzxxzhx4kS+HULOzMyEt7c3GjZsiO+++w67d+/GnDlzUKlSJQwdOlQab/78+ejQoQP69OmDjIwMrFu3Dt27d8fWrVul9825c+fQvn17uLq6YsqUKVAqlbhy5QoOHjwozSclJQXLli2TDoM+efIEy5cvh7e3N44ePYq6deuq1Ld27Vo8efIEX3zxBRQKBWbNmoUuXbrg6tWrMDY2znG94uLikJGRofZaODk5AQDWrFmDJk2aqP0TeV1iYiIaNWokhRZbW1vs2LEDn3/+OVJSUtQOp06bNg0KhQJjx47FvXv3EB4eDi8vL5w8eRJmZmaYMGECkpOT8e+//0q9LNnn/mVlZaFDhw44cOAABg8ejBo1auDMmTOYN28eLl26hE2bNqks688//8Tvv/+OgIAAAEBYWBjat2+Pr7/+Gt9//z2GDRuGR48eYdasWRgwYAD27NmjMv2jR4/Qtm1b9OjRA76+vli/fj2GDh0KExMTDBgwIFc17dmzB+vXr0dgYCBKlSqlElrd3Nwwb948nDt37q3nJd+9exeffPIJXr58iXHjxsHc3BxLliyBmZmZ2rg//fQT/Pz84O3tjZkzZyItLQ2LFi1C06ZNceLECZXla/M+z8rKgo+PD44ePYqhQ4eievXq2Lx5M/z8/NSWrc2+5nXa7JPfdOnSJVy6dAkDBw5UOUf0XVauXAkLCwsEBQXBwsICe/bsQXBwMFJSUlR6whYtWoTAwEB4enpi1KhRuHbtGjp16gQbGxuVfbCun1ltpaWlSf9XU1JSsGPHDkRHR2P8+PE6r0/fvn0xZcoUREZGIjAwUJo2IyMDGzZsQNeuXWFqaqrT9gFeBf02bdqgV69e+Oyzz2Bvb5+rdc0XgvLFihUrBIC3PmrWrCmNn5CQIACIFStWqM0LgAgJCZGGQ0JCBADRoUMHlfGGDRsmAIhTp07lep4DBgxQGa9z586iZMmS0nBcXJwAIEaOHKkyXv/+/dXmmZaWprbcw4cPCwBi9erVatvKy8tLZGVlSe2jRo0ShoaG4vHjx2rzed3y5csFAGFiYiI++eQTMWnSJPHnn3+KzMxMlfGSkpLUanxbrb/88osAIPbv3y+1zZ49WwAQCQkJKuPqsq2tra1FQEDAW9dJk+zttHv3bpGUlCRu3rwp1q1bJ0qWLCnMzMzEv//+K65duyYMDQ3FtGnTVKY9c+aMMDIyUmn38/MTTk5O0nBsbKwAIGJjY9+5bn5+fgKAmDJlisq49erVE25ubiptb27bjIwMUatWLdGiRQupbd68eQKASEpKynH9X758KdLT01XaHj16JOzt7VXet9n1lixZUjx8+FBq37x5swAgtmzZkuMyhBBi2bJlAoA4c+aMSntWVpZo1qyZACDs7e2Fr6+viIiIENevX1ebx+effy5Kly4t7t+/r9Leq1cvYW1tLW2T7G1epkwZkZKSIo23fv16AUDMnz9famvXrp3K65Xtp59+EgYGBuLPP/9UaV+8eLEAIA4ePCi1ARBKpVLl/fvDDz8IAMLBwUGlhvHjx6u917PXf86cOVJbenq6qFu3rrCzsxMZGRm5qsnAwECcO3dObd2EEOLQoUMCgIiMjNT4fLaRI0cKAOKvv/6S2u7duyesra1V1uPJkyeiePHiYtCgQSrT3717V1hbW6u0a/s+37hxowAgwsPDpbbMzEzRokULtc+OtvsabffJmmS/11+vR4hX7+GkpCSVx4sXL95a2xdffCGKFSsmnj9/LoR49XqXLFlSfPTRRyrTrly5UgAQzZo1k9q0/cwKob6f1CT7s63pMXToUJX/H9qujxBCeHh4iIYNG6qMFxUVpbY/1HZ+2Z+TxYsXv3V93hceis1nERER2LVrl9oju6coL7K/cWcbPnw4AOTp9gBDhgxRGfb09MSDBw+QkpICANIhkmHDhmlc9ute/6b84sULPHjwAJUrV0bx4sU1HnYcPHiwyrdVT09PZGZm4vr162+tecCAAYiOjkbz5s1x4MABTJ06FZ6enqhSpQoOHTr0jjVWr/X58+e4f/8+GjVqBAC5PkSak+LFi+Ovv/7C7du3czW9l5cXbG1tUa5cOfTq1QsWFhb47bffUKZMGURFRSErKws9evTA/fv3pYeDgwOqVKmS74dANL1frl69qtL2+rZ99OgRkpOT4enpqbJds3sRN2/enOOhM0NDQ+mQUlZWFh4+fIiXL1+iQYMGGl+jnj17wsbGRqU2AGr1vSn7kNjr0wKvDvfs3LkT3377LWxsbPDLL78gICAATk5O6Nmzp3SOnRACGzduhI+PD4QQKq+Dt7c3kpOT1ert168fLC0tpeFu3bqhdOnSWn2Wf/31V9SoUQPVq1dXWVb2Ifo3X/OWLVuq9Eg1bNgQwKsLQ16vIbv9ze1lZGSEL774Qho2MTHBF198gXv37iEuLi5XNTVr1gwuLi4a1y/7dXjX7Z22b9+ORo0awd3dXWqztbVFnz59VMbbtWsXHj9+DF9fX5XaDA0N0bBhQ42fkXe9z6Ojo2FsbIxBgwZJbQYGBmr7aED3fc279smaZD/3Zm9dcnIybG1tVR4nT57UWNuTJ09w//59eHp6Ii0tTbrq+/jx43jw4AEGDRqk0mvdp08ftc+Mrp9ZbQ0ePFj6X7px40YEBATghx9+QFBQkMp42qwP8Orz99dff6lcSLJmzRqUK1cOzZo103l+AKBUKuHv75/rdcxPPBSbz9zd3aUT3V9nY2OT5/vQValSRWW4UqVKMDAwyNP9msqXL68ynP1BffToEaysrHD9+nUYGBigQoUKKuNVrlxZbV7Pnj1DWFgYVqxYgVu3bqmcI5OcnKzTst/F29sb3t7eSEtLQ1xcHCIjI7F48WK0b98eFy5ckM61y8nDhw8RGhqKdevWqV1woanWvJg1axb8/PxQrlw5uLm5oW3btujXrx8qVqyo1fQRERGoWrUqjIyMYG9vj2rVqsHA4NV3ssuXL0MIofbeyPa2Q5C6MjU1lc5bzGZjY6P2em3duhXffvstTp48qXJ+1eshvmfPnli2bBkGDhyIcePGoWXLlujSpQu6desmrRsArFq1CnPmzMGFCxdUTmd48/0I5O39BEDjOV1KpRITJkzAhAkTcOfOHezbtw/z58/H+vXrYWxsjJ9//hlJSUl4/PgxlixZgiVLlmic95vvsTdfL4VCgcqVK2v1Wb58+TLOnz+v9lrktKw3t4u1tTUAoFy5chrb39xejo6OMDc3V2mrWrUqgFfnNzZq1EjnmjS9ftmyX4c3D1G+6fr161IYfV21atVUhi9fvgwAOV6MYWVlpTKszfv8+vXrKF26tNrpJZr2i7rua961T9YkO6C/eQ9GCwsL7Nq1CwDwxx9/qB0+PHfuHCZOnIg9e/aoBcfs2rK/aL+5bkZGRhrvi6nLZ1ZbVapUUTkHtkuXLlAoFAgPD8eAAQNQu3ZtrdcHeLX/GTlyJNasWYPg4GAkJydj69atGDVqlMr7Ttv5AZBuL1MYMNjpSU47LV3uy/PmPHIzT0NDQ43tmv7Jvcvw4cOxYsUKjBw5Eh4eHrC2toZCoUCvXr009srkx7KLFSsGT09PeHp6olSpUggNDcWOHTs0nuvyuh49euDQoUMYM2YM6tatCwsLC2RlZaF169Y59iC9Tpdt3aNHD3h6euK3336Tdq4zZ85EVFQU2rRp885l5fRlAXj1rVihUGDHjh0at+fbzrfR9f2S0+v1uj///BMdOnTAxx9/jO+//x6lS5eGsbExVqxYoXKPQTMzM+zfvx+xsbHYtm0boqOjERkZiRYtWuCPP/6AoaEhfv75Z/Tv3x+dOnXCmDFjYGdnB0NDQ4SFhWm8ZUNu30/Z5yo+evQox3M2AaB06dLo1asXunbtipo1a2L9+vVYuXKl9H757LPPcnzf5UePfbasrCzUrl0bc+fO1fj8m4Etp+2Sn599XWvSdB5ctuwAlX1Oa15lvz4//fQTHBwc1J5/89xJbd7nutB1X5Ob1yX7tjtnz55VaTcyMpIC0b///qvy3OPHj9GsWTNYWVlhypQpqFSpEkxNTREfH4+xY8dqtR98k66f2bxo2bIlFi5ciP3796N27do6rY+NjQ3at28vBbsNGzYgPT1d5cpbXbfP297T7xuDnZ5kfwt785YJbzsMefnyZZVvPVeuXEFWVpb0rSk383wXJycnZGVlISEhQaWX4cqVK2rjbtiwAX5+fpgzZ47U9vz58/d2W4js8HPnzh0AOQeXR48eISYmBqGhoQgODpbas7/Zvy6neei6rUuXLo1hw4Zh2LBhuHfvHurXr49p06ZpFezeplKlShBCoEKFClIvirYK4v2yceNGmJqaYufOnVAqlVL7ihUr1MY1MDBAy5Yt0bJlS8ydOxfTp0/HhAkTEBsbCy8vL2zYsAEVK1ZEVFSUyusQEhKS6/o0yf6nmJCQIH3zfxtjY2O4urri8uXLuH//PmxtbWFpaYnMzEy1K2tz8uZ7TQiBK1euqATAnN57lSpVwqlTp9CyZct39mrlh9u3byM1NVWl1+7SpUsAIO178rOm7Ku9a9So8dbxnJycNH5mL168qDJcqVIlAK+umNf29XkXJycnxMbGqt3S4s39oi77mryoVq0aqlSpgk2bNiE8PFyth1WTvXv34sGDB4iKisLHH38stb9+tT3w30VEV65cwSeffCK1v3z5EteuXVN5z76vz2z28oH/eim1XZ9s/fr1Q8eOHXHs2DGsWbMG9erVQ82aNaXndZ1fYcJz7PTEysoKpUqVwv79+1Xav//++xyniYiIUBlesGABAEjhIDfzfBdvb2+N88he9usMDQ3VvlUuWLAg3+8OHhMTo7E9+/yk7EMx2TvcN4NL9jfiN2vVdJf/7B3km/PQdltnZmaqddnb2dnB0dFR7TYQudGlSxcYGhoiNDRUbX2EEGq3VHidk5MTDA0N8/X9YmhoCIVCofKaX7t2Te2qyIcPH6pNm33FXPZ20fQ6/fXXXzh8+HCu69PEzc0NJiYmar8ac/nyZdy4cUNt/MePH+Pw4cOwsbGBra0tDA0N0bVrV2zcuFGtxwSAxiuoV69ejSdPnkjDGzZswJ07d1SCvrm5ucZDdT169MCtW7ewdOlSteeePXuG1NTUt6+wjl6+fIkffvhBGs7IyMAPP/wAW1tbuLm55XtNcXFxsLa2Vvknq0nbtm1x5MgRHD16VGpLSkrCmjVrVMbz9vaGlZUVpk+frvHuBLpc4f76PF+8eKGyvllZWWr7aF32NXk1efJk3L9/X7qR9pverEFTbRkZGWqf/wYNGqBkyZJYunSpFKaAV+ekvXnY/n19ZoFXNxUHgDp16uS4bE3rk61NmzYoVaoUZs6ciX379qn01uVmfoUJe+z0aODAgZgxYwYGDhyIBg0aYP/+/dI3YU0SEhLQoUMHtG7dGocPH8bPP/+M3r17S2/s3MzzXdzc3NC1a1eEh4fjwYMH0u1Osuf5+rey9u3b46effoK1tTVcXFxw+PBh7N69W+1+X3nVsWNHVKhQAT4+PqhUqRJSU1Oxe/dubNmyBR999BF8fHwAvOoad3FxQWRkJKpWrYoSJUqgVq1aqFWrFj7++GPMmjULL168QJkyZfDHH39o/CaW/Y9rwoQJ6NWrF4yNjeHj4wNzc3OttvWTJ09QtmxZdOvWDXXq1IGFhQV2796NY8eOqfRs5lalSpXw7bffYvz48dItCCwtLZGQkIDffvsNgwcPxujRozVOa21tje7du2PBggVQKBSoVKkStm7dmqebPLdr1w5z585F69at0bt3b9y7dw8RERGoXLkyTp8+LY03ZcoU7N+/H+3atYOTkxPu3buH77//HmXLlkXTpk0BvHo/RUVFoXPnzmjXrh0SEhKwePFiuLi45OvvuZqamqJVq1bYvXs3pkyZIrWfOnUKvXv3Rps2beDp6YkSJUrg1q1bWLVqFW7fvo3w8HBp5z9jxgzExsaiYcOGGDRoEFxcXPDw4UPEx8dj9+7dakG2RIkSaNq0Kfz9/ZGYmIjw8HBUrlxZ5WR8Nzc3REZGIigoCB999BEsLCzg4+ODvn37Yv369RgyZAhiY2PRpEkTZGZm4sKFC1i/fj127tyZ46H73HB0dMTMmTNx7do1VK1aFZGRkTh58iSWLFkincOZnzXt2rULPj4+7+z5+/rrr/HTTz+hdevWGDFihHS7EycnJ5X3mpWVFRYtWoS+ffuifv366NWrF2xtbXHjxg1s27YNTZo0wcKFC3XaJp06dYK7uzu++uorXLlyBdWrV8fvv/8uvc7ZtVtZWWm9r8mr3r174+zZswgLC8PRo0fRq1cvVKhQAampqTh79ix++eUXWFpaSj31jRs3ho2NDfz8/PDll19CoVDgp59+UguAJiYmmDx5MoYPH44WLVqgR48euHbtGlauXIlKlSqp/Q8oiM9sfHw8fv75ZwCv9qkxMTHYuHEjGjdujFatWum0PtmMjY3Rq1cvLFy4EIaGhmo3e9d1foXKe7r6Vvayb01x7Ngxjc83a9ZM5XYnQry6lPrzzz8X1tbWwtLSUvTo0UPcu3cvx1uT/P3336Jbt27C0tJS2NjYiMDAQPHs2bM8zfPN201kr8frtzxITU0VAQEBokSJEsLCwkJ06tRJXLx4UQAQM2bMkMZ79OiR8Pf3F6VKlRIWFhbC29tbXLhwQTg5OQk/P793bqucbr/xpl9++UX06tVLVKpUSZiZmQlTU1Ph4uIiJkyYoHL7BiFe3TrBzc1NmJiYqGyDf//9V3Tu3FkUL15cWFtbi+7du4vbt29rvAR/6tSpokyZMsLAwEBl22izrdPT08WYMWNEnTp1hKWlpTA3Nxd16tQR33///VvX8W3bSZONGzeKpk2bCnNzc2Fubi6qV68uAgICxMWLF6Vx3rzdiRCvbgnTtWtXUaxYMWFjYyO++OILcfbsWY23OzE3N1dbbvb76HXLly8XVapUEUqlUlSvXl2sWLFCbbyYmBjRsWNH4ejoKExMTISjo6Pw9fUVly5dksbJysoS06dPF05OTkKpVIp69eqJrVu3qq1H9i0RZs+erVafptdTk6ioKKFQKMSNGzektsTERDFjxgzRrFkzUbp0aWFkZCRsbGxEixYtxIYNG9TmkZiYKAICAkS5cuWEsbGxcHBwEC1bthRLliyRxsl+j//yyy9i/Pjxws7OTpiZmYl27dqp3Ubl6dOnonfv3qJ48eICgMo6Z2RkiJkzZ4qaNWsKpVIpbGxshJubmwgNDRXJyckq6//mrXZy2l7Ztf36669SW/Z+6/jx48LDw0OYmpoKJycnsXDhQrX1z0tN2c6fPy/d4kcbp0+fFs2aNROmpqaiTJkyYurUqdLtkN68RVFsbKzw9vYW1tbWwtTUVFSqVEn0799fHD9+XBpHl/d5UlKS6N27t7C0tBTW1taif//+4uDBgwKAWLdunTSetvsaXfbJb7N3717RrVs3Ubp0aWFsbCysrKxEgwYNREhIiLhz547KuAcPHhSNGjUSZmZmwtHRUXz99ddi586dGvfD//vf/6TPoru7uzh48KBwc3MTrVu3lsbR9jMrRO5vd2JkZCQqVqwoxowZI548eZLr9RFCiKNHjwoAolWrVhqXr+38NP1/1yeFEEUhflJhc/LkSdSrVw8///yz2u0FiIqazMxMuLi4oEePHpg6dWqBLWfv3r345JNP8Ouvv6Jbt24FtpyiauTIkdi/fz/i4uLey/mD+W3Tpk3o3LkzDhw4oPEXS+QkKysLtra26NKli8ZD8EXBqVOnULduXaxevRp9+/bVdzn5hufY0Ts9e/ZMrS08PBwGBgYqJ5USFVWGhoaYMmUKIiIi8vUwL2nvwYMHWLZsGb799tsiEere3C9mZmZiwYIFsLKyytUvyhRmz58/VzsEuXr1ajx8+FDlJ8WKmqVLl8LCwkL6ZSK54Dl29E6zZs1CXFwcPvnkExgZGWHHjh3YsWMHBg8erHYbA6KiqmfPnujZs6e+y/hglSxZskiF6uHDh+PZs2fw8PBAeno6oqKicOjQIUyfPr1Q3foiPxw5cgSjRo1C9+7dUbJkScTHx2P58uWoVasWunfvru/ydLZlyxb8/fffWLJkCQIDA7W6irgoYbCjd2rcuDF27dqFqVOn4unTpyhfvjwmT56MCRMm6Ls0IiK9aNGiBebMmYOtW7fi+fPnqFy5MhYsWKDy+6Ny4ezsjHLlyuF///sfHj58iBIlSqBfv36YMWNGobkpry6GDx+OxMREtG3bFqGhofouJ9/xHDsiIiIimeA5dkREREQywWBHREREJBMf3Dl2WVlZuH37NiwtLYvElVdERET0YRNC4MmTJ3B0dISBwdv75D64YHf79m1eyUlERERFzs2bN1G2bNm3jvPBBTtLS0sArzaOlZWVnqshIiIieruUlBSUK1dOyjBv88EFu9d/w4/BjoiIiIoKbU4h48UTRERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDKh12C3f/9++Pj4wNHREQqFAps2bXrnNHv37kX9+vWhVCpRuXJlrFy5ssDrJCIiIioK9BrsUlNTUadOHURERGg1fkJCAtq1a4dPPvkEJ0+exMiRIzFw4EDs3LmzgCslIiIiKvyM9LnwNm3aoE2bNlqPv3jxYlSoUAFz5swBANSoUQMHDhzAvHnz4O3tXVBlEhERERUJReocu8OHD8PLy0ulzdvbG4cPH9ZTRURErwgh8PTpU+khhNB3SURUwArj516vPXa6unv3Luzt7VXa7O3tkZKSgmfPnsHMzExtmvT0dKSnp0vDKSkpBV4nEX14UlNT0bFjR2l48+bNsLCw0GNFRFTQCuPnvkgFu9wICwtDaGiovssgIiIqstzGrNZ3Ce8UN7ufvksoFIrUoVgHBwckJiaqtCUmJsLKykpjbx0AjB8/HsnJydLj5s2b76NUIiIioveuSPXYeXh4YPv27Sptu3btgoeHR47TKJVKKJXKgi6NiIiISO/02mP39OlTnDx5EidPngTw6nYmJ0+exI0bNwC86m3r1++/rtUhQ4bg6tWr+Prrr3HhwgV8//33WL9+PUaNGqWP8omIiIgKFb0Gu+PHj6NevXqoV68eACAoKAj16tVDcHAwAODOnTtSyAOAChUqYNu2bdi1axfq1KmDOXPmYNmyZbzVCRERERH0fCi2efPmb700WNOvSjRv3hwnTpwowKqIiIiIiqYidfEEEREREeWMwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJoz0XQARkb64jVmdb/NSvMyA9WvDzSetgzAyyfN842b3y/M8iOjDwR47IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIpngb8USEZFECIHU1FRp2NzcHAqFQo8VEZEuGOyIiEiSmpqKjh07SsObN2+GhYWFHisiIl3wUCwRERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREcmE3oNdREQEnJ2dYWpqioYNG+Lo0aNvHT88PBzVqlWDmZkZypUrh1GjRuH58+fvqVoiIiKiwkuvwS4yMhJBQUEICQlBfHw86tSpA29vb9y7d0/j+GvXrsW4ceMQEhKC8+fPY/ny5YiMjMQ333zznisnIiIiKnz0Guzmzp2LQYMGwd/fHy4uLli8eDGKFSuGH3/8UeP4hw4dQpMmTdC7d284OzujVatW8PX1fWcvHxEREdGHQG/BLiMjA3FxcfDy8vqvGAMDeHl54fDhwxqnady4MeLi4qQgd/XqVWzfvh1t27Z9LzUTERERFWZG+lrw/fv3kZmZCXt7e5V2e3t7XLhwQeM0vXv3xv3799G0aVMIIfDy5UsMGTLkrYdi09PTkZ6eLg2npKTkzwoQERERFTJ6v3hCF3v37sX06dPx/fffIz4+HlFRUdi2bRumTp2a4zRhYWGwtraWHuXKlXuPFRMRERG9P3rrsStVqhQMDQ2RmJio0p6YmAgHBweN00yaNAl9+/bFwIEDAQC1a9dGamoqBg8ejAkTJsDAQD2njh8/HkFBQdJwSkoKwx1RISGEQGpqqjRsbm4OhUKhx4qIiIo2vfXYmZiYwM3NDTExMVJbVlYWYmJi4OHhoXGatLQ0tfBmaGgI4NU/CE2USiWsrKxUHkRUOKSmpqJjx47S4/WQR0REutNbjx0ABAUFwc/PDw0aNIC7uzvCw8ORmpoKf39/AEC/fv1QpkwZhIWFAQB8fHwwd+5c1KtXDw0bNsSVK1cwadIk+Pj4SAGPiIiI6EOl12DXs2dPJCUlITg4GHfv3kXdunURHR0tXVBx48YNlR66iRMnQqFQYOLEibh16xZsbW3h4+ODadOm6WsViIiIiAoNvQY7AAgMDERgYKDG5/bu3asybGRkhJCQEISEhLyHyoiIiIiKliJ1VSwRERER5YzBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZELvvxVLRCQHwtAYya6+KsNERO8bgx0RUX5QKCCMTPRdBRF94HgoloiIiEgmGOyIiIiIZILBjoiIiEgmGOyIiIiIZIIXTxCRztzGrM6X+SheZsD6teHmk9blywUIcbP75XkeRERFEXvsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGTCSN8FENGHSxgaI9nVV2WYiIhyj8GOiPRHoYAwMtF3FUREssFDsUREREQywWBHREREJBM8FEtEREQfDLcxq/NtXoqXGbB+bbj5pHX5cnpJ3Ox+uZ6WPXZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMsFgR0RERCQTDHZEREREMqFTsHvx4gWMjIxw9uzZgqqHiIiIiHJJp2BnbGyM8uXLIzMzs6DqISIiIqJc0vlQ7IQJE/DNN9/g4cOHBVEPEREREeWSka4TLFy4EFeuXIGjoyOcnJxgbm6u8nx8fHy+FUdERERE2tM52HXq1KkAyiAiIiKivNI52IWEhBREHURERESUR7zdCREREZFM6Nxjl5mZiXnz5mH9+vW4ceMGMjIyVJ7nRRVERERE+qFzj11oaCjmzp2Lnj17Ijk5GUFBQejSpQsMDAwwefLkAiiRiIiIiLShc7Bbs2YNli5diq+++gpGRkbw9fXFsmXLEBwcjCNHjhREjURERESkBZ2D3d27d1G7dm0AgIWFBZKTkwEA7du3x7Zt23QuICIiAs7OzjA1NUXDhg1x9OjRt47/+PFjBAQEoHTp0lAqlahatSq2b9+u83KJiIiI5EbnYFe2bFncuXMHAFCpUiX88ccfAIBjx45BqVTqNK/IyEgEBQUhJCQE8fHxqFOnDry9vXHv3j2N42dkZODTTz/FtWvXsGHDBly8eBFLly5FmTJldF0NIiIiItnR+eKJzp07IyYmBg0bNsTw4cPx2WefYfny5bhx4wZGjRql07zmzp2LQYMGwd/fHwCwePFibNu2DT/++CPGjRunNv6PP/6Ihw8f4tChQzA2NgYAODs767oKRERERLKkc7CbMWOG9HfPnj3h5OSEQ4cOoUqVKvDx8dF6PhkZGYiLi8P48eOlNgMDA3h5eeHw4cMap/n999/h4eGBgIAAbN68Gba2tujduzfGjh0LQ0NDjdOkp6cjPT1dGk5JSdG6RiIiIqKiROdgl5qaqvIzYo0aNUKjRo10XvD9+/eRmZkJe3t7lXZ7e3tcuHBB4zRXr17Fnj170KdPH2zfvh1XrlzBsGHD8OLFixxvnBwWFobQ0FCd6yMiIiIqanQ+x87e3h4DBgzAgQMHCqKet8rKyoKdnR2WLFkCNzc39OzZExMmTMDixYtznGb8+PFITk6WHjdv3nyPFRMRERG9PzoHu59//hkPHz5EixYtULVqVcyYMQO3b9/WecGlSpWCoaEhEhMTVdoTExPh4OCgcZrSpUujatWqKodda9Sogbt376rdKDmbUqmElZWVyoOIiIhIjnQOdp06dcKmTZtw69YtDBkyBGvXroWTkxPat2+PqKgovHz5Uqv5mJiYwM3NDTExMVJbVlYWYmJi4OHhoXGaJk2a4MqVK8jKypLaLl26hNKlS8PExETXVSEiIiKSlVz/VqytrS2CgoJw+vRpzJ07F7t370a3bt3g6OiI4OBgpKWlvXMeQUFBWLp0KVatWoXz589j6NChSE1Nla6S7devn8rFFUOHDsXDhw8xYsQIXLp0Cdu2bcP06dMREBCQ29UgIiIikg2dL57IlpiYiFWrVmHlypW4fv06unXrhs8//xz//vsvZs6ciSNHjkj3uMtJz549kZSUhODgYNy9exd169ZFdHS0dEHFjRs3YGDwX/YsV64cdu7ciVGjRsHV1RVlypTBiBEjMHbs2NyuBhEREZFs6BzsoqKisGLFCuzcuRMuLi4YNmwYPvvsMxQvXlwap3HjxqhRo4ZW8wsMDERgYKDG5/bu3avW5uHhwZ8uIyIiItJA52Dn7++PXr164eDBg/joo480juPo6IgJEybkuTgiIiIi0p7Owe7OnTsoVqzYW8cxMzPL8b5yRERERFQwdA52r4e658+fq91mhLcTISIiItIPna+KTU1NRWBgIOzs7GBubg4bGxuVBxERERHph849dl9//TViY2OxaNEi9O3bFxEREbh16xZ++OEHld+RJSKi98dtzOp8mY/iZQasXxtuPmkdhFH+3Cc0bna/fJkPEeVM52C3ZcsWrF69Gs2bN4e/vz88PT1RuXJlODk5Yc2aNejTp09B1ElERERE76DzodiHDx+iYsWKAF6dT/fw4UMAQNOmTbF///78rY6IiIiItKZzsKtYsSISEhIAANWrV8f69esBvOrJe/1edkRERET0fukc7Pz9/XHq1CkAwLhx4xAREQFTU1OMGjUKY8aMyfcCiYiIiEg7Op9jN2rUKOlvLy8vXLhwAXFxcahcuTJcXV3ztTgiIiIi0l6ufys2m5OTE5ycnPKjFiIiIiLKA50OxT558gRxcXF4+vQpACA+Ph79+vVD9+7dsWbNmgIpkIiIiIi0o3WP3f79+9G+fXs8ffoUNjY2+OWXX9CtWzeUKVMGhoaGiIqKQlpaGgYNGlSQ9RIRERFRDrTusZs4cSK6d++OmzdvYuTIkejZsycCAwNx/vx5nD17FqGhoYiIiCjIWomIiIjoLbQOdqdPn8aYMWNQpkwZjB07FikpKejZs6f0fK9evfDPP/8USJFERERE9G5aB7uUlBSUKFECAGBiYoJixYrB0tJSet7S0hJpaWn5XyERERERaUXrYKdQKKBQKHIcJiIiIiL90vriCSEEWrZsCSOjV5OkpaXBx8cHJiavfhz65cuXBVMhEREREWlF62AXEhKiMtyxY0e1cbp27Zr3ioiIiIgoV3Id7IiIiIiocNH5t2KJiIiIqHBisCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIpnQ6qrY//3vf1rP8Msvv8x1MURERESUe1oFu3nz5mk1M4VCwWBHREREpCdaBbuEhISCroOIiIiI8ojn2BERERHJhNa/PPG6f//9F7///jtu3LiBjIwMlefmzp2bL4URERERkW50DnYxMTHo0KEDKlasiAsXLqBWrVq4du0ahBCoX79+QdRIRERERFrQ+VDs+PHjMXr0aJw5cwampqbYuHEjbt68iWbNmqF79+4FUSMRERERaUHnYHf+/Hn069cPAGBkZIRnz57BwsICU6ZMwcyZM/O9QCIiIiLSjs7BztzcXDqvrnTp0vjnn3+k5+7fv59/lRERERGRTnQ+x65Ro0Y4cOAAatSogbZt2+Krr77CmTNnEBUVhUaNGhVEjURERESkBZ2D3dy5c/H06VMAQGhoKJ4+fYrIyEhUqVKFV8QSERER6ZHOwa5ixYrS3+bm5li8eHG+FkREREREucMbFBMRERHJhM49djY2NlAoFGrtCoUCpqamqFy5Mvr37w9/f/98KZCIiIiItKNzsAsODsa0adPQpk0buLu7AwCOHj2K6OhoBAQEICEhAUOHDsXLly8xaNCgfC+YiIiIiDTTOdgdOHAA3377LYYMGaLS/sMPP+CPP/7Axo0b4erqiv/9738MdkRERETvkc7n2O3cuRNeXl5q7S1btsTOnTsBAG3btsXVq1fzXh0RERERaU3nYFeiRAls2bJFrX3Lli0oUaIEACA1NRWWlpZ5r46IiIiItKbzodhJkyZh6NChiI2Nlc6xO3bsGLZv3y7d+mTXrl1o1qxZ/lZKRERERG+lc7AbNGgQXFxcsHDhQkRFRQEAqlWrhn379qFx48YAgK+++ip/qyQiIiKid9I52AFAkyZN0KRJk/yuhYiIiIjyIFfBLtvz58+RkZGh0mZlZZWngoiIiIgod3S+eCItLQ2BgYGws7ODubk5bGxsVB5EREREpB86B7sxY8Zgz549WLRoEZRKJZYtW4bQ0FA4Ojpi9erVBVEjEREREWlB50OxW7ZswerVq9G8eXP4+/vD09MTlStXhpOTE9asWYM+ffoURJ1ERERE9A4699g9fPgQFStWBPDqfLqHDx8CAJo2bYr9+/fnb3VEREREpDWdg13FihWRkJAAAKhevTrWr18P4FVPXvHixfO1OCIiIiLSns7Bzt/fH6dOnQIAjBs3DhERETA1NcWoUaMwZsyYfC+QiIiIiLSj8zl2o0aNkv728vLChQsXEBcXh8qVK8PV1TVfiyMiIiIi7eXpPnYA4OTkBCcnp/yohYiIiIjyQOtg9+zZM8TExKB9+/YAgPHjxyM9PV163tDQEFOnToWpqWn+V0lERERE76R1sFu1ahW2bdsmBbuFCxeiZs2aMDMzAwBcuHABjo6OKodqiYiIiOj90friiTVr1mDw4MEqbWvXrkVsbCxiY2Mxe/Zs6QpZIiIiInr/tA52V65cQe3ataVhU1NTGBj8N7m7uzv+/vvv/K2OiIiIiLSm9aHYx48fq5xTl5SUpPJ8VlaWyvNERERE9H5p3WNXtmxZnD17NsfnT58+jbJly+ZLUURERESkO62DXdu2bREcHIznz5+rPffs2TOEhoaiXbt2+VocEREREWlP62D3zTff4OHDh6hWrRpmz56NzZs3Y/PmzZg1axaqVauGR48e4ZtvvslVEREREXB2doapqSkaNmyIo0ePajXdunXroFAo0KlTp1wtl4iIiEhOtD7Hzt7eHocOHcLQoUMxbtw4CCEAAAqFAp9++im+//572Nvb61xAZGQkgoKCsHjxYjRs2BDh4eHw9vbGxYsXYWdnl+N0165dw+jRo+Hp6anzMomIiIjkSKffiq1QoQKio6ORlJSEI0eO4MiRI0hKSkJ0dDQqVqyYqwLmzp2LQYMGwd/fHy4uLli8eDGKFSuGH3/8McdpMjMz0adPH4SGhuZ6uURERERyo1Owy1aiRAm4u7vD3d0dJUqUyPXCMzIyEBcXBy8vr/8KMjCAl5cXDh8+nON0U6ZMgZ2dHT7//PN3LiM9PR0pKSkqDyIiIiI5ylWwyy/3799HZmam2iFce3t73L17V+M0Bw4cwPLly7F06VKtlhEWFgZra2vpUa5cuTzXTURERFQY6TXY6erJkyfo27cvli5dilKlSmk1zfjx45GcnCw9bt68WcBVEhEREemH1hdPFIRSpUrB0NAQiYmJKu2JiYlwcHBQG/+ff/7BtWvX4OPjI7VlZWUBAIyMjHDx4kVUqlRJZRqlUgmlUlkA1RMREREVLnrtsTMxMYGbmxtiYmKktqysLMTExMDDw0Nt/OrVq+PMmTM4efKk9OjQoQM++eQTnDx5kodZiYiI6IOm1x47AAgKCoKfnx8aNGgAd3d3hIeHIzU1Ff7+/gCAfv36oUyZMggLC4OpqSlq1aqlMn3x4sUBQK2diIiI6EOj92DXs2dPJCUlITg4GHfv3kXdunURHR0tXVBx48YNGBgUqVMBiYiIiPRC78EOAAIDAxEYGKjxub1797512pUrV+Z/QURERERFELvCiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJhjsiIiIiGSCwY6IiIhIJgrF7U6ISHtCCKSmpkrD5ubmUCgUeqyIiIgKCwY7oiImNTUVHTt2lIY3b94MCwsLPVZERESFBQ/FEhEREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTDDYEREREckEgx0RERGRTBjpuwCiD4XbmNX5Mh/FywxYvzbcfNI6CCOTPM83bna/PM+DiIj0iz12RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkE/xJMSIikghDYyS7+qoME1HRwWBHRET/USjy5beHiUg/eCiWiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCZ4HzuiIoY3kCUiopww2BEVNbyBLBER5YCHYomIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCYKRbCLiIiAs7MzTE1N0bBhQxw9ejTHcZcuXQpPT0/Y2NjAxsYGXl5ebx2fiIiI6EOh92AXGRmJoKAghISEID4+HnXq1IG3tzfu3buncfy9e/fC19cXsbGxOHz4MMqVK4dWrVrh1q1b77lyIiIiosJF78Fu7ty5GDRoEPz9/eHi4oLFixejWLFi+PHHHzWOv2bNGgwbNgx169ZF9erVsWzZMmRlZSEmJuY9V05ERERUuOg12GVkZCAuLg5eXl5Sm4GBAby8vHD48GGt5pGWloYXL16gRIkSBVUmERERUZFgpM+F379/H5mZmbC3t1dpt7e3x4ULF7Sax9ixY+Ho6KgSDl+Xnp6O9PR0aTglJSX3BRMREREVYno/FJsXM2bMwLp16/Dbb7/B1NRU4zhhYWGwtraWHuXKlXvPVRIRERG9H3oNdqVKlYKhoSESExNV2hMTE+Hg4PDWab/77jvMmDEDf/zxB1xdXXMcb/z48UhOTpYeN2/ezJfaiYiIiAobvQY7ExMTuLm5qVz4kH0hhIeHR47TzZo1C1OnTkV0dDQaNGjw1mUolUpYWVmpPIiIiIjkSK/n2AFAUFAQ/Pz80KBBA7i7uyM8PBypqanw9/cHAPTr1w9lypRBWFgYAGDmzJkIDg7G2rVr4ezsjLt37wIALCwsYGFhobf1eJ0QAqmpqdKwubk5FAqFHisiIiKiD4Heg13Pnj2RlJSE4OBg3L17F3Xr1kV0dLR0QcWNGzdgYPBfx+KiRYuQkZGBbt26qcwnJCQEkydPfp+l5yg1NRUdO3aUhjdv3lxoQicRERHJl96DHQAEBgYiMDBQ43N79+5VGb527VrBF0RERERUBBXpq2KJiIiI6D8MdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQywWBHREREJBMMdkREREQyUSh+UowKJyEEUlNTpWFzc3MoFAo9VkRERERvw2BHOUpNTUXHjh2l4c2bN8PCwkKPFeUeQyoREX0IGOzogyCnkEpERJQTnmNHREREJBMMdkREREQywWBHREREJBM8x+7/uY1ZnW/zUrzMgPVrw80nrYMwMsnzfONm98vzPIiIiEi+2GNHREREJBMMdkREREQywUOxVKjl1yHygjo8DvAQORERFR7ssSMiIiKSCQY7IiIiIpngoVgZ4uFLIiKiDxN77IiIiIhkgsGOiIiISCYY7IiIiIhkgsGOiIiISCZ48QR9EIShMZJdfVWGiYiI5IbBjj4MCkW+XdFLRERUWPFQLBEREZFMMNgRERERyQSDHREREZFMMNgRERERyQQvnigAvAKTiIiI9IHBriDI5ApMBlQiIqKihcGOciaTgEpERPSh4Dl2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkEwx2RERERDLBYEdEREQkE4Ui2EVERMDZ2RmmpqZo2LAhjh49+tbxf/31V1SvXh2mpqaoXbs2tm/f/p4qJSIiIiq89B7sIiMjERQUhJCQEMTHx6NOnTrw9vbGvXv3NI5/6NAh+Pr64vPPP8eJEyfQqVMndOrUCWfPnn3PlRMREREVLnoPdnPnzsWgQYPg7+8PFxcXLF68GMWKFcOPP/6ocfz58+ejdevWGDNmDGrUqIGpU6eifv36WLhw4XuunIiIiKhw0Wuwy8jIQFxcHLy8vKQ2AwMDeHl54fDhwxqnOXz4sMr4AODt7Z3j+EREREQfCiN9Lvz+/fvIzMyEvb29Sru9vT0uXLigcZq7d+9qHP/u3bsax09PT0d6ero0nJycDABISUlRGS8z/ZnO9b9vb9acE67L+yWXddF2PQD5rEthXw/gw1wXKnzk9P7Kz3VRvMzAy5cvVeYtMjPzPN831yV7WAjx7omFHt26dUsAEIcOHVJpHzNmjHB3d9c4jbGxsVi7dq1KW0REhLCzs9M4fkhIiADABx988MEHH3zwUaQfN2/efGe20muPXalSpWBoaIjExESV9sTERDg4OGicxsHBQafxx48fj6CgIGk4KysLDx8+RMmSJaFQKPK4BjlLSUlBuXLlcPPmTVhZWRXYcgqaXNYD4LoUVlyXwkcu6wFwXQorrotuhBB48uQJHB0d3zmuXoOdiYkJ3NzcEBMTg06dOgF4FbxiYmIQGBiocRoPDw/ExMRg5MiRUtuuXbvg4eGhcXylUgmlUqnSVrx48fwoXytWVlZF/k0LyGc9AK5LYcV1KXzksh4A16Ww4rpoz9raWqvx9BrsACAoKAh+fn5o0KAB3N3dER4ejtTUVPj7+wMA+vXrhzJlyiAsLAwAMGLECDRr1gxz5sxBu3btsG7dOhw/fhxLlizR52oQERER6Z3eg13Pnj2RlJSE4OBg3L17F3Xr1kV0dLR0gcSNGzdgYPDfxbuNGzfG2rVrMXHiRHzzzTeoUqUKNm3ahFq1aulrFYiIiIgKBb0HOwAIDAzM8dDr3r171dq6d++O7t27F3BVeaNUKhESEqJ2GLiokct6AFyXworrUvjIZT0ArkthxXUpOAohtLl2loiIiIgKO73/8gQRERER5Q8GOyIiIiKZYLAjIiIikgkGu3z24sULjB07FrVr14a5uTkcHR3Rr18/3L59W9+l5UpUVBRatWol3dD55MmT+i4p1yIiIuDs7AxTU1M0bNgQR48e1XdJOtu/fz98fHzg6OgIhUKBTZs26bukXAkLC8NHH30ES0tL2NnZoVOnTrh48aK+y8qVRYsWwdXVVbqHlYeHB3bs2KHvsvLFjBkzoFAoVO4bWlRMnjwZCoVC5VG9enV9l5Vrt27dwmeffYaSJUvCzMwMtWvXxvHjx/Vdls6cnZ3VXheFQoGAgAB9l6aTzMxMTJo0CRUqVICZmRkqVaqEqVOnaveTXwWMwS6fpaWlIT4+HpMmTUJ8fDyioqJw8eJFdOjQQd+l5UpqaiqaNm2KmTNn6ruUPImMjERQUBBCQkIQHx+POnXqwNvbG/fu3dN3aTpJTU1FnTp1EBERoe9S8mTfvn0ICAjAkSNHsGvXLrx48QKtWrVCamqqvkvTWdmyZTFjxgzExcXh+PHjaNGiBTp27Ihz587pu7Q8OXbsGH744Qe4urrqu5Rcq1mzJu7cuSM9Dhw4oO+ScuXRo0do0qQJjI2NsWPHDvz999+YM2cObGxs9F2azo4dO6bymuzatQsACv2dLt40c+ZMLFq0CAsXLsT58+cxc+ZMzJo1CwsWLNB3adDrb8V+KI4ePSoAiOvXr+u7lFxLSEgQAMSJEyf0XUquuLu7i4CAAGk4MzNTODo6irCwMD1WlTcAxG+//abvMvLFvXv3BACxb98+fZeSL2xsbMSyZcv0XUauPXnyRFSpUkXs2rVLNGvWTIwYMULfJeksJCRE1KlTR99l5IuxY8eKpk2b6ruMAjFixAhRqVIlkZWVpe9SdNKuXTsxYMAAlbYuXbqIPn366Kmi/7DH7j1ITk6GQqF4rz9lRv/JyMhAXFwcvLy8pDYDAwN4eXnh8OHDeqyMsiUnJwMASpQooedK8iYzMxPr1q1Dampqjj9zWBQEBASgXbt2Kp+Zoujy5ctwdHRExYoV0adPH9y4cUPfJeXK77//jgYNGqB79+6ws7NDvXr1sHTpUn2XlWcZGRn4+eefMWDAgAL97faC0LhxY8TExODSpUsAgFOnTuHAgQNo06aNnisrJDcolrPnz59j7Nix8PX1lc3v4RU19+/fR2ZmpvRrJtns7e1x4cIFPVVF2bKysjBy5Eg0adKkyP6CzJkzZ+Dh4YHnz5/DwsICv/32G1xcXPRdVq6sW7cO8fHxOHbsmL5LyZOGDRti5cqVqFatGu7cuYPQ0FB4enri7NmzsLS01Hd5Orl69SoWLVqEoKAgfPPNNzh27Bi+/PJLmJiYwM/PT9/l5dqmTZvw+PFj9O/fX9+l6GzcuHFISUlB9erVYWhoiMzMTEybNg19+vTRd2k8xy6v1qxZAwsLC+nx559/Ss+9ePECPXr0gBACixYt0mOV2nnbuhAVlICAAJw9exbr1q3Tdym5Vq1aNZw8eRJ//fUXhg4dCj8/P/z999/6LktnN2/exIgRI7BmzRqYmprqu5w8adOmDbp37w5XV1d4e3tj+/btePz4MdavX6/v0nSWlZWF+vXrY/r06ahXrx4GDx6MQYMGYfHixfouLU+WL1+ONm3awNHRUd+l6Gz9+vVYs2YN1q5di/j4eKxatQrfffcdVq1ape/S2GOXVx06dEDDhg2l4TJlygD4L9Rdv34de/bsKRK9dTmtS1FXqlQpGBoaIjExUaU9MTERDg4OeqqKgFc/J7h161bs378fZcuW1Xc5uWZiYoLKlSsDANzc3HDs2DHMnz8fP/zwg54r001cXBzu3buH+vXrS22ZmZnYv38/Fi5ciPT0dBgaGuqxwtwrXrw4qlatiitXrui7FJ2VLl1arQe4Ro0a2Lhxo54qyrvr169j9+7diIqK0ncpuTJmzBiMGzcOvXr1AgDUrl0b169fR1hYmN57URns8sjS0lKtWz871F2+fBmxsbEoWbKknqrTjaZ1kQMTExO4ubkhJiYGnTp1AvDqG3BMTEyOv1FMBUsIgeHDh+O3337D3r17UaFCBX2XlK+ysrKQnp6u7zJ01rJlS5w5c0alzd/fH9WrV8fYsWOLbKgDgKdPn+Kff/5B37599V2Kzpo0aaJ2O6BLly7ByclJTxXl3YoVK2BnZ4d27drpu5RcSUtLg4GB6kFPQ0NDZGVl6ami/zDY5bMXL16gW7duiI+Px9atW5GZmYm7d+8CeHViuImJiZ4r1M3Dhw9x48YN6T582TsXBweHItXbFRQUBD8/PzRo0ADu7u4IDw9Hamoq/P399V2aTp4+farS45CQkICTJ0+iRIkSKF++vB4r001AQADWrl2LzZs3w9LSUvqMWFtbw8zMTM/V6Wb8+PFo06YNypcvjydPnmDt2rXYu3cvdu7cqe/SdGZpaal2nqO5uTlKlixZ5M5/HD16NHx8fODk5ITbt28jJCQEhoaG8PX11XdpOhs1ahQaN26M6dOno0ePHjh69CiWLFmCJUuW6Lu0XMnKysKKFSvg5+cHI6OiGUN8fHwwbdo0lC9fHjVr1sSJEycwd+5cDBgwQN+l8XYn+S37tiCaHrGxsfouT2crVqzQuC4hISH6Lk1nCxYsEOXLlxcmJibC3d1dHDlyRN8l6Sw2Nlbj6+Hn56fv0nSS02dkxYoV+i5NZwMGDBBOTk7CxMRE2NraipYtW4o//vhD32Xlm6J6u5OePXuK0qVLCxMTE1GmTBnRs2dPceXKFX2XlWtbtmwRtWrVEkqlUlSvXl0sWbJE3yXl2s6dOwUAcfHiRX2XkmspKSlixIgRonz58sLU1FRUrFhRTJgwQaSnp+u7NKEQohDcJpmIiIiI8oxXxRIRERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BERERHJBIMdERERkUww2BFRkdK8eXOMHDlS32W8NxcvXoSDgwOePHmi71IKVEG+ruPGjcPw4cMLZN5EhQ2DHVERkpSUhKFDh6J8+fJQKpVwcHCAt7c3Dh48KI2jUCiwadMmneft7OyM8PDw/Cs2BwqFQnpYW1ujSZMm2LNnT4Evt6gaP348hg8fDktLS6lt6dKlqFOnDiwsLFC8eHHUq1cPYWFh+brcvXv3QqFQ4PHjx/k6X30YPXo0Vq1ahatXr+q7FKICx2BHVIR07doVJ06cwKpVq3Dp0iX8/vvvaN68OR48eKDv0nSyYsUK3LlzBwcPHkSpUqXQvn17/tPV4MaNG9i6dSv69+8vtf34448YOXIkvvzyS5w8eRIHDx7E119/jadPn+qv0EIqMzMTWVlZKFWqFLy9vbFo0SJ9l0RU8PT9Y7VEpJ1Hjx4JAGLv3r05juPk5CQASA8nJychhBBXrlwRHTp0EHZ2dsLc3Fw0aNBA7Nq1S5quWbNmKtNl7xpCQkJEnTp1VJYxb948ab5CCBEbGys++ugjUaxYMWFtbS0aN24srl27lmONAMRvv/0mDd+6dUsAEIsXLxZCCHHmzBnRunVrYW5uLuzs7MRnn30mkpKSVGp9/Ufp35yfEEJYW1uLFStWCCGESEhIEADExo0bRfPmzYWZmZlwdXUVhw4dksa/f/++6NWrl3B0dBRmZmaiVq1aYu3atSrz/PXXX0WtWrWEqampKFGihGjZsqV4+vSpEEKIo0ePCi8vL1GyZElhZWUlPv74YxEXF6e23kuXLhWdOnUSZmZmonLlymLz5s05bichhJg9e7Zo0KCBSlvHjh1F//793zqdEEIsXbpUVK9eXSiVSlGtWjUREREhPZe9TX755Rfh4eEhlEqlqFmzpvTeyn7+9Yefn58QQojMzEwxffp04ezsLExNTYWrq6v49ddfpXnHxsYKACI6OlrUrVtXmJqaik8++UQkJiaK7du3i+rVqwtLS0vh6+srUlNTpemaNWsmAgICREBAgLCyshIlS5YUEydOFFlZWdI4z58/F1999ZVwdHQUxYoVE+7u7iI2NlZ6fsWKFcLa2lps3rxZ1KhRQxgaGoqEhAQhhBCrVq0SZcuWfed2Iyrq2GNHVERYWFjAwsICmzZtQnp6usZxjh07BuC/HrHs4adPn6Jt27aIiYnBiRMn0Lp1a/j4+ODGjRsAgKioKJQtWxZTpkzBnTt3cOfOHa1qevnyJTp16oRmzZrh9OnTOHz4MAYPHgyFQqH1epmZmQEAMjIy8PjxY7Ro0QL16tXD8ePHER0djcTERPTo0UPr+eVkwoQJGD16NE6ePImqVavC19cXL1++BAA8f/4cbm5u2LZtG86ePYvBgwejb9++OHr0KADgzp078PX1xYABA3D+/Hns3bsXXbp0gRACAPDkyRP4+fnhwIEDOHLkCKpUqYK2bduqnRcXGhqKHj164PTp02jbti369OmDhw8f5ljzn3/+iQYNGqi0OTg44MiRI7h+/XqO061ZswbBwcGYNm0azp8/j+nTp2PSpElYtWqVynhjxozBV199hRMnTsDDwwM+Pj548OABypUrh40bNwJ4dY7fnTt3MH/+fABAWFgYVq9ejcWLF+PcuXMYNWoUPvvsM+zbt09l3pMnT8bChQtx6NAh3Lx5Ez169EB4eDjWrl2Lbdu24Y8//sCCBQtUplm1ahWMjIxw9OhRzJ8/H3PnzsWyZcuk5wMDA3H48GGsW7cOp0+fRvfu3dG6dWtcvnxZGictLQ0zZ87EsmXLcO7cOdjZ2QEA3N3d8e+//+LatWs5bjciWdB3siQi7W3YsEHY2NgIU1NT0bhxYzF+/Hhx6tQplXGgoQdLk5o1a4oFCxZIw05OTmLevHkq47yrx+7Bgwfv7EV80+v1paamimHDhglDQ0Nx6tQpMXXqVNGqVSuV8W/evCkAiIsXLwohct9jt2zZMun5c+fOCQDi/PnzOdbZrl078dVXXwkhhIiLixMA3toT+brMzExhaWkptmzZolLnxIkTpeGnT58KAGLHjh05zqdOnTpiypQpKm23b98WjRo1EgBE1apVhZ+fn4iMjBSZmZnSOJUqVVLrcZw6darw8PAQQvy3TWbMmCE9/+LFC1G2bFkxc+ZMIcR/PW+PHj2Sxnn+/LkoVqyYSm+nEEJ8/vnnwtfXV2W63bt3S8+HhYUJAOKff/6R2r744gvh7e0tDTdr1kzUqFFDpYdu7NixokaNGkIIIa5fvy4MDQ3FrVu3VJbdsmVLMX78eCHEqx47AOLkyZNq2zI5OVnn9ypRUcQeO6IipGvXrrh9+zZ+//13tG7dGnv37kX9+vWxcuXKt0739OlTjB49GjVq1EDx4sVhYWGB8+fPSz12uVWiRAn0798f3t7e8PHxwfz587Xq7fP19YWFhQUsLS2xceNGLF++HK6urjh16hRiY2Ol3kkLCwtUr14dAPDPP//kqVZXV1fp79KlSwMA7t27B+DVuVhTp05F7dq1UaJECVhYWGDnzp3S9qlTpw5atmyJ2rVro3v37li6dCkePXokzS8xMRGDBg1ClSpVYG1tDSsrKzx9+lRt+75eg7m5OaysrKQaNHn27BlMTU1V2kqXLo3Dhw/jzJkzGDFiBF6+fAk/Pz+0bt0aWVlZSE1NxT///IPPP/9cZTt+++23atvQw8ND+tvIyAgNGjTA+fPnc6znypUrSEtLw6effqoy79WrV6vN+/V1tbe3R7FixVCxYkWVtjfXvVGjRiq9vR4eHrh8+TIyMzNx5swZZGZmomrVqirL3rdvn8qyTUxMVJadLbtnOC0tLcf1I5IDI30XQES6MTU1xaeffopPP/0UkyZNwsCBAxESEqJygv2bRo8ejV27duG7775D5cqVYWZmhm7duiEjI+OtyzIwMJAON2Z78eKFyvCKFSvw5ZdfIjo6GpGRkZg4cSJ27dqFRo0a5TjfefPmwcvLC9bW1rC1tZXanz59Ch8fH8ycOVNtmuww9iaFQvHOGgHA2NhYZRoAyMrKAgDMnj0b8+fPR3h4OGrXrg1zc3OMHDlS2j6GhobYtWsXDh06JB1CnDBhAv766y9UqFABfn5+ePDgAebPnw8nJycolUp4eHiobd/Xa8iuI7sGTUqVKqUSIF9Xq1Yt1KpVC8OGDcOQIUPg6emJffv2wcXFBcCrK2cbNmyoMo2hoWGOy9JG9gUa27ZtQ5kyZVSeUyqVKsNvbm9d113Tsg0NDREXF6e2HhYWFtLfZmZmGk8FyD7k/fr7jUiOGOyIijgXFxeV25sYGxsjMzNTZZyDBw+if//+6Ny5M4BX/yTfPNfIxMREbTpbW1vcvXsXQgjpn+XJkyfVaqhXrx7q1auH8ePHw8PDA2vXrn1rsHNwcEDlypXV2uvXr4+NGzfC2dkZRkba7Z5sbW1VegkvX76sc6/MwYMH0bFjR3z22WcAXgW+S5cuSSEJeBVEmjRpgiZNmiA4OBhOTk747bffEBQUhIMHD+L7779H27ZtAQA3b97E/fv3dapBk3r16uHvv/9+53jZdaampsLe3h6Ojo64evUq+vTp89bpjhw5go8//hjAq/Ml4+LiEBgYCODV+wGAynvCxcUFSqUSN27cQLNmzXK1Tm/z119/qdVXpUoVGBoaol69esjMzMS9e/fg6emp87zPnj0LY2Nj1KxZM7/KJSqUGOyIiogHDx6ge/fuGDBgAFxdXWFpaYnjx49j1qxZ6NixozSes7MzYmJi0KRJEyiVStjY2KBKlSqIioqCj48PFAoFJk2apNZb4uzsjP3796NXr15QKpUoVaoUmjdvjqSkJMyaNQvdunVDdHQ0duzYASsrKwBAQkIClixZgg4dOsDR0REXL17E5cuX0a9fv1ytY0BAAJYuXQpfX198/fXXKFGiBK5cuYJ169Zh2bJlGnucWrRogYULF8LDwwOZmZkYO3asWu/Qu1SpUgUbNmzAoUOHYGNjg7lz5yIxMVEKTH/99RdiYmLQqlUr2NnZ4a+//kJSUhJq1KghTf/TTz+hQYMGSElJwZgxY6RDf3nh7e2NgQMHIjMzU1r3oUOHwtHRES1atEDZsmVx584dfPvtt7C1tZUOrYaGhuLLL7+EtbU1WrdujfT0dBw/fhyPHj1CUFCQNP+IiAhUqVIFNWrUwLx58/Do0SMMGDAAAODk5ASFQoGtW7eibdu2MDMzg6WlJUaPHo1Ro0YhKysLTZs2RXJyMg4ePAgrKyv4+fnlaX1v3LiBoKAgfPHFF4iPj8eCBQswZ84cAEDVqlXRp08f9OvXD3PmzEG9evWQlJSEmJgYuLq6ol27dm+d959//glPT898eV2ICjU9n+NHRFp6/vy5GDdunKhfv76wtrYWxYoVE9WqVRMTJ04UaWlp0ni///67qFy5sjAyMpIuckhISBCffPKJMDMzE+XKlRMLFy5Uuwjh8OHDwtXVVSiVSvH6rmHRokWiXLlywtzcXPTr109MmzZNmu/du3dFp06dROnSpYWJiYlwcnISwcHBKifyvwnvuLjj0qVLonPnzqJ48eLCzMxMVK9eXYwcOVI6qf7Num/duiVatWolzM3NRZUqVcT27ds1Xjxx4sQJaZrsW8dk3yrjwYMHomPHjsLCwkLY2dmJiRMnin79+omOHTsKIYT4+++/hbe3t7C1tRVKpVJUrVpV5cKT+Ph40aBBA2FqaiqqVKkifv31V7WLUTSt9+t1avLixQvh6OgooqOjpbYNGzaItm3bStvc0dFRdO3aVZw+fVpl2jVr1oi6desKExMTYWNjIz7++GMRFRWlsk3Wrl0r3N3dhYmJiXBxcRF79uxRmceUKVOEg4ODUCgU0u1OsrKyRHh4uKhWrZowNjYWtra2wtvbW+zbt08Iofmii+zbkLzuzQtzmjVrJoYNGyaGDBkirKyshI2Njfjmm29ULqbIyMgQwcHBwtnZWRgbG4vSpUuLzp07S+uuaTnZqlWrJn755ZcctzWRXCiEeOPkFCIiKjQiIiLw+++/Y+fOnfk2z2vXrqFChQo4ceIE6tatm2/zLax27NiBr776CqdPn9b6ED9RUcV3OBFRIfbFF1/g8ePHePLkicrPipH2UlNTsWLFCoY6+iCwx46I6APzofXYEX1IGOyIiIiIZII3KCYiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSCQY7IiIiIplgsCMiIiKSif8DIIyFq3XjGkcAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='pay_1', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pelunasan (September) dengan Gagal Bayar')\n",
"plt.xlabel('Status Pelunasan (September)')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Untuk status pelunasan pada bulan September diketahui terjadi keterlambatan pembayaran hingga mencapai 7 bulan. Keterlambatan ini sungguh fantasis \n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXQ0lEQVR4nO3de1zN9x8H8NepdNH9nkK5RAwhK5cZo2kuibnmljZsyNBmZiiXTWw/tJHMZcxtGLmTS6u5lKHE3JnCUCKXFEV9fn94dOY4J87JyanvXs/H4/t49P2ez/fzfX+/fc/p1fd2ZEIIASIiIiKq8PR0XQARERERaQeDHREREZFEMNgRERERSQSDHREREZFEMNgRERERSQSDHREREZFEMNgRERERSQSDHREREZFEMNgRERERSQSDnURNmTIFMpkMt2/f1nUpVIENHjwYbm5uui6j3Fq/fj1sbGzw8OFDXZdS7ty5cwempqbYuXPna/WzfPlyyGQypKena6cwKhMymQxTpkzRdRkEBjudKv7AOnbsmMrX27ZtiwYNGrzhqqTr4MGD6NixI1xcXGBsbIzq1avD398fa9askbfJy8vDlClTkJCQUOrlJCYmYsqUKbh3797rF62h4n2qeDA2NkadOnUQEhKCzMzMN16PlBUWFiI8PByjRo2CmZmZytednZ0hk8mwa9cuHVRYsgULFmD58uVlugxbW1sMGTIEkydPLtPlSN2BAwfQu3dvuLi4wNDQEJaWlvDx8cG0adMq3Hs6PT1d4fNJJpPBwsICjRs3xvz581FYWKjrEiWBwY7+E3777Te8++67yMzMxOjRozFv3jwMGDAAd+/exeLFi+Xt8vLyMHXq1NcOdlOnTtVJsCs2bdo0rFy5EvPnz0fLli0RHR2NFi1aIC8vT2c1Sc22bdtw/vx5DBs2TOXrv//+O27evAk3NzesXr36DVf3cm8i2AHAp59+ipSUFPz+++9lviwpCgsLw7vvvovk5GQMHjwY0dHRmDFjBt566y3Mnj0bLVu21HWJpRIYGIiVK1di5cqViIiIgIuLC0aNGoWvvvpK16VJgoGuCyB6E6ZMmYL69evj8OHDMDQ0VHjt1q1bOqqq7HTs2BHNmjUDAAwZMgS2traYM2cOtmzZgsDAQB1XJw3Lli1Dq1at4OLiovL1VatWoWnTpggKCsLXX3+N3NxcmJqavuEqdatevXpo0KABli9fjnbt2um6nApl3bp1mD59Onr37o2VK1cqfW7NnTsXc+fO1VF1r6dp06YYMGCAfHzEiBHw8fHBmjVr8P333+uwspLl5eWhcuXKui5DLTxiV4EUH8ZW9Z92Sdc33L59G71794aFhQVsbW0xevRoPH78uFR9Fl+3d+nSJQwePBhWVlawtLREcHCw0pGgR48e4bPPPoOdnR3Mzc3RtWtXXL9+XanPK1euYMSIEahbty5MTExga2uLXr16KV1PU3yK8dChQwgNDYW9vT1MTU3RvXt3ZGVlvXLb/f3333j77beVPhwBwMHBQb4t7O3tAQBTp06VnyoorvfkyZMYPHgwatasCWNjYzg5OeGjjz7CnTt3FLbRuHHjAAA1atSQ95Genq7Rts7JycGYMWPg5uYGIyMjODg44P3330dKSsor11WV4j+qaWlp8mmrVq2Cl5cXTExMYGNjg759++LatWsv7SchIQEymUzpiKaqdRs8eDDMzMxw/fp1dOvWDWZmZrC3t8cXX3yhdMrlf//7H1q2bAlbW1uYmJjAy8sLGzZsUFr+3r178c4778DKygpmZmaoW7cuvv76a/nrBQUFCAsLg5eXFywtLWFqaorWrVsjPj5eZb3/+9//sGjRItSqVQtGRkZ4++23cfTo0ZduAwB4/PgxYmNj4evrq/L1R48eYdOmTejbty969+6NR48eYcuWLSrb/vbbb6hfvz6MjY3RoEEDbNq0SenaRk22e0ZGBoKDg1G1alUYGRmhSpUqCAgIkL+n3NzccPr0afzxxx/y/bNt27YA/n2Pv0jVdW7Hjh2Dn58f7OzsYGJigho1auCjjz5Smvf999/Htm3bIIRQuf7PO336NNq1awcTExNUrVoV33zzDYqKilS23bVrF1q3bg1TU1OYm5ujc+fOOH36tEIbTfbBO3fuYODAgbCwsICVlRWCgoJw4sQJpe2rzucAoNnnpSphYWGws7PD0qVLVX5uWVpaKn3mb9myBZ07d4azszOMjIxQq1YtTJ8+XeUpzqioKNSsWRMmJibw9vbGgQMH0LZtW/m+AKj/fnpdMpkMjo6OMDBQPNakzvqEh4ejUqVKKv8ODBs2DFZWVvK/eepun+LLoJKTk/Huu++icuXKCp8z5R2P2JUD9+/fV3mTw5MnT1677969e8PNzQ0RERE4fPgwfvzxR9y9excrVqx4rT5r1KiBiIgIpKSkYMmSJXBwcMCsWbPkbQYPHoz169dj4MCBaN68Of744w907txZqa+jR48iMTERffv2RdWqVZGeno7o6Gi0bdsWZ86cUfoPadSoUbC2tkZ4eDjS09MRGRmJkJAQrFu37qU1u7q6Ii4uDv/88w+qVq2qso29vT2io6MxfPhwdO/eHR9++CEAoFGjRgCehYrLly8jODgYTk5OOH36NBYtWoTTp0/j8OHDkMlk+PDDD3HhwgX8+uuvmDt3Luzs7OR9qxNAi3366afYsGEDQkJCUL9+fdy5cwcHDx7E2bNn0bRpU7X7Kfb3338DeHbdEwB8++23mDx5Mnr37o0hQ4YgKysL8+bNw7vvvovjx4/DyspK42WoUlhYCD8/P/j4+OB///sf9u3bh9mzZ6NWrVoYPny4vN0PP/yArl27on///igoKMDatWvRq1cvbN++Xb7fnD59Gl26dEGjRo0wbdo0GBkZ4dKlSzh06JC8nwcPHmDJkiUIDAzE0KFDkZOTg6VLl8LPzw9HjhxB48aNFepbs2YNcnJy8Mknn0Amk+G7777Dhx9+iMuXL6NSpUolrldycjIKCgpK/F1s3boVDx8+RN++feHk5IS2bdti9erV6Nevn0K7HTt2oE+fPmjYsCEiIiJw9+5dfPzxxyUeBVRHjx49cPr0aYwaNQpubm64desW9u7di6tXr8LNzQ2RkZHy6wInTpwIAHB0dNRoGbdu3UKHDh1gb2+Pr776ClZWVkhPT0dMTIxSWy8vL8ydOxenT59+6TXDGRkZeO+99/D06VN89dVXMDU1xaJFi2BiYqLUduXKlQgKCoKfnx9mzZqFvLw8REdH45133sHx48cVQrE6+2BRURH8/f1x5MgRDB8+HB4eHtiyZQuCgoKUlq3O58Dz1Pm8fNGFCxdw4cIFDBkyROX1myVZvnw5zMzMEBoaCjMzM/z+++8ICwvDgwcPFI6ERUdHIyQkBK1bt8bYsWORnp6Obt26wdraWuHzUdP3k7ry8vLkf/MePHiAXbt2ITY2FhMmTNB4fQYOHIhp06Zh3bp1CAkJkc9bUFCADRs2oEePHjA2NtZo+wDPgn7Hjh3Rt29fDBgwQOP3iE4J0plly5YJAC8d3nrrLXn7tLQ0AUAsW7ZMqS8AIjw8XD4eHh4uAIiuXbsqtBsxYoQAIE6cOFHqPj/66COFdt27dxe2trby8eTkZAFAjBkzRqHd4MGDlfrMy8tTWm5SUpIAIFasWKG0rXx9fUVRUZF8+tixY4W+vr64d++eUj/PW7p0qQAgDA0NxXvvvScmT54sDhw4IAoLCxXaZWVlKdX4slp//fVXAUDs379fPu37778XAERaWppCW022taWlpRg5cuRL10mV4u20b98+kZWVJa5duybWrl0rbG1thYmJifjnn39Eenq60NfXF99++63CvH/99ZcwMDBQmB4UFCRcXV3l4/Hx8QKAiI+Pf+W6BQUFCQBi2rRpCm2bNGkivLy8FKa9uG0LCgpEgwYNRLt27eTT5s6dKwCIrKysEtf/6dOnIj8/X2Ha3bt3haOjo8J+W1yvra2tyM7Olk/fsmWLACC2bdtW4jKEEGLJkiUCgPjrr79Uvt6lSxfRqlUr+fiiRYuEgYGBuHXrlkK7hg0biqpVq4qcnBz5tISEBAGgVNv97t27AoD4/vvvX1r/W2+9Jdq0aaM0vfg9/qLi/ap4n960aZMAII4ePfrS5QghRGJiogAg1q1b99J2Y8aMEQDEn3/+KZ9269YtYWlpqbDsnJwcYWVlJYYOHaowf0ZGhrC0tFSYru4+uHHjRgFAREZGyqcVFhaKdu3aKe3X6n4OqPt5qUrxfvh8PUIIUVRUJLKyshSGJ0+evLS2Tz75RFSuXFk8fvxYCCFEfn6+sLW1FW+//bbCvMuXLxcAFPYLdd9PQih/hqlSvL+qGoYPH67w2a7u+gghRIsWLYSPj49Cu5iYGKX3jLr9tWnTRgAQCxcufOn6lFc8FVsOREVFYe/evUpD8ZGi1zFy5EiF8VGjRgHAaz2C4NNPP1UYb926Ne7cuYMHDx4AAGJjYwE8u25C1bKf9/x/40+ePMGdO3dQu3ZtWFlZqTztOGzYMIX/iFu3bo3CwkJcuXLlpTV/9NFHiI2NRdu2bXHw4EFMnz4drVu3hru7OxITE1+xxsq1Pn78GLdv30bz5s0BoNSnSEtiZWWFP//8Ezdu3CjV/L6+vrC3t0e1atXQt29fmJmZYdOmTXBxcUFMTAyKiorQu3dv3L59Wz44OTnB3d1d66dZVO0vly9fVpj2/La9e/cu7t+/j9atWyts1+KjiFu2bCnx9Jy+vr78tFVRURGys7Px9OlTNGvWTOXvqE+fPrC2tlaoDYBSfS8qPu32/LzPv7Z7926Faxl79OgBmUyG9evXy6fduHEDf/31FwYNGqRwVKZNmzZo2LDhS5dfEhMTExgaGiIhIQF3794tVR/qKP5dbN++/ZVnFoq30asevbRz5040b94c3t7e8mn29vbo37+/Qru9e/fi3r17CAwMVNh/9fX14ePjo3L/fdU+GBsbi0qVKmHo0KHyaXp6ekqfn4DmnwOv+rxUpfi1F4/W3b9/H/b29gpDamqqytpycnJw+/ZttG7dGnl5eTh37hyAZ6fQ79y5g6FDhyqc+uzfv7/S/qzp+0ldw4YNk/+d27hxI0aOHImffvoJoaGhCu3UWR8AGDRoEP7880/5mQkAWL16NapVq4Y2bdpo3B8AGBkZITg4uNTrqEsMduWAt7c3fH19lQZVfzQ05e7urjBeq1Yt6OnpvdYzoapXr64wXlxn8R+SK1euQE9PDzVq1FBoV7t2baW+Hj16hLCwMFSrVg1GRkaws7ODvb097t27h/v372u87Jfx8/PD7t27ce/ePezfvx8jR47ElStX0KVLF7VuoMjOzsbo0aPh6OgIExMT2Nvby9dRVa2v47vvvsOpU6dQrVo1eHt7Y8qUKa8MG88r/mchPj4eZ86cweXLl+Hn5wcAuHjxIoQQcHd3V/ojcfbsWa3eTGJsbCy/brGYtbW10u9r+/btaN68OYyNjWFjYyM/Lf78du3Tpw9atWqFIUOGwNHREX379sX69euVQt4vv/yCRo0awdjYGLa2trC3t8eOHTu0vj8BUHnd2Lp16/DkyRM0adIEly5dwqVLl5CdnQ0fHx+Fu2OL/xlR9b5QNU0dRkZGmDVrFnbt2gVHR0e8++67+O6775CRkVGq/krSpk0b9OjRA1OnToWdnR0CAgKwbNky5OfnK7Ut3kaqrt173pUrV5Q+rwCgbt26CuMXL14E8Oy60Rf33z179ijtv+rsg1euXEGVKlWULv1Q9XvQ9HOgNPuYubk5ACg9H9HMzEweiIqv5X3e6dOn0b17d1haWsLCwgL29vbymxSKaytpvzMwMFD5zEpN3k/qcnd3l/+d+/DDDzF//nyMGDECkZGR+OuvvzRaH+DZZ4ORkZH8/XX//n1s374d/fv3V9jv1O0PgPzxMhURr7GrQEr6YNTk2T8v9lGaPvX19VVOV/VH7lVGjRqFZcuWYcyYMWjRogUsLS0hk8nQt29flUdltLHsypUro3Xr1mjdujXs7OwwdepU7Nq1S+X1NM/r3bs3EhMTMW7cODRu3BhmZmYoKirCBx98UOIRpOdpsq179+6N1q1bY9OmTdizZw++//57zJo1CzExMejYseMrl+Xt7S2/K/ZFRUVF8merqdqeL7umR9P9paTf1/MOHDiArl274t1338WCBQtQpUoVVKpUCcuWLVN4xqCJiQn279+P+Ph47NixA7GxsVi3bh3atWuHPXv2QF9fH6tWrcLgwYPRrVs3jBs3Dg4ODtDX10dERITCf/Ovqu9V+1PxtYp3795Vumaz+I9Lq1atVM57+fJl1KxZ86X9v0iT7T5mzBj4+/tj8+bN2L17NyZPnoyIiAj8/vvvaNKkiVaWI5PJsGHDBhw+fBjbtm3D7t278dFHH2H27Nk4fPiwwj5UHGCKrzd9XcXvtZUrV8LJyUnp9RcvwFdnH9SEpp8DpdnHPDw8AACnTp1SmG5gYCC/Yeeff/5ReO3evXto06YNLCwsMG3aNNSqVQvGxsZISUnB+PHj1fqMepGm76fX0b59e8yfPx/79+9Hw4YNNVofa2trdOnSBatXr0ZYWBg2bNiA/Px8hTtvNd0+qq7trCgY7CqQ4v/0Xnw+2stOQ168eFHhyNmlS5dQVFQk/8+sNH2+iqurK4qKipCWlqbwH/ilS5eU2m7YsAFBQUGYPXu2fNrjx4/f2DPgisPPzZs3AZT8h+3u3buIi4vD1KlTERYWJp9efPTgeSX1oem2rlKlCkaMGIERI0bg1q1baNq0Kb799lu1gt3L1KpVC0II1KhRA3Xq1NFo3rLYXzZu3AhjY2Ps3r0bRkZG8unLli1Taqunp4f27dujffv2mDNnDmbMmIGJEyciPj4evr6+2LBhA2rWrImYmBiF30N4eHip61Ol+A9vWlqawmnTtLQ0JCYmIiQkROEUEPAskAwcOBBr1qzBpEmT4OrqCkD1++LFaZpu91q1auHzzz/H559/josXL6Jx48aYPXs2Vq1aBUC9ffT5G2hKWk7z5s3RvHlzfPvtt1izZg369++PtWvXYsiQIfI2xXdi16tXT2UfxVxdXVW+n86fP6+0bsCzu9lLuitZU66uroiPj1d6pMWLvwdNPgdeR926deHu7o7NmzcjMjJSrcfkJCQk4M6dO4iJicG7774rn/78nfAAFPa79957Tz796dOnSE9PV7gE6E29n4qXD/x7lFLd9Sk2aNAgBAQE4OjRo1i9ejWaNGmCt956S/66pv1VZDwVW4FYWFjAzs4O+/fvV5i+YMGCEueJiopSGJ83bx4AyMNBafp8leJTfi/2Ubzs5+nr6yv95zpv3jytP4E8Li5O5fTiaw2LT/cUf6i/+Ae0+L/uF2uNjIxU6rP4Q/jFPtTd1oWFhUqnBRwcHODs7KzyVJemPvzwQ+jr62Pq1KlK6yOEUHpsw/NcXV2hr6+v1f1FX18fMplM4Xeenp6OzZs3K7TLzs5Wmrf4rrzi7aLq9/Tnn38iKSmp1PWp4uXlBUNDQ6VvjSk+Wvfll1+iZ8+eCkPv3r3Rpk0beRtnZ2c0aNAAK1asUDjl9scffyicjgLU3+55eXkKjzMCngUhc3NzhX3H1NRU5T9PxaHp+eXk5ubil19+UWh39+5dpX3nxd9FseTkZFhaWir8kVWlU6dOOHz4MI4cOSKflpWVpfRwZz8/P1hYWGDGjBkqr+/T5O7z5/t88uSJwsPKi4qKlD4/NfkceF1TpkzB7du3MXToUJXr+WINqmorKChQ2keaNWsGW1tbLF68WB6mgGf77ounh9/U+wl49sBvAPD09Cxx2arWp1jHjh1hZ2eHWbNm4Y8//lA4Wlea/ioyHrGrYIYMGYKZM2diyJAhaNasGfbv348LFy6U2D4tLQ1du3bFBx98gKSkJKxatQr9+vWTv3lK0+ereHl5oUePHoiMjMSdO3fkjzsp7vP5//y6dOmClStXwtLSEvXr10dSUhL27dsnP9WlLQEBAahRowb8/f1Rq1Yt5ObmYt++fdi2bRvefvtt+Pv7A3h2+L1+/fpYt24d6tSpAxsbGzRo0AANGjSQX6/05MkTuLi4YM+ePSr/2/Py8gIATJw4EX379kWlSpXg7+8PU1NTtbZ1Tk4Oqlatip49e8LT0xNmZmbYt28fjh49qnBks7Rq1aqFb775BhMmTJA/5sDc3BxpaWnYtGkThg0bhi+++ELlvJaWlujVqxfmzZsHmUyGWrVqYfv27a91XV7nzp0xZ84cfPDBB+jXrx9u3bqFqKgo1K5dGydPnpS3mzZtGvbv34/OnTvD1dUVt27dwoIFC1C1alW88847AJ7tTzExMejevTs6d+6MtLQ0LFy4EPXr19fq97kaGxujQ4cO2LdvH6ZNmyafvnr1ajRu3BjVqlVTOV/Xrl0xatQopKSkoGnTppgxYwYCAgLQqlUrBAcH4+7du5g/fz4aNGigUK+62/3ChQto3749evfujfr168PAwACbNm1CZmYm+vbtK2/n5eWF6OhofPPNN6hduzYcHBzQrl07dOjQAdWrV8fHH3+McePGQV9fHz///DPs7e1x9epV+fy//PILFixYgO7du6NWrVrIycnB4sWLYWFhgU6dOinUtHfvXvj7+7/yGrsvv/wSK1euxAcffIDRo0fLH3fi6uqqsB9YWFggOjoaAwcORNOmTdG3b195fTt27ECrVq0wf/78ly7rRd26dYO3tzc+//xzXLp0CR4eHti6dav8n4ni2i0sLNT+HHhd/fr1w6lTpxAREYEjR46gb9++qFGjBnJzc3Hq1Cn8+uuvMDc3lx9lbdmyJaytrREUFITPPvsMMpkMK1euVAqAhoaGmDJlCkaNGoV27dqhd+/eSE9Px/Lly1GrVi2lz+eyeD+lpKTIjx7n5OQgLi4OGzduRMuWLdGhQweN1qdYpUqV0LdvX8yfPx/6+vpKD2LXtL8K7Q3egUsvKH6EQEmPDGjTpo3C406EeHa79scffywsLS2Fubm56N27t7h161aJjyY5c+aM6NmzpzA3NxfW1tYiJCREPHr06LX6fPFxEy8+CkEIIXJzc8XIkSOFjY2NMDMzE926dRPnz58XAMTMmTPl7e7evSuCg4OFnZ2dMDMzE35+fuLcuXPC1dVVBAUFvXJblfQYiBf9+uuvom/fvqJWrVrCxMREGBsbi/r164uJEyeKBw8eKLRNTEwUXl5ewtDQUGEb/PPPP6J79+7CyspKWFpail69eokbN26ovM1/+vTpwsXFRejp6SlsG3W2dX5+vhg3bpzw9PQU5ubmwtTUVHh6eooFCxa8dB1ftp1U2bhxo3jnnXeEqampMDU1FR4eHmLkyJHi/Pnz8jYvPu5EiGePhOnRo4eoXLmysLa2Fp988ok4deqUysedmJqaKi1X1SM1li5dKtzd3YWRkZHw8PAQy5YtU2oXFxcnAgIChLOzszA0NBTOzs4iMDBQXLhwQd6mqKhIzJgxQ7i6ugojIyPRpEkTsX37dqX1KH7sgqrHgqj6faoSExMjZDKZuHr1qhDi38f8TJ48ucR50tPTBQAxduxY+bS1a9cKDw8PYWRkJBo0aCC2bt0qevToITw8PBTmVWe73759W4wcOVJ4eHgIU1NTYWlpKXx8fMT69esV+srIyBCdO3cW5ubmSo+4SE5OFj4+PsLQ0FBUr15dzJkzR+k9npKSIgIDA0X16tWFkZGRcHBwEF26dBHHjh1TWM7Zs2flj99Rx8mTJ0WbNm2EsbGxcHFxEdOnT5c/qujFxwfFx8cLPz8/YWlpKYyNjUWtWrXE4MGDFWrQZB/MysoS/fr1E+bm5sLS0lIMHjxYHDp0SAAQa9eulbdT93NAk8/Ll0lISBA9e/YUVapUEZUqVRIWFhaiWbNmIjw8XNy8eVOh7aFDh0Tz5s2FiYmJcHZ2Fl9++aXYvXu3ys/IH3/8Uf4+8fb2FocOHRJeXl7igw8+kLdR9/0kROkfd2JgYCBq1qwpxo0bp/DYH03XRwghjhw5IgCIDh06qFy+uv2p+ttbkciEkGJcpfIoNTUVTZo0wapVq5QeYUBU0RQWFqJ+/fro3bs3pk+frtW+GzduDHt7e+zdu1er/b5pY8aMwf79+5GcnPzKI3bl0ebNm9G9e3ccPHiwxJthpKKoqAj29vb48MMPFU5JVyQnTpxA48aNsWLFCgwcOFDX5egMr7GjMvHo0SOlaZGRkdDT01O4cJWootLX18e0adMQFRVV6tNST548UbjOCXh2kfeJEycUvtqpIrpz5w6WLFmCb775pkKEuhc/swoLCzFv3jxYWFiU6tteyrPHjx8rnYJcsWIFsrOzK/R+t3jxYpiZmcm/Nei/itfYUZn47rvvkJycjPfeew8GBgbYtWsXdu3ahWHDhpV4/RFRRdOnTx/06dOn1PNfv34dvr6+GDBgAJydnXHu3DksXLgQTk5OSg+2rWhsbW21el1jWRs1ahQePXqEFi1aID8/HzExMUhMTMSMGTMq9KMvVDl8+DDGjh2LXr16wdbWFikpKVi6dCkaNGiAXr166bo8jW3btg1nzpzBokWLEBISotZdxFLGU7FUJvbu3YupU6fizJkzePjwIapXr46BAwdi4sSJSs+ZIvqvun//PoYNG4ZDhw4hKysLpqamaN++PWbOnCm/Q5XejDVr1mD27Nm4dOkSHj9+jNq1a2P48OEK3z8qFenp6fjss89w5MgRZGdnw8bGBp06dcLMmTPh4OCg6/I05ubmhszMTPj5+WHlypXyBzz/VzHYEREREUkEr7EjIiIikggGOyIiIiKJ+M9d7FRUVIQbN27A3Ny8QtypRURERP9tQgjk5OTA2dkZenovPyb3nwt2N27c4F2ZREREVOFcu3YNVatWfWmb/1ywK75b5tq1a7CwsNBxNUREREQv9+DBA1SrVk2tO37/c8Hu+e/8Y7AjIiKiikKdS8h48wQRERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRROg02O3fvx/+/v5wdnaGTCbD5s2bXzlPQkICmjZtCiMjI9SuXRvLly8v8zqJiIiIKgKdBrvc3Fx4enoiKipKrfZpaWno3Lkz3nvvPaSmpmLMmDEYMmQIdu/eXcaVEhEREZV/BrpceMeOHdGxY0e12y9cuBA1atTA7NmzAQD16tXDwYMHMXfuXPj5+ZVVmUREREQVQoW6xi4pKQm+vr4K0/z8/JCUlKSjioiIiOi/RAiBhw8fygchhK5LUqDTI3aaysjIgKOjo8I0R0dHPHjwAI8ePYKJiYnSPPn5+cjPz5ePP3jwoMzrJCIiImnKzc1FQECAfHzLli0wMzPTYUWKKlSwK42IiAhMnTpV12UQERGVS17jVui6BI0lfz9I1yWUWxXqVKyTkxMyMzMVpmVmZsLCwkLl0ToAmDBhAu7fvy8frl279iZKJSIiInrjKtQRuxYtWmDnzp0K0/bu3YsWLVqUOI+RkRGMjIzKujQiIiIindPpEbuHDx8iNTUVqampAJ49ziQ1NRVXr14F8Oxo26BB/x5u/fTTT3H58mV8+eWXOHfuHBYsWID169dj7NixuiifiIiIqFzRabA7duwYmjRpgiZNmgAAQkND0aRJE4SFhQEAbt68KQ95AFCjRg3s2LEDe/fuhaenJ2bPno0lS5bwUSdERERE0PGp2LZt2770NmFV3yrRtm1bHD9+vAyrIiIiIqqYKtTNE0RERERUMgY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCAY7IiIiIolgsCMiIiKSCANdF0BERJoTQiA3N1c+bmpqCplMpsOKiKg8YLAjIqqAcnNzERAQIB/fsmULzMzMdFgREZUHPBVLREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBE6D3ZRUVFwc3ODsbExfHx8cOTIkZe2j4yMRN26dWFiYoJq1aph7NixePz48RuqloiIiKj80mmwW7duHUJDQxEeHo6UlBR4enrCz88Pt27dUtl+zZo1+OqrrxAeHo6zZ89i6dKlWLduHb7++us3XDkRERFR+aPTYDdnzhwMHToUwcHBqF+/PhYuXIjKlSvj559/Vtk+MTERrVq1Qr9+/eDm5oYOHTogMDDwlUf5iIiIiP4LdBbsCgoKkJycDF9f33+L0dODr68vkpKSVM7TsmVLJCcny4Pc5cuXsXPnTnTq1OmN1ExERERUnhnoasG3b99GYWEhHB0dFaY7Ojri3LlzKufp168fbt++jXfeeQdCCDx9+hSffvrpS0/F5ufnIz8/Xz7+4MED7awAERERUTmj85snNJGQkIAZM2ZgwYIFSElJQUxMDHbs2IHp06eXOE9ERAQsLS3lQ7Vq1d5gxURERERvjs6O2NnZ2UFfXx+ZmZkK0zMzM+Hk5KRynsmTJ2PgwIEYMmQIAKBhw4bIzc3FsGHDMHHiROjpKefUCRMmIDQ0VD7+4MEDhjsiIiKSJJ0dsTM0NISXlxfi4uLk04qKihAXF4cWLVqonCcvL08pvOnr6wMAhBAq5zEyMoKFhYXCQERERCRFOjtiBwChoaEICgpCs2bN4O3tjcjISOTm5iI4OBgAMGjQILi4uCAiIgIA4O/vjzlz5qBJkybw8fHBpUuXMHnyZPj7+8sDHhEREdF/lU6DXZ8+fZCVlYWwsDBkZGSgcePGiI2Nld9QcfXqVYUjdJMmTYJMJsOkSZNw/fp12Nvbw9/fH99++62uVoGIiIio3NBpsAOAkJAQhISEqHwtISFBYdzAwADh4eEIDw9/A5URERERVSwV6q5YIiIiIioZgx0RERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRROj8K8WIiIieJ4RAbm6ufNzU1BQymUyHFRFVHAx2RERUruTm5iIgIEA+vmXLFpiZmemwIqKKg6diiYiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCSCwY6IiIhIIhjsiIiIiCTCQNcFEBFJnde4FVrvU/a0AJbPjbedvBbCwFBr/Sd/P0hrfRHRm8MjdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwefYERERkWRp+zmS5f0ZkjxiR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRGgW7J0+ewMDAAKdOnSqreoiIiIiolDQKdpUqVUL16tVRWFhYVvUQERERUSlpfCp24sSJ+Prrr5GdnV0W9RARERFRKRloOsP8+fNx6dIlODs7w9XVFaampgqvp6SkaK04IiIiIlKfxsGuW7duZVAGEREREb0ujYNdeHh4WdRBRERERK9J42BHRFQRCCGQm5srHzc1NYVMJtNhRUREZU/jYFdYWIi5c+di/fr1uHr1KgoKChRe500VRFQe5ObmIiAgQD6+ZcsWmJmZ6bAiIqKyp/FdsVOnTsWcOXPQp08f3L9/H6Ghofjwww+hp6eHKVOmlEGJRERERKQOjYPd6tWrsXjxYnz++ecwMDBAYGAglixZgrCwMBw+fLgsaiQiIiIiNWgc7DIyMtCwYUMAgJmZGe7fvw8A6NKlC3bs2KFxAVFRUXBzc4OxsTF8fHxw5MiRl7a/d+8eRo4ciSpVqsDIyAh16tTBzp07NV4uERERkdRoHOyqVq2KmzdvAgBq1aqFPXv2AACOHj0KIyMjjfpat24dQkNDER4ejpSUFHh6esLPzw+3bt1S2b6goADvv/8+0tPTsWHDBpw/fx6LFy+Gi4uLpqtBREREJDka3zzRvXt3xMXFwcfHB6NGjcKAAQOwdOlSXL16FWPHjtWorzlz5mDo0KEIDg4GACxcuBA7duzAzz//jK+++kqp/c8//4zs7GwkJiaiUqVKAAA3NzdNV4GIiIhIkjQOdjNnzpT/3KdPH7i6uiIxMRHu7u7w9/dXu5+CggIkJydjwoQJ8ml6enrw9fVFUlKSynm2bt2KFi1aYOTIkdiyZQvs7e3Rr18/jB8/Hvr6+irnyc/PR35+vnz8wYMHatdIREREVJFoHOxyc3MVvkasefPmaN68ucYLvn37NgoLC+Ho6Kgw3dHREefOnVM5z+XLl/H777+jf//+2LlzJy5duoQRI0bgyZMnJT44OSIiAlOnTtW4PiIiIqKKRuNr7BwdHfHRRx/h4MGDZVHPSxUVFcHBwQGLFi2Cl5cX+vTpg4kTJ2LhwoUlzjNhwgTcv39fPly7du0NVkxERET05mgc7FatWoXs7Gy0a9cOderUwcyZM3Hjxg2NF2xnZwd9fX1kZmYqTM/MzISTk5PKeapUqYI6deoonHatV68eMjIylB6UXMzIyAgWFhYKAxEREZEUaRzsunXrhs2bN+P69ev49NNPsWbNGri6uqJLly6IiYnB06dP1erH0NAQXl5eiIuLk08rKipCXFwcWrRooXKeVq1a4dKlSygqKpJPu3DhAqpUqQJDQ0NNV4WIiIhIUjQOdsXs7e0RGhqKkydPYs6cOdi3bx969uwJZ2dnhIWFIS8v75V9hIaGYvHixfjll19w9uxZDB8+HLm5ufK7ZAcNGqRwc8Xw4cORnZ2N0aNH48KFC9ixYwdmzJiBkSNHlnY1iIiIiCRD45snimVmZuKXX37B8uXLceXKFfTs2RMff/wx/vnnH8yaNQuHDx+WP+OuJH369EFWVhbCwsKQkZGBxo0bIzY2Vn5DxdWrV6Gn92/2rFatGnbv3o2xY8eiUaNGcHFxwejRozF+/PjSrgYRERGRZGgc7GJiYrBs2TLs3r0b9evXx4gRIzBgwABYWVnJ27Rs2RL16tVTq7+QkBCEhISofC0hIUFpWosWLfjVZUREREQqaBzsgoOD0bdvXxw6dAhvv/22yjbOzs6YOHHiaxdHREREROrTONjdvHkTlStXfmkbExOTEp8rR0RERERlQ+Ng93yoe/z4sdJjRvg4ESIiIiLd0Piu2NzcXISEhMDBwQGmpqawtrZWGIiIiIhINzQ+Yvfll18iPj4e0dHRGDhwIKKionD9+nX89NNPCt8jS0SkLq9xK7Tep+xpASyfG287eS2Egfaed5n8/SCt9UVEpC0aB7tt27ZhxYoVaNu2LYKDg9G6dWvUrl0brq6uWL16Nfr3718WdRIRERHRK2h8KjY7Oxs1a9YE8Ox6uuzsbADAO++8g/3792u3OiIiIiJSm8bBrmbNmkhLSwMAeHh4YP369QCeHcl7/ll2RERERPRmaRzsgoODceLECQDAV199haioKBgbG2Ps2LEYN26c1gskIiIiIvVofI3d2LFj5T/7+vri3LlzSE5ORu3atdGoUSOtFkdERERE6iv1d8UWc3V1haurqzZqISIiIqLXoNGp2JycHCQnJ+Phw4cAgJSUFAwaNAi9evXC6tWry6RAIiIiIlKP2kfs9u/fjy5duuDhw4ewtrbGr7/+ip49e8LFxQX6+vqIiYlBXl4ehg4dWpb1EhEREVEJ1D5iN2nSJPTq1QvXrl3DmDFj0KdPH4SEhODs2bM4deoUpk6diqioqLKslYiIiIheQu1gd/LkSYwbNw4uLi4YP348Hjx4gD59+shf79u3L/7+++8yKZKIiIiIXk3tYPfgwQPY2NgAAAwNDVG5cmWYm5vLXzc3N0deXp72KyQiIiIitagd7GQyGWQyWYnjRERERKRbat88IYRA+/btYWDwbJa8vDz4+/vD0PDZl2o/ffq0bCokIiIiIrWoHezCw8MVxgMCApTa9OjR4/UrIiIiIqJSKXWwIyIiIqLy5bW/eYKIiN48oV8J9xsFKowTETHYERFVRDIZhIGhrqsgonJGo68UIyIiIqLyi8GOiIiISCIY7IiIiIgkQq1r7H788Ue1O/zss89KXQwRkbbw5gIi+i9SK9jNnTtXrc5kMhmDHRGVD7y5gIj+g9QKdmlpaWVdBxERERG9Jl5jR0RERCQRpXqO3T///IOtW7fi6tWrKCgoUHhtzpw5WimMiIiIiDSjcbCLi4tD165dUbNmTZw7dw4NGjRAeno6hBBo2rRpWdRIRERERGrQ+FTshAkT8MUXX+Cvv/6CsbExNm7ciGvXrqFNmzbo1atXWdRIRERERGrQONidPXsWgwYNAgAYGBjg0aNHMDMzw7Rp0zBr1iytF0hERERE6tE42Jmamsqvq6tSpQr+/vtv+Wu3b9/WXmVEREREpBGNr7Fr3rw5Dh48iHr16qFTp074/PPP8ddffyEmJgbNmzcvixqJiIiISA0aB7s5c+bg4cOHAICpU6fi4cOHWLduHdzd3XlHLBEREZEOaRzsatasKf/Z1NQUCxcu1GpBRERERFQ6fEAxERERkURofMTO2toaMplMabpMJoOxsTFq166NwYMHIzg4WCsFEhEREZF6NA52YWFh+Pbbb9GxY0d4e3sDAI4cOYLY2FiMHDkSaWlpGD58OJ4+fYqhQ4dqvWAiIiIiUk3jYHfw4EF88803+PTTTxWm//TTT9izZw82btyIRo0a4ccff2SwIyIiInqDNL7Gbvfu3fD19VWa3r59e+zevRsA0KlTJ1y+fPn1qyMiIiIitWkc7GxsbLBt2zal6du2bYONjQ0AIDc3F+bm5q9fHRERERGpTeNTsZMnT8bw4cMRHx8vv8bu6NGj2Llzp/zRJ3v37kWbNm20WykRERERvZTGwW7o0KGoX78+5s+fj5iYGABA3bp18ccff6Bly5YAgM8//1y7VRIRERHRK2kc7ACgVatWaNWqlbZrISIiIqLXUKpgV+zx48coKChQmGZhYfFaBRERERFR6Wh880ReXh5CQkLg4OAAU1NTWFtbKwxEREREpBsaB7tx48bh999/R3R0NIyMjLBkyRJMnToVzs7OWLFiRVnUSERERERq0PhU7LZt27BixQq0bdsWwcHBaN26NWrXrg1XV1esXr0a/fv3L4s6iYiIiOgVND5il52djZo1awJ4dj1ddnY2AOCdd97B/v37tVsdEREREalN42BXs2ZNpKWlAQA8PDywfv16AM+O5FlZWWm1OCIiIiJSn8bBLjg4GCdOnAAAfPXVV4iKioKxsTHGjh2LcePGab1AIiIiIlKPxtfYjR07Vv6zr68vzp07h+TkZNSuXRuNGjXSanFEREREpL7Xeo4dALi6usLV1VUbtRARERHRa1A72D169AhxcXHo0qULAGDChAnIz8+Xv66vr4/p06fD2NhY+1USERER0SupHex++eUX7NixQx7s5s+fj7feegsmJiYAgHPnzsHZ2VnhVC0RERERvTlq3zyxevVqDBs2TGHamjVrEB8fj/j4eHz//ffyO2SJiIiI6M1TO9hdunQJDRs2lI8bGxtDT+/f2b29vXHmzBntVkdEREREalP7VOy9e/cUrqnLyspSeL2oqEjhdSIiIiJ6s9Q+Yle1alWcOnWqxNdPnjyJqlWraqUoIiIiItKc2sGuU6dOCAsLw+PHj5Vee/ToEaZOnYrOnTtrtTgiIiIiUp/awe7rr79GdnY26tati++//x5btmzBli1b8N1336Fu3bq4e/cuvv7661IVERUVBTc3NxgbG8PHxwdHjhxRa761a9dCJpOhW7dupVouERERkZSofY2do6MjEhMTMXz4cHz11VcQQgAAZDIZ3n//fSxYsACOjo4aF7Bu3TqEhoZi4cKF8PHxQWRkJPz8/HD+/Hk4ODiUOF96ejq++OILtG7dWuNlEhEREUmRRt8VW6NGDcTGxiIrKwuHDx/G4cOHkZWVhdjYWNSsWbNUBcyZMwdDhw5FcHAw6tevj4ULF6Jy5cr4+eefS5ynsLAQ/fv3x9SpU0u9XCIiIiKp0SjYFbOxsYG3tze8vb1hY2NT6oUXFBQgOTkZvr6+/xakpwdfX18kJSWVON+0adPg4OCAjz/++JXLyM/Px4MHDxQGIiIiIikqVbDTltu3b6OwsFDpFK6joyMyMjJUznPw4EEsXboUixcvVmsZERERsLS0lA/VqlV77bqJiIiIyiOdBjtN5eTkYODAgVi8eDHs7OzUmmfChAm4f/++fLh27VoZV0lERESkG2rfPFEW7OzsoK+vj8zMTIXpmZmZcHJyUmr/999/Iz09Hf7+/vJpRUVFAAADAwOcP38etWrVUpjHyMgIRkZGZVA9ERERUfmi0yN2hoaG8PLyQlxcnHxaUVER4uLi0KJFC6X2Hh4e+Ouvv5Camiofunbtivfeew+pqak8zUpERET/aTo9YgcAoaGhCAoKQrNmzeDt7Y3IyEjk5uYiODgYADBo0CC4uLggIiICxsbGaNCggcL8VlZWAKA0nYiIiOi/RufBrk+fPsjKykJYWBgyMjLQuHFjxMbGym+ouHr1KvT0KtSlgEREREQ6ofNgBwAhISEICQlR+VpCQsJL512+fLn2CyIiIiKqgHgojIiIiEgiGOyIiIiIJKJcnIolIqKKy2vcCq32J3taAMvnxttOXgthYKjVZSR/P0ir/RGVFzxiR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQRDHZEREREEsFgR0RERCQR5SLYRUVFwc3NDcbGxvDx8cGRI0dKbLt48WK0bt0a1tbWsLa2hq+v70vbExEREf1X6DzYrVu3DqGhoQgPD0dKSgo8PT3h5+eHW7duqWyfkJCAwMBAxMfHIykpCdWqVUOHDh1w/fr1N1z5qwkh8PDhQ/kghNB1SURERCRhOg92c+bMwdChQxEcHIz69etj4cKFqFy5Mn7++WeV7VevXo0RI0agcePG8PDwwJIlS1BUVIS4uLg3XPmr5ebmIiAgQD7k5ubquiQiIiKSMJ0Gu4KCAiQnJ8PX11c+TU9PD76+vkhKSlKrj7y8PDx58gQ2NjZlVSYRERFRhWCgy4Xfvn0bhYWFcHR0VJju6OiIc+fOqdXH+PHj4ezsrBAOn5efn4/8/Hz5+IMHD0pfMBEREVE5pvNTsa9j5syZWLt2LTZt2gRjY2OVbSIiImBpaSkfqlWr9oarJCIiInozdBrs7OzsoK+vj8zMTIXpmZmZcHJyeum8//vf/zBz5kzs2bMHjRo1KrHdhAkTcP/+fflw7do1rdROREREVN7oNNgZGhrCy8tL4caH4hshWrRoUeJ83333HaZPn47Y2Fg0a9bspcswMjKChYWFwkBEREQkRTq9xg4AQkNDERQUhGbNmsHb2xuRkZHIzc1FcHAwAGDQoEFwcXFBREQEAGDWrFkICwvDmjVr4ObmhoyMDACAmZkZzMzMdLYeRERERLqm82DXp08fZGVlISwsDBkZGWjcuDFiY2PlN1RcvXoVenr/HliMjo5GQUEBevbsqdBPeHg4pkyZ8iZLJyIiIipXdB7sACAkJAQhISEqX0tISFAYT09PL/uCiPDsAdPPP3vQ1NQUMplMhxURERG9XLkIdkTlUfEDpott2bKFp/uJiKhcq9CPOyEiIiKifzHYEREREUkEgx0RERGRRDDYEREREUkEgx0RERGRRPCuWCo1Pg6EiIiofGGwe47XuBVa7U/2tACWz423nbwWwsBQq8tI/n6QVvvTBB8HQkREVL4w2JFkVLRgrstQTkRE0sRr7IiIiIgkgsGOiIiISCIY7IiIiIgkgsGOiIiISCIY7IiIiIgkgsGOiIiISCIY7IiIiIgkgs+xIyqB0K+E+40CFcaJiIjKMwY7opLIZFr/phAiIqKyxGD3H8JvZiAiIpI2XmNHREREJBEMdkREREQSwWBHREREJBG8xq4M8a5KIiIiepMY7MoS76okItIY/ykmKj0GOyIiKl/4TzFRqfEaOyIiIiKJYLAjIiIikggGOyIiIiKJYLAjIiIikggGOyIiIiKJ4F2xVGp8JAEREVH5wmBHpcdHEhAREZUrPBVLREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSwWBHREREJBEMdkREREQSUS6CXVRUFNzc3GBsbAwfHx8cOXLkpe1/++03eHh4wNjYGA0bNsTOnTvfUKVERERE5ZfOg926desQGhqK8PBwpKSkwNPTE35+frh165bK9omJiQgMDMTHH3+M48ePo1u3bujWrRtOnTr1hisnIiIiKl90HuzmzJmDoUOHIjg4GPXr18fChQtRuXJl/Pzzzyrb//DDD/jggw8wbtw41KtXD9OnT0fTpk0xf/78N1w5ERERUfmi02BXUFCA5ORk+Pr6yqfp6enB19cXSUlJKudJSkpSaA8Afn5+JbYnIiIi+q8w0OXCb9++jcLCQjg6OipMd3R0xLlz51TOk5GRobJ9RkaGyvb5+fnIz8+Xj9+/fx8A8ODBA6W2hfmPNKq/PFC1HiWpaOunyboB0l8/KatovztA2u89gOv3XyL135+210/2tABPnz5V6F8UFmqtf1XrVjxNCPHqDoQOXb9+XQAQiYmJCtPHjRsnvL29Vc5TqVIlsWbNGoVpUVFRwsHBQWX78PBwAYADBw4cOHDgwKFCD9euXXtlttLpETs7Ozvo6+sjMzNTYXpmZiacnJxUzuPk5KRR+wkTJiA0NFQ+XlRUhOzsbNja2kImk73mGrzagwcPUK1aNVy7dg0WFhZlvrw3jetXsXH9KjYpr5+U1w3g+lV0b3r9hBDIycmBs7PzK9vqNNgZGhrCy8sLcXFx6NatG4BnwSsuLg4hISEq52nRogXi4uIwZswY+bS9e/eiRYsWKtsbGRnByMhIYZqVlZU2yteIhYWFJHfuYly/io3rV7FJef2kvG4A16+ie5PrZ2lpqVY7nQY7AAgNDUVQUBCaNWsGb29vREZGIjc3F8HBwQCAQYMGwcXFBREREQCA0aNHo02bNpg9ezY6d+6MtWvX4tixY1i0aJEuV4OIiIhI53Qe7Pr06YOsrCyEhYUhIyMDjRs3RmxsrPwGiatXr0JP79+bd1u2bIk1a9Zg0qRJ+Prrr+Hu7o7NmzejQYMGuloFIiIionJB58EOAEJCQko89ZqQkKA0rVevXujVq1cZV6UdRkZGCA8PVzodLBVcv4qN61exSXn9pLxuANevoivP6ycTQp17Z4mIiIiovNP5N08QERERkXYw2BERERFJBIMdERERkUQw2JWhJ0+eYPz48WjYsCFMTU3h7OyMQYMG4caNG7ouTWtiYmLQoUMH+QOfU1NTdV2S1kRFRcHNzQ3Gxsbw8fHBkSNHdF2S1uzfvx/+/v5wdnaGTCbD5s2bdV2S1kRERODtt9+Gubk5HBwc0K1bN5w/f17XZWlNdHQ0GjVqJH9+VosWLbBr1y5dl1VmZs6cCZlMpvDs0opsypQpkMlkCoOHh4euy9Kq69evY8CAAbC1tYWJiQkaNmyIY8eO6bosrXBzc1P6/clkMowcOVLXpckx2JWhvLw8pKSkYPLkyUhJSUFMTAzOnz+Prl276ro0rcnNzcU777yDWbNm6boUrVq3bh1CQ0MRHh6OlJQUeHp6ws/PD7du3dJ1aVqRm5sLT09PREVF6boUrfvjjz8wcuRIHD58GHv37sWTJ0/QoUMH5Obm6ro0rahatSpmzpyJ5ORkHDt2DO3atUNAQABOnz6t69K07ujRo/jpp5/QqFEjXZeiVW+99RZu3rwpHw4ePKjrkrTm7t27aNWqFSpVqoRdu3bhzJkzmD17NqytrXVdmlYcPXpU4Xe3d+9eAChfT+pQ5ztdSXuOHDkiAIgrV67ouhStSktLEwDE8ePHdV2KVnh7e4uRI0fKxwsLC4Wzs7OIiIjQYVVlA4DYtGmTrssoM7du3RIAxB9//KHrUsqMtbW1WLJkia7L0KqcnBzh7u4u9u7dK9q0aSNGjx6t65K0Ijw8XHh6euq6jDIzfvx48c477+i6jDdm9OjRolatWqKoqEjXpcjxiN0bdv/+fchkMp18rRmpp6CgAMnJyfD19ZVP09PTg6+vL5KSknRYGZXG/fv3AQA2NjY6rkT7CgsLsXbtWuTm5pb4tYoV1ciRI9G5c2eF96FUXLx4Ec7OzqhZsyb69++Pq1ev6rokrdm6dSuaNWuGXr16wcHBAU2aNMHixYt1XVaZKCgowKpVq/DRRx+9ke+eVxeD3Rv0+PFjjB8/HoGBgZL+7ryK7vbt2ygsLJR/+0kxR0dHZGRk6KgqKo2ioiKMGTMGrVq1ktS30/z1118wMzODkZERPv30U2zatAn169fXdVlas3btWqSkpMi/SlJKfHx8sHz5csTGxiI6OhppaWlo3bo1cnJydF2aVly+fBnR0dFwd3fH7t27MXz4cHz22Wf45ZdfdF2a1m3evBn37t3D4MGDdV2KAgY7LVq9ejXMzMzkw4EDB+SvPXnyBL1794YQAtHR0TqssvRetn5E5dHIkSNx6tQprF27VtelaFXdunWRmpqKP//8E8OHD0dQUBDOnDmj67K04tq1axg9ejRWr14NY2NjXZejdR07dkSvXr3QqFEj+Pn5YefOnbh37x7Wr1+v69K0oqioCE2bNsWMGTPQpEkTDBs2DEOHDsXChQt1XZrWLV26FB07doSzs7OuS1FQLr5STCq6du0KHx8f+biLiwuAf0PdlStX8Pvvv1fYo3UlrZ/U2NnZQV9fH5mZmQrTMzMz4eTkpKOqSFMhISHYvn079u/fj6pVq+q6HK0yNDRE7dq1AQBeXl44evQofvjhB/z00086ruz1JScn49atW2jatKl8WmFhIfbv34/58+cjPz8f+vr6OqxQu6ysrFCnTh1cunRJ16VoRZUqVZSOHterVw8bN27UUUVl48qVK9i3bx9iYmJ0XYoSBjstMjc3h7m5ucK04lB38eJFxMfHw9bWVkfVvT5V6ydFhoaG8PLyQlxcHLp16wbg2X+hcXFxJX6nMZUfQgiMGjUKmzZtQkJCAmrUqKHrkspcUVER8vPzdV2GVrRv3x5//fWXwrTg4GB4eHhg/Pjxkgp1APDw4UP8/fffGDhwoK5L0YpWrVopPV7owoULcHV11VFFZWPZsmVwcHBA586ddV2KEga7MvTkyRP07NkTKSkp2L59OwoLC+XXaNnY2MDQ0FDHFb6+7OxsXL16Vf5svuI3tJOTU4U+uhUaGoqgoCA0a9YM3t7eiIyMRG5uLoKDg3VdmlY8fPhQ4QhBWloaUlNTYWNjg+rVq+uwstc3cuRIrFmzBlu2bIG5ubn8PWdpaQkTExMdV/f6JkyYgI4dO6J69erIycnBmjVrkJCQgN27d+u6NK0wNzdXuh7S1NQUtra2krhO8osvvoC/vz9cXV1x48YNhIeHQ19fH4GBgbouTSvGjh2Lli1bYsaMGejduzeOHDmCRYsWYdGiRbouTWuKioqwbNkyBAUFwcCgHMYoXd+WK2XFjwBRNcTHx+u6PK1YtmyZyvULDw/XdWmvbd68eaJ69erC0NBQeHt7i8OHD+u6JK2Jj49X+XsLCgrSdWmvraT33LJly3RdmlZ89NFHwtXVVRgaGgp7e3vRvn17sWfPHl2XVaak9LiTPn36iCpVqghDQ0Ph4uIi+vTpIy5duqTrsrRq27ZtokGDBsLIyEh4eHiIRYsW6bokrdq9e7cAIM6fP6/rUlSSCSHEG8yRRERERFRGeFcsERERkUQw2BERERFJBIMdERERkUQw2BERERFJBIMdERERkUQw2BERERFJBIMdERERkUQw2BERERFJBIMdEUlS27ZtMWbMGF2X8cacP38eTk5OyMnJ0XUpb0Tfvn0xe/ZsXZdBVO4w2BFJUFZWFoYPH47q1avDyMgITk5O8PPzw6FDh+RtZDIZNm/erHHfbm5uiIyM1F6xJZDJZPLB0tISrVq1wu+//17my62oJkyYgFGjRsHc3FzpNQ8PDxgZGcm/N/dNSk9Ph0wmQ2pqqlb7nTRpEr799lvcv39fq/0SVXQMdkQS1KNHDxw/fhy//PILLly4gK1bt6Jt27a4c+eOrkvTyLJly3Dz5k0cOnQIdnZ26NKlCy5fvqzrssqdq1evYvv27Rg8eLDSawcPHsSjR4/Qs2dP/PLLL2++uDLSoEED1KpVC6tWrdJ1KUTlCoMdkcTcu3cPBw4cwKxZs/Dee+/B1dUV3t7emDBhArp27Qrg2VE3AOjevTtkMpl8/O+//0ZAQAAcHR1hZmaGt99+G/v27ZP33bZtW1y5cgVjx46VH00DgClTpqBx48YKdURGRsr7BYCEhAR4e3vD1NQUVlZWaNWqFa5cufLSdbGysoKTkxMaNGiA6OhoPHr0CHv37gUAnDp1Ch07doSZmRkcHR0xcOBA3L59u8S+VB2htLKywvLlywH8e2QpJiYG7733HipXrgxPT08kJSXJ29+5cweBgYFwcXFB5cqV0bBhQ/z6668KfW7YsAENGzaEiYkJbG1t4evri9zcXADA0aNH8f7778POzg6WlpZo06YNUlJSlOpcsmQJunfvjsqVK8Pd3R1bt2596XZav349PD094eLiovTa0qVL0a9fPwwcOBA///yz0us3b95E586dYWJigho1amDNmjUKR2VVHXG7d+8eZDIZEhISAAB3795F//79YW9vDxMTE7i7u2PZsmUAgBo1agAAmjRpAplMhrZt2wJQfaq8W7duCuF0wYIFcHd3h7GxMRwdHdGzZ0+F9v7+/li7du1Ltw3Rfw2DHZHEmJmZwczMDJs3b0Z+fr7KNkePHgXw7xGx4vGHDx+iU6dOiIuLw/Hjx/HBBx/A398fV69eBQDExMSgatWqmDZtGm7evImbN2+qVdPTp0/RrVs3tGnTBidPnkRSUhKGDRsmD4bqMDExAQAUFBTg3r17aNeuHZo0aYJjx44hNjYWmZmZ6N27t9r9lWTixIn44osvkJqaijp16iAwMBBPnz4FADx+/BheXl7YsWMHTp06hWHDhmHgwIE4cuQIgGchKTAwEB999BHOnj2LhIQEfPjhhxBCAABycnIQFBSEgwcP4vDhw3B3d0enTp2UroubOnUqevfujZMnT6JTp07o378/srOzS6z5wIEDaNasmdL0nJwc/PbbbxgwYADef/993L9/HwcOHFBoM2jQINy4cQMJCQnYuHEjFi1ahFu3bmm0zSZPnowzZ85g165dOHv2LKKjo2FnZwcA8m2zb98+3Lx5EzExMWr1eezYMXz22WeYNm0azp8/j9jYWLz77rsKbby9vXHkyJES93Oi/yRBRJKzYcMGYW1tLYyNjUXLli3FhAkTxIkTJxTaABCbNm16ZV9vvfWWmDdvnnzc1dVVzJ07V6FNeHi48PT0VJg2d+5c4erqKoQQ4s6dOwKASEhIUHsdnq8vNzdXjBgxQujr64sTJ06I6dOniw4dOii0v3btmgAgzp8/L4QQok2bNmL06NEq+ytmaWkpli1bJoQQIi0tTQAQS5Yskb9++vRpAUCcPXu2xDo7d+4sPv/8cyGEEMnJyQKASE9PV2sdCwsLhbm5udi2bZtCnZMmTZKPP3z4UAAQu3btKrEfT09PMW3aNKXpixYtEo0bN5aPjx49WgQFBcnHz549KwCIo0ePyqddvHhRAJD/jou3y/Hjx+Vt7t69KwCI+Ph4IYQQ/v7+Ijg4WGVtquYXQvn3I4QQAQEB8vo2btwoLCwsxIMHD0pc7xMnTmi0vYn+C3jEjkiCevTogRs3bmDr1q344IMPkJCQgKZNm8pPO5bk4cOH+OKLL1CvXj1YWVnBzMwMZ8+elR+xKy0bGxsMHjwYfn5+8Pf3xw8//KDW0b7AwECYmZnB3NwcGzduxNKlS9GoUSOcOHEC8fHx8qOTZmZm8PDwAPDsdPLraNSokfznKlWqAID8CFZhYSGmT5+Ohg0bwsbGBmZmZti9e7d8+3h6eqJ9+/Zo2LAhevXqhcWLF+Pu3bvy/jIzMzF06FC4u7vD0tISFhYWePjwodL2fb4GU1NTWFhYvPQo2qNHj2BsbKw0/eeff8aAAQPk4wMGDMBvv/0mP0J4/vx5GBgYoGnTpvI2tWvXhrW19as31HOGDx+OtWvXonHjxvjyyy+RmJio0fyqvP/++3B1dUXNmjUxcOBArF69Gnl5eQptio/ivjid6L+MwY5IooyNjfH+++9j8uTJSExMxODBgxEeHv7Seb744gts2rQJM2bMwIEDB5CamoqGDRuioKDgpfPp6enJTzcWe/LkicL4smXLkJSUhJYtW2LdunWoU6cODh8+/NJ+586di9TUVGRkZCAjIwNBQUEAngVQf39/pKamKgwXL15UOl1XTCaTvbJGAKhUqZLCPABQVFQEAPj+++/xww8/YPz48YiPj0dqair8/Pzk20dfXx979+7Frl27UL9+fcybNw9169ZFWloaACAoKAipqan44YcfkJiYiNTUVNja2ipt3+drKK6juAZV7OzsFAIkAJw5cwaHDx/Gl19+CQMDAxgYGKB58+bIy8vT6Lo0Pb1nfyae33YvbreOHTvKr728ceMG2rdvjy+++OKV/b7s92Fubo6UlBT8+uuvqFKlCsLCwuDp6Yl79+7J2xSfnra3t1d7fYikjsGO6D+ifv368ov4gWfhobCwUKHNoUOHMHjwYHTv3h0NGzaEk5MT0tPTFdoYGhoqzWdvb4+MjAyFP9SqHm/RpEkTTJgwAYmJiWjQoAHWrFnz0pqdnJxQu3ZtpT/cTZs2xenTp+Hm5obatWsrDKampir7sre3VzhKePHiRY2P9Bw6dAgBAQEYMGAAPD09UbNmTVy4cEGhjUwmQ6tWrTB16lQcP34choaG2LRpk3z+zz77DJ06dcJbb70FIyOjl97woa4mTZrgzJkzCtOWLl2Kd999FydOnFAIv6GhoVi6dCkAoG7dunj69CmOHz8un+/SpUsKIbF42z+/7VT9bu3t7REUFIRVq1YhMjISixYtAvBsfwGgcp95vs/CwkKcOnVKoY2BgQF8fX3x3Xff4eTJk0hPT1d45M2pU6dQtWpV+fV8RMRgRyQ5d+7cQbt27bBq1SqcPHkSaWlp+O233/Ddd98hICBA3s7NzQ1xcXHIyMiQ/yF3d3dHTEwMUlNTceLECfTr10/pSJGbmxv279+P69evy0NJ27ZtkZWVhe+++w5///03oqKisGvXLvk8aWlpmDBhApKSknDlyhXs2bMHFy9eRL169Uq1jiNHjkR2djYCAwNx9OhR/P3339i9ezeCg4OVAkSxdu3aYf78+Th+/DiOHTuGTz/9VOnI2Ku4u7tj7969SExMxNmzZ/HJJ58gMzNT/vqff/6JGTNm4NixY7h69SpiYmKQlZUlX093d3esXLkSZ8+exZ9//on+/fvLTye+Dj8/PyQlJcnX/cmTJ1i5ciUCAwPRoEEDhWHIkCH4888/cfr0aXh4eMDX1xfDhg3DkSNHcPz4cQwbNgwmJibyo5UmJiZo3rw5Zs6cibNnz+KPP/7ApEmTFJYfFhaGLVu24NKlSzh9+jS2b98uX2cHBweYmJjIb3Apfu5cu3btsGPHDuzYsQPnzp3D8OHDFY7Gbd++HT/++CNSU1Nx5coVrFixAkVFRahbt668zYEDB9ChQ4fX3n5EkqLTK/yISOseP34svvrqK9G0aVNhaWkpKleuLOrWrSsmTZok8vLy5O22bt0qateuLQwMDOQ3OaSlpYn33ntPmJiYiGrVqon58+crXeSelJQkGjVqJIyMjMTzHyHR0dGiWrVqwtTUVAwaNEh8++238n4zMjJEt27dRJUqVYShoaFwdXUVYWFhorCwsMT1wCtu7rhw4YLo3r27sLKyEiYmJsLDw0OMGTNGFBUVCSGUL86/fv266NChgzA1NRXu7u5i586dKm+eeNlNAnfu3BEBAQHCzMxMODg4iEmTJolBgwaJgIAAIYQQZ86cEX5+fsLe3l4YGRmJOnXqKNx4kpKSIpo1ayaMjY2Fu7u7+O2335RuRlG13s/XqcqTJ0+Es7OziI2NFUI8u3lGT09PZGRkqGxfr149MXbsWCGEEDdu3BAdO3YURkZGwtXVVaxZs0Y4ODiIhQsXytufOXNGtGjRQpiYmIjGjRuLPXv2KGyX6dOni3r16gkTExNhY2MjAgICxOXLl+XzL168WFSrVk3o6emJNm3aCCGEKCgoEMOHDxc2NjbCwcFBREREKNw8ceDAAdGmTRthbW0tTExMRKNGjcS6devkfT569EhYWlqKpKSkErcL0X+RTIgXLnIgIqIKJyoqClu3bsXu3btfq59//vkH1apVw759+9C+fXstVad90dHR2LRpE/bs2aPrUojKFQNdF0BERK/vk08+wb1795CTk6Pya8VK8vvvv+Phw4do2LAhbt68iS+//BJubm4l3oRSXlSqVAnz5s3TdRlE5Q6P2BER/Yft3r0bn3/+OS5fvgxzc3O0bNkSkZGRcHV11XVpRFQKDHZEREREEsG7YomIiIgkgsGOiIiISCIY7IiIiIgkgsGOiIiISCIY7IiIiIgkgsGOiIiISCIY7IiIiIgkgsGOiIiISCIY7IiIiIgk4v/vCtwkzEZYpQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='pay_2', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pelunasan (Agustus) dengan Gagal Bayar')\n",
"plt.xlabel('Status Pelunasan (Agustus)')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Tidak terlalu jauh berbeda dengan bulan September diketahui terjadi keterlambatan pembayaran hingga mencapai 6 bulan untuk bulan Agustus \n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOs0lEQVR4nO3deVQV9f/H8dcFZBEUdxAX3BfcxTS33Cjcl3KtXLDUTKwk/Zql4lJS+tWsNP26pJWaWmFm5Uqae5pKZuWOS6a44IoKCvP7w8P9eQWUq8DV8fk4Z85x5n7mM++ZO/f6YrZrMQzDEAAAAB55To4uAAAAAJmDYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYIcMGzVqlCwWi86ePevoUvAI69Wrl0qUKOHoMh5aixcvVr58+XTlypVM6S/lc3u7EiVKqFevXtbxFStWyMvLS2fOnHmgZfHePvzWrVsni8WidevWOboUZBGCncnMnTtXFotFv/32W5qvN27cWJUrV87mqsxr48aNatGihYoUKSJ3d3cVL15cbdq00YIFC6xtrl69qlGjRj3QF+nmzZs1atQoXbhw4cGLtlPKPpUyuLu7q1y5cgoNDVVsbGy212NmSUlJCg8P18CBA+Xl5WWdXqJECbVu3TrLltu8eXOVKVNGERERWbYMs0tOTtYXX3yhp59+WgUKFFCOHDlUqFAhPfPMM5oxY4YSEhIcXaJd7vzcWywWFSpUSE2aNNHy5csdXR7uwsXRBQCPqq+//lpdunRR9erV9frrrytv3ryKiYnR+vXrNXPmTD3//POSbgW70aNHS7oVrO/H5s2bNXr0aPXq1Ut58uTJpDWwz5gxY1SyZEldv35dGzdu1LRp0/TTTz9pz549ypkzp0NqMptly5Zp37596tu3b5YuZ9++fXJysv27vl+/fho8eLBGjx6tXLlyZenyzebatWvq0KGDVq5cqXr16mnw4MHy8fFRXFycfvnlF7366qv69ddfNXv2bEeXareUz71hGIqNjdXcuXPVsmVLLVu2LEv/2MD9I9gB92nUqFEKCAjQ1q1b5erqavPa6dOnHVRV1mnRooVq1aolSXr55ZeVP39+TZo0SUuXLlW3bt0cXJ05zJkzR/Xr11eRIkWydDlubm6ppj333HMaOHCgvv76a/Xu3TtLl282gwYN0sqVKzV58mS9/vrrNq+9+eabOnDggFavXu2g6h7M7Z97SXrppZfk4+Ojr7766qEMdsnJyUpMTJS7u7ujS3EYTsU+5o4cOSKLxaK5c+emes1isWjUqFGppp89e1adO3dW7ty5lT9/fr3++uu6fv36ffWZcv3PwYMHrUejvL29FRISoqtXr9rMe+3aNb322msqUKCAcuXKpbZt2+rEiROp+jx69KheffVVlS9fXh4eHsqfP786deqkI0eO2PSXcqph06ZNCgsLU8GCBeXp6akOHTpk6FqjQ4cO6YknnkgV6iSpUKFC1m1RsGBBSdLo0aOtpzRS6t29e7d69eqlUqVKyd3dXb6+vurdu7fOnTtns42GDBkiSSpZsqS1jyNHjti1rS9fvqw33nhDJUqUkJubmwoVKqSnn35aO3fuvOe6pqVp06aSpJiYGOu0efPmKTAwUB4eHsqXL5+6du2q48eP37Wf9K75SWvdevXqJS8vL504cULt27eXl5eXChYsqMGDByspKclm/v/+97+qV6+e8ufPLw8PDwUGBuqbb75JtfzVq1erQYMGypMnj7y8vFS+fHm9/fbb1tcTExM1cuRIBQYGytvbW56enmrYsKHWrl2bZr3//e9/NWPGDJUuXVpubm564okntH379rtuA0m6fv26VqxYoaCgoHu2tWebpeXOa+ykW/ts1apVtXTp0nsuX5K+++47Va5cWe7u7qpcubKWLFmSZrvk5GRNnjxZlSpVkru7u3x8fNSvXz+dP38+VU2tW7fWxo0bVbt2bbm7u6tUqVL64osvUvW5e/duNWrUSB4eHipatKjeffddzZkzx/q5SLF06VK1atVKfn5+cnNzU+nSpTV27NhU+0rKJSp//fWXmjRpopw5c6pIkSIaP378PbfD8ePHNWvWLDVv3jxVqEtRtmxZvfrqqzbTMrp/Zvb33oPKkyePPDw85OJie1woI+vTqFEjVatWLc1+y5cvr+DgYLv6k259z4WGhmr+/PmqVKmS3NzctGLFikxY00cXR+xM6uLFi2ne5HDjxo0H7rtz584qUaKEIiIitHXrVn388cc6f/58ml/A9vRZsmRJRUREaOfOnZo1a5YKFSqkDz74wNqmV69eWrx4sbp3764nn3xSv/zyi1q1apWqr+3bt2vz5s3q2rWrihYtqiNHjmjatGlq3Lix/vrrr1SnDQcOHKi8efMqPDxcR44c0eTJkxUaGqpFixbdtWZ/f39FRUXpn3/+UdGiRdNsU7BgQU2bNk39+/dXhw4d9Oyzz0qSqlatKulWqDh8+LBCQkLk6+urP//8UzNmzNCff/6prVu3ymKx6Nlnn9X+/fv11Vdf6cMPP1SBAgWsfdtzsfsrr7yib775RqGhoQoICNC5c+e0ceNG/f3336pZs2aG+0lx6NAhSVL+/PklSe+9955GjBihzp076+WXX9aZM2f0ySef6KmnntKuXbsy7RRyUlKSgoODVadOHf33v//VmjVrNHHiRJUuXVr9+/e3tvvoo4/Utm1bvfDCC0pMTNTChQvVqVMn/fDDD9b95s8//1Tr1q1VtWpVjRkzRm5ubjp48KA2bdpk7efSpUuaNWuWunXrpj59+ujy5cuaPXu2goODtW3bNlWvXt2mvgULFujy5cvq16+fLBaLxo8fr2effVaHDx9Wjhw50l2vHTt2KDEx8b7ei8wSGBio77777p7tVq1apeeee04BAQGKiIjQuXPnFBISkubnoF+/fpo7d65CQkL02muvKSYmRlOmTNGuXbu0adMmm21y8OBBdezYUS+99JJ69uypzz77TL169VJgYKAqVaokSTpx4oSaNGkii8WiYcOGydPTU7NmzUrzKOTcuXPl5eWlsLAweXl56eeff9bIkSN16dIlTZgwwabt+fPn1bx5cz377LPq3LmzvvnmGw0dOlRVqlRRixYt0t0Wy5cvV1JSkl588cV7brfbZWT/lLLuey+jUv4vMQxDp0+f1ieffKIrV66kWt+MrE/37t3Vp08f7dmzx+Za7+3bt2v//v0aPny43dtHkn7++WctXrxYoaGhKlCgADfwGDCVOXPmGJLuOlSqVMnaPiYmxpBkzJkzJ1Vfkozw8HDreHh4uCHJaNu2rU27V1991ZBk/P777/fdZ+/evW3adejQwcifP791fMeOHYYk44033rBp16tXr1R9Xr16NdVyt2zZYkgyvvjii1TbKigoyEhOTrZOHzRokOHs7GxcuHAhVT+3mz17tiHJcHV1NZo0aWKMGDHC2LBhg5GUlGTT7syZM6lqvFutX331lSHJWL9+vXXahAkTDElGTEyMTVt7trW3t7cxYMCAu65TWlK205o1a4wzZ84Yx48fNxYuXGjkz5/f8PDwMP755x/jyJEjhrOzs/Hee+/ZzPvHH38YLi4uNtN79uxp+Pv7W8fXrl1rSDLWrl17z3Xr2bOnIckYM2aMTdsaNWoYgYGBNtPu3LaJiYlG5cqVjaZNm1qnffjhh4Yk48yZM+mu/82bN42EhASbaefPnzd8fHxs9tuUevPnz2/ExcVZpy9dutSQZCxbtizdZRiGYcyaNcuQZPzxxx+pXvP39zdatWplHbdnm6V8xu7sr2fPnqmWM27cOEOSERsbe9daq1evbhQuXNjmM7Jq1SpDks17u2HDBkOSMX/+fJv5V6xYkWq6v79/qv3+9OnThpubm/Hmm29apw0cONCwWCzGrl27rNPOnTtn5MuXL9VnJK3PV79+/YycOXMa169ft05r1KhRqu+HhIQEw9fX13juuefuui0GDRpkSDKio6NtpickJBhnzpyxDmfPnrV5PSP7Z1Z876W379wpvf9L3NzcjLlz56Zqn5H1uXDhguHu7m4MHTrUpu1rr71meHp6GleuXLGrP8O49T3n5ORk/Pnnn3ddn8cJp2JNaurUqVq9enWqIeVI0YMYMGCAzfjAgQMlST/99NN99/nKK6/YjDds2FDnzp3TpUuXJMl6aP3O0xkpy76dh4eH9d83btzQuXPnVKZMGeXJkyfN0459+/a1eRxEw4YNlZSUpKNHj9615t69e2vFihVq3LixNm7cqLFjx6phw4YqW7asNm/efI81Tl3r9evXdfbsWT355JOSdN+nSNOTJ08e/frrr/r333/va/6goCAVLFhQxYoVU9euXeXl5aUlS5aoSJEiioyMVHJysjp37qyzZ89aB19fX5UtWzbVacsHldb+cvjwYZtpt2/b8+fP6+LFi2rYsKHNdk05irh06VIlJyenuSxnZ2fr6fbk5GTFxcXp5s2bqlWrVprvUZcuXZQ3b16b2iSlqu9OKaffb583u6Us+26PNDp58qSio6PVs2dPeXt7W6c//fTTCggIsGn79ddfy9vbW08//bTNfhEYGCgvL69U+0VAQIB1e0m3jkqXL1/eZtutWLFCdevWtTlSmi9fPr3wwgupar19H7h8+bLOnj2rhg0b6urVq9q7d69NWy8vL5ujUK6urqpdu/Y937eU76jb72KWbn0fFixY0Dr4+/unW1t6+2dWfu9l1O3/l8ybN09NmjTRyy+/rMjISLvXx9vbW+3atdNXX30lwzAk3ToCv2jRIrVv316enp529ZeiUaNGqfa9xxmnYk2qdu3aNhe8psibN+8DP4eubNmyNuOlS5eWk5PTA13LUbx4cZvxlP9gzp8/r9y5c+vo0aNycnJSyZIlbdqVKVMmVV/Xrl1TRESE5syZoxMnTli/QKRbpxXsWfa9BAcHKzg4WFevXtWOHTu0aNEiTZ8+Xa1bt9bevXut19qlJy4uTqNHj9bChQtT3XCRVq0PYvz48erZs6eKFSumwMBAtWzZUj169FCpUqUyNP/UqVNVrlw5ubi4yMfHR+XLl7feWXngwAEZhpFq30hxt1OQ9nJ3d7det5gib968qd6vH374Qe+++66io6NtHjVxe4jv0qWLZs2apZdffllvvfWWmjVrpmeffVYdO3a0uWv0888/18SJE7V3716byxnu3B+lB9ufJNnsr9ktZdl3Pvfudil/8KT1XpcvX97mP94DBw7o4sWL6X4O7tzn79x2Uur39ujRo6pbt26qdml9F/z5558aPny4fv75Z2sAS3Hn56to0aKp1jtv3rzavXt3mrWnSLmD+M7nDtavX996w8SECRNsTu9LGds/s/J7L6Pu/L+kW7duqlGjhkJDQ9W6dWvrHz0ZWR9J6tGjhxYtWqQNGzboqaee0po1axQbG6vu3bvbtMtof1Lan8PHGcHuMZfeF/idFxfb08f99Ons7Jzm9Pv5T27gwIGaM2eO3njjDdWtW1fe3t6yWCzq2rVrmkdlMmPZOXPmVMOGDdWwYUMVKFBAo0eP1vLly9WzZ8+7zte5c2dt3rxZQ4YMUfXq1eXl5aXk5GQ1b9483SNIt7NnW3fu3FkNGzbUkiVLtGrVKk2YMEEffPCBIiMj73oNUYr0/liQbh3JslgsWr58eZrb886jGfe7DlL679ftNmzYoLZt2+qpp57Sp59+qsKFCytHjhyaM2eOzTMGPTw8tH79eq1du1Y//vijVqxYoUWLFqlp06ZatWqVnJ2dNW/ePPXq1Uvt27fXkCFDVKhQITk7OysiIsJ6nWFG6rvX/pRyreL58+fTvWYzRWZ8btOSEqBSruN8UMnJySpUqJDmz5+f5ut3BvTM/B64cOGCGjVqpNy5c2vMmDEqXbq03N3dtXPnTg0dOjTV5+t+l12hQgVJ0p49e2xuDChYsKD1Rph58+bZzJPR/dMe9n7v3S8nJyc1adJEH330kQ4cOKBKlSrZtT7BwcHy8fHRvHnz9NRTT2nevHny9fW1uWnI3u1z+9E9EOweeylHE+588O3dTkMeOHDA5i+kgwcPKjk52XrB6v30eS/+/v5KTk5WTEyMzZGCgwcPpmr7zTffqGfPnpo4caJ12vXr17Pt4b4p4efkyZOS0v9P+Pz584qKitLo0aM1cuRI6/QDBw6kapteH/Zu68KFC+vVV1/Vq6++qtOnT6tmzZp67733MhTs7qZ06dIyDEMlS5ZUuXLl7Jo3K/aXb7/9Vu7u7lq5cqXNRfVz5sxJ1dbJyUnNmjVTs2bNNGnSJI0bN07vvPOO1q5dq6CgIH3zzTcqVaqUIiMjbd6H8PDw+64vLSkBISYmRlWqVLlr26zYZinLLlCgQKrAdbuUU4pp7af79u2zGS9durTWrFmj+vXrZ9p/vv7+/ml+7u+ctm7dOp07d06RkZF66qmnrNNvv4s7M7Ro0ULOzs6aP39+mqeD05LR/fNh/d67efOmpP8/SmnP583Z2VnPP/+85s6dqw8++EDfffed+vTpYxOs7ekPqXGN3WMud+7cKlCggNavX28z/dNPP013nqlTp9qMf/LJJ5JkDQf30+e9pNwGf2cfKcu+nbOzc6q/sj/55JMHPppxp6ioqDSnp1xrWL58eUmy3o125xdsyhfZnbVOnjw5VZ8p157c2UdGt3VSUlKq0zGFChWSn59fpjwR/9lnn5Wzs7NGjx6dan0Mw7B5fMud/P395ezsnKn7i7OzsywWi817fuTIkVR3fMbFxaWaN+XarZTtktb79Ouvv2rLli33XV9aAgMD5erqmu6vxtwuK7aZdOvO3LROc96ucOHCql69uj7//HObfWr16tX666+/bNp27txZSUlJGjt2bKp+bt68eV+hIzg4WFu2bFF0dLR1WlxcXKqjgmm9b4mJiQ+8je5UvHhx9e7dW8uXL9eUKVPSbHPnZyKj++fD+L1348YNrVq1Sq6urqpYsaJ12RlZnxTdu3fX+fPn1a9fvzTvsLW3P9jiiB308ssv6/3339fLL7+sWrVqaf369dq/f3+67WNiYtS2bVs1b95cW7Zs0bx58/T888/bnIawt897CQwM1HPPPafJkyfr3Llz1tv+U/q8/UhK69at9eWXX8rb21sBAQHasmWL1qxZYz3VlVnatWunkiVLqk2bNipdurTi4+O1Zs0aLVu2TE888YTatGkj6dZpgoCAAC1atEjlypVTvnz5VLlyZVWuXFlPPfWUxo8frxs3bqhIkSJatWpVmkcUAgMDJUnvvPOOunbtqhw5cqhNmzby9PTM0La+fPmyihYtqo4dO6patWry8vLSmjVrtH37dpu/8O9X6dKl9e6772rYsGE6cuSI2rdvr1y5cikmJkZLlixR3759NXjw4DTn9fb2VqdOnfTJJ5/IYrGodOnS+uGHHx7oIc+tWrXSpEmT1Lx5cz3//PM6ffq0pk6dqjJlythcMzVmzBitX79erVq1kr+/v06fPq1PP/1URYsWVYMGDSTd2p8iIyPVoUMHtWrVSjExMZo+fboCAgIy7fdcpVvXDj7zzDNas2aNxowZc9e2WbHNTp8+rd27d6e6OSotERERatWqlRo0aKDevXsrLi5On3zyiSpVqmSzTRo1aqR+/fopIiJC0dHReuaZZ5QjRw4dOHBAX3/9tT766CN17NjRrjr/85//aN68eXr66ac1cOBA6+NOihcvrri4OOt3Qb169ZQ3b1717NlTr732miwWi7788sssuYZx8uTJiomJ0cCBA7Vw4UK1adNGhQoV0tmzZ7Vp0yYtW7bM+oeelPH982H43lu+fLn1RpPTp09rwYIFOnDggN566y3lzp3brvVJUaNGDVWuXFlff/21KlasmOoRP/b2hztk6z24yHIpt6hv3749zdcbNWpk87gTw7h1W/lLL71keHt7G7ly5TI6d+5snD59Ot1Hk/z1119Gx44djVy5chl58+Y1QkNDjWvXrj1Qn3c+biJlPW5/dEF8fLwxYMAAI1++fIaXl5fRvn17Y9++fYYk4/3337e2O3/+vBESEmIUKFDA8PLyMoKDg429e/emesRDetsqo48D+Oqrr4yuXbsapUuXNjw8PAx3d3cjICDAeOedd4xLly7ZtN28ebMRGBhouLq62myDf/75x+jQoYORJ08ew9vb2+jUqZPx77//pvl4lLFjxxpFihQxnJycbLZNRrZ1QkKCMWTIEKNatWpGrly5DE9PT6NatWrGp59+etd1vNt2Ssu3335rNGjQwPD09DQ8PT2NChUqGAMGDDD27dtnbXPn404M49YjYZ577jkjZ86cRt68eY1+/foZe/bsSfNxJ56enqmWm9YjPWbPnm2ULVvWcHNzMypUqGDMmTMnVbuoqCijXbt2hp+fn+Hq6mr4+fkZ3bp1M/bv329tk5ycbIwbN87w9/c33NzcjBo1ahg//PBDqvVIedTIhAkTUtWX1vuZlsjISMNisRjHjh2zmV68ePFUjxnK6DbL6ONOpk2bZuTMmTPVvpueb7/91qhYsaLh5uZmBAQEGJGRkWm+t4ZhGDNmzDACAwMNDw8PI1euXEaVKlWM//znP8a///5rU9Ptj3RJ0ahRI6NRo0Y203bt2mU0bNjQcHNzM4oWLWpEREQYH3/8sSHJOHXqlLXdpk2bjCeffNLw8PAw/Pz8jP/85z/GypUrU32+0/peNIy099X03Lx505gzZ47RtGlTI1++fIaLi4tRoEABo1mzZsb06dNTfUdmZP80jMz/3nuQx524u7sb1atXN6ZNm2bziCh71ifF+PHjDUnGuHHj0nw9o/1Juq/HOJmZxTAceAsW8ICio6NVo0YNzZs3L8PXtwAPq6SkJAUEBKhz5842py/z5cunVq1a6csvv8yyZdeoUUONGzfWhx9+mGXLyEpvvPGG/ve//+nKlSsZusHmUWaG772PPvpIgwYN0pEjR9K8Gxr3j2vs8Mi4du1aqmmTJ0+Wk5OTzcXRwKPK2dlZY8aM0dSpU62nNA8dOqTz589n6XO6VqxYoQMHDmjYsGFZtozMdOd3wblz5/Tll1+qQYMGpgt1ZvzeMwxDs2fPVqNGjQh1WYBr7PDIGD9+vHbs2KEmTZrIxcVFy5cv1/Lly9W3b18VK1bM0eUBmaJLly7q0qWLDh8+rLlz52ratGlydXVV165ds2yZzZs3z9TrBbNa3bp11bhxY1WsWFGxsbGaPXu2Ll26pBEjRji6tExnpu+9+Ph4ff/991q7dq3++OOPDP8uMezk4FPBQIatWrXKqF+/vpE3b14jR44cRunSpY1Ro0YZN27ccHRpQKabM2eOkSNHDqN69erG8uXLHV3OQ2XYsGFG2bJlDQ8PDyNnzpxGgwYNjNWrVzu6rCxhpu+9lOtQ8+TJY7z99tuOLse0uMYOAADAJLjGDgAAwCQIdgAAACbx2N08kZycrH///Ve5cuW66w9dAwAAPAwMw9Dly5fl5+cnJ6e7H5N77ILdv//++8jdSQQAAHD8+HEVLVr0rm0eu2CXK1cuSbc2TsrPoQAAADysLl26pGLFilkzzN08dsEu5fRr7ty5CXYAAOCRkZFLyLh5AgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJhwa79evXq02bNvLz85PFYtF33313z3nWrVunmjVrys3NTWXKlNHcuXOzvE4AAIBHgUODXXx8vKpVq6apU6dmqH1MTIxatWqlJk2aKDo6Wm+88YZefvllrVy5MosrBQAAePi5OHLhLVq0UIsWLTLcfvr06SpZsqQmTpwoSapYsaI2btyoDz/8UMHBwVlVJgAAwCPhkbrGbsuWLQoKCrKZFhwcrC1btjioIgAAHh+GYejKlSvWwTAMR5eEOzj0iJ29Tp06JR8fH5tpPj4+unTpkq5duyYPD49U8yQkJCghIcE6funSpSyvEwAAM4qPj1e7du2s40uXLpWXl5cDK8KdHqlgdz8iIiI0evRoR5cBAMhmgUO+cHQJmWLHhB6OLuGRwPt9yyN1KtbX11exsbE202JjY5U7d+40j9ZJ0rBhw3Tx4kXrcPz48ewoFQAAINs9Ukfs6tatq59++slm2urVq1W3bt1053Fzc5Obm1tWlwYAAOBwDj1id+XKFUVHRys6OlrSrceZREdH69ixY5JuHW3r0eP/D0m+8sorOnz4sP7zn/9o7969+vTTT7V48WINGjTIEeUDAAA8VBwa7H777TfVqFFDNWrUkCSFhYWpRo0aGjlypCTp5MmT1pAnSSVLltSPP/6o1atXq1q1apo4caJmzZrFo04AAADk4FOxjRs3vuut0mn9qkTjxo21a9euLKwKAADg0fRI3TwBAACA9BHsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJiEi6MLAAA8ugzDUHx8vHXc09NTFovFgRUBjzeCHQDgvsXHx6tdu3bW8aVLl8rLy8uBFQGPN07FAgAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACbh4ugCAMAMDMNQfHy8ddzT01MWi8WBFQF4HBHsACATxMfHq127dtbxpUuXysvLy4EVAXgccSoWAADAJAh2AAAAJuHwYDd16lSVKFFC7u7uqlOnjrZt23bX9pMnT1b58uXl4eGhYsWKadCgQbp+/Xo2VQsAAPDwcmiwW7RokcLCwhQeHq6dO3eqWrVqCg4O1unTp9Nsv2DBAr311lsKDw/X33//rdmzZ2vRokV6++23s7lyAACAh49Dg92kSZPUp08fhYSEKCAgQNOnT1fOnDn12Wefpdl+8+bNql+/vp5//nmVKFFCzzzzjLp163bPo3wAAACPA4cFu8TERO3YsUNBQUH/X4yTk4KCgrRly5Y056lXr5527NhhDXKHDx/WTz/9pJYtW2ZLzQAAAA8zhz3u5OzZs0pKSpKPj4/NdB8fH+3duzfNeZ5//nmdPXtWDRo0kGEYunnzpl555ZW7nopNSEhQQkKCdfzSpUuZswIAAAAPGYffPGGPdevWady4cfr000+1c+dORUZG6scff9TYsWPTnSciIkLe3t7WoVixYtlYMQAAQPZx2BG7AgUKyNnZWbGxsTbTY2Nj5evrm+Y8I0aMUPfu3fXyyy9LkqpUqaL4+Hj17dtX77zzjpycUufUYcOGKSwszDp+6dIlwh0AADAlhx2xc3V1VWBgoKKioqzTkpOTFRUVpbp166Y5z9WrV1OFN2dnZ0m3fs4nLW5ubsqdO7fNAAAAYEYO/UmxsLAw9ezZU7Vq1VLt2rU1efJkxcfHKyQkRJLUo0cPFSlSRBEREZKkNm3aaNKkSapRo4bq1KmjgwcPasSIEWrTpo014AEAADyuHBrsunTpojNnzmjkyJE6deqUqlevrhUrVlhvqDh27JjNEbrhw4fLYrFo+PDhOnHihAoWLKg2bdrovffec9QqAAAAPDQcGuwkKTQ0VKGhoWm+tm7dOptxFxcXhYeHKzw8PBsqAwAAeLQ8UnfFAgAAIH0EOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkXBxdAAAAyDyBQ77Isr4tNxPlfdt44xELZbi4ZsmydkzokSX9mh1H7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEnYFexu3LghFxcX7dmzJ6vqAQAAwH2yK9jlyJFDxYsXV1JSUlbVAwAAgPtk96nYd955R2+//bbi4uKyoh4AAADcJxd7Z5gyZYoOHjwoPz8/+fv7y9PT0+b1nTt3ZlpxAAAAyDi7g1379u2zoAwAAAA8KLuDXXh4eFbUAQAAgAfE404AAABMwu4jdklJSfrwww+1ePFiHTt2TImJiTavc1MFAACAY9h9xG706NGaNGmSunTpoosXLyosLEzPPvusnJycNGrUqCwoEQAAABlhd7CbP3++Zs6cqTfffFMuLi7q1q2bZs2apZEjR2rr1q1ZUSMAAAAywO5gd+rUKVWpUkWS5OXlpYsXL0qSWrdurR9//NHuAqZOnaoSJUrI3d1dderU0bZt2+7a/sKFCxowYIAKFy4sNzc3lStXTj/99JPdywUAADAbu4Nd0aJFdfLkSUlS6dKltWrVKknS9u3b5ebmZldfixYtUlhYmMLDw7Vz505Vq1ZNwcHBOn36dJrtExMT9fTTT+vIkSP65ptvtG/fPs2cOVNFihSxdzUAAABMx+6bJzp06KCoqCjVqVNHAwcO1IsvvqjZs2fr2LFjGjRokF19TZo0SX369FFISIgkafr06frxxx/12Wef6a233krV/rPPPlNcXJw2b96sHDlySJJKlChh7yoAAACYkt3B7v3337f+u0uXLvL399fmzZtVtmxZtWnTJsP9JCYmaseOHRo2bJh1mpOTk4KCgrRly5Y05/n+++9Vt25dDRgwQEuXLlXBggX1/PPPa+jQoXJ2dk5znoSEBCUkJFjHL126lOEaAQAAHiV2B7v4+HibnxF78skn9eSTT9q94LNnzyopKUk+Pj420318fLR379405zl8+LB+/vlnvfDCC/rpp5908OBBvfrqq7px40a6D06OiIjQ6NGj7a4PwP0xDEPx8fHWcU9PT1ksFgdWBACPD7uvsfPx8VHv3r21cePGrKjnrpKTk1WoUCHNmDFDgYGB6tKli9555x1Nnz493XmGDRumixcvWofjx49nY8XA4yc+Pl7t2rWzDreHPABA1rI72M2bN09xcXFq2rSpypUrp/fff1///vuv3QsuUKCAnJ2dFRsbazM9NjZWvr6+ac5TuHBhlStXzua0a8WKFXXq1KlUD0pO4ebmpty5c9sMAAAAZmT3qdj27durffv2OnPmjL788kvNnTtXI0aMUHBwsHr37q22bdvKxeXe3bq6uiowMFBRUVFq3769pFtH5KKiohQaGprmPPXr19eCBQuUnJwsJ6dbmXT//v0qXLiwXF1d7V0VAI+ZwCFfZFnflpuJ8r5tvPGIhTJcMv97aceEHpneJwDzuO/fii1YsKDCwsK0e/duTZo0SWvWrFHHjh3l5+enkSNH6urVq/fsIywsTDNnztTnn3+uv//+W/3791d8fLz1LtkePXrY3FzRv39/xcXF6fXXX9f+/fv1448/aty4cRowYMD9rgYAAIBp2H3ELkVsbKw+//xzzZ07V0ePHlXHjh310ksv6Z9//tEHH3ygrVu3Wp9xl54uXbrozJkzGjlypE6dOqXq1atrxYoV1hsqjh07Zj0yJ0nFihXTypUrNWjQIFWtWlVFihTR66+/rqFDh97vagAAAJiG3cEuMjJSc+bM0cqVKxUQEKBXX31VL774ovLkyWNtU69ePVWsWDFD/YWGhqZ76nXdunWpptWtW5efLgMAAEiD3cEuJCREXbt21aZNm/TEE0+k2cbPz0/vvPPOAxcHAACAjLM72J08eVI5c+a8axsPD490nysHAACArGF3sLs91F2/fj3VY0Z4nAgAAIBj2H1XbHx8vEJDQ1WoUCF5enoqb968NgMAAAAcw+5g95///Ec///yzpk2bJjc3N82aNUujR4+Wn5+fvvgi654RBQAAgLuz+1TssmXL9MUXX6hx48YKCQlRw4YNVaZMGfn7+2v+/Pl64YUXsqJOAAAA3IPdR+zi4uJUqlQpSbeup4uLi5MkNWjQQOvXr8/c6gAAAJBhdge7UqVKKSYmRpJUoUIFLV68WNKtI3m3P8sOAAAA2cvuYBcSEqLff/9dkvTWW29p6tSpcnd316BBgzRkyJBMLxAAAAAZY/c1doMGDbL+OygoSHv37tWOHTtUpkwZVa1aNVOLAwAAQMbd92/FpvD395e/v39m1AIAAIAHYNep2MuXL2vHjh26cuWKJGnnzp3q0aOHOnXqpPnz52dJgQAAAMiYDB+xW79+vVq3bq0rV64ob968+uqrr9SxY0cVKVJEzs7OioyM1NWrV9WnT5+srBcAAADpyHCwGz58uDp16qQxY8bos88+U5cuXRQaGqpx48ZJkt59911NnTqVYAc8AgKHZN3DxC03E+V923jjEQtluLhm+nJ2TOiR6X0CwKMuw6did+/erSFDhqhIkSIaOnSoLl26pC5dulhf79q1qw4dOpQlRQIAAODeMhzsLl26pHz58kmSXF1dlTNnTuXKlcv6eq5cuXT16tXMrxAAAAAZkuFgZ7FYZLFY0h0HAACAY2X4GjvDMNSsWTO5uNya5erVq2rTpo1cXW9dO3Pz5s2sqRAAAAAZkuFgFx4ebjPerl27VG2ee+65B68IAAAA9+W+gx0AAAAeLnb/ViwAAAAeTgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACaRobtiP/744wx3+Nprr913MQAAALh/GQp2H374YYY6s1gsBDsAAAAHyVCwi4mJyeo6AAAA8IC4xg4AAMAkMvzLE7f7559/9P333+vYsWNKTEy0eW3SpEmZUhgAAADsY3ewi4qKUtu2bVWqVCnt3btXlStX1pEjR2QYhmrWrJkVNQIAHkDgkC+yrG/LzUR53zbeeMRCGS6uWbKsHRN6ZEm/gJnYfSp22LBhGjx4sP744w+5u7vr22+/1fHjx9WoUSN16tQpK2oEAABABtgd7P7++2/16HHrryYXFxddu3ZNXl5eGjNmjD744INMLxAAAAAZY3ew8/T0tF5XV7hwYR06dMj62tmzZzOvMgAAANjF7mvsnnzySW3cuFEVK1ZUy5Yt9eabb+qPP/5QZGSknnzyyayoEQAAABlgd7CbNGmSrly5IkkaPXq0rly5okWLFqls2bLcEQtAhnMOXazazWYcAJA97A52pUqVsv7b09NT06dPz9SCADziLJYsuysSAHB3PKAYAADAJOw+Ypc3b15ZLJZU0y0Wi9zd3VWmTBn16tVLISEhmVIgAAAAMsbuYDdy5Ei99957atGihWrXri1J2rZtm1asWKEBAwYoJiZG/fv3182bN9WnT59MLxgAAABpszvYbdy4Ue+++65eeeUVm+n/+9//tGrVKn377beqWrWqPv74Y4IdAABANrL7GruVK1cqKCgo1fRmzZpp5cqVkqSWLVvq8OHDD14dAAAAMszuYJcvXz4tW7Ys1fRly5YpX758kqT4+HjlypXrwasDAABAhtl9KnbEiBHq37+/1q5da73Gbvv27frpp5+sjz5ZvXq1GjVqlLmVAgAA4K7sDnZ9+vRRQECApkyZosjISElS+fLl9csvv6hevXqSpDfffDNzqwQAAMA92R3sJKl+/fqqX79+ZtcCAACAB3BfwS7F9evXlZiYaDMtd+7cD1QQAAAA7o/dN09cvXpVoaGhKlSokDw9PZU3b16bAQAAAI5hd7AbMmSIfv75Z02bNk1ubm6aNWuWRo8eLT8/P33xxRdZUSMAAAAywO5TscuWLdMXX3yhxo0bKyQkRA0bNlSZMmXk7++v+fPn64UXXsiKOgEAAHAPdh+xi4uLU6lSpSTdup4uLi5OktSgQQOtX78+c6sDAABAhtkd7EqVKqWYmBhJUoUKFbR48WJJt47k5cmTJ1OLAwAAQMbZHexCQkL0+++/S5LeeustTZ06Ve7u7ho0aJCGDBmS6QUCAAAgY+y+xm7QoEHWfwcFBWnv3r3asWOHypQpo6pVq2ZqcQAAAMi4B3qOnST5+/vL398/M2oBAADAA8hwsLt27ZqioqLUunVrSdKwYcOUkJBgfd3Z2Vljx46Vu7t75lcJAACAe8pwsPv888/1448/WoPdlClTVKlSJXl4eEiS9u7dKz8/P5tTtQAAAMg+Gb55Yv78+erbt6/NtAULFmjt2rVau3atJkyYYL1DFgAAANkvw8Hu4MGDqlKlinXc3d1dTk7/P3vt2rX1119/ZW51AAAAyLAMn4q9cOGCzTV1Z86csXk9OTnZ5nUAAABkrwwfsStatKj27NmT7uu7d+9W0aJFM6UoAAAA2C/Dwa5ly5YaOXKkrl+/nuq1a9euafTo0WrVqlWmFgcAAICMy3Cwe/vttxUXF6fy5ctrwoQJWrp0qZYuXarx48erfPnyOn/+vN5+++37KmLq1KkqUaKE3N3dVadOHW3bti1D8y1cuFAWi0Xt27e/r+UCAACYSYavsfPx8dHmzZvVv39/vfXWWzIMQ5JksVj09NNP69NPP5WPj4/dBSxatEhhYWGaPn266tSpo8mTJys4OFj79u1ToUKF0p3vyJEjGjx4sBo2bGj3MgEAAMzIrt+KLVmypFasWKEzZ85o69at2rp1q86cOaMVK1aoVKlS91XApEmT1KdPH4WEhCggIEDTp09Xzpw59dlnn6U7T1JSkl544QWNHj36vpcLAABgNnYFuxT58uVT7dq1Vbt2beXLl+++F56YmKgdO3YoKCjo/wtyclJQUJC2bNmS7nxjxoxRoUKF9NJLL91zGQkJCbp06ZLNAAAAYEb3Fewyy9mzZ5WUlJTqFK6Pj49OnTqV5jwbN27U7NmzNXPmzAwtIyIiQt7e3tahWLFiD1w3AADAw8ihwc5ely9fVvfu3TVz5kwVKFAgQ/MMGzZMFy9etA7Hjx/P4ioBAAAcI8M3T2SFAgUKyNnZWbGxsTbTY2Nj5evrm6r9oUOHdOTIEbVp08Y6LTk5WZLk4uKiffv2qXTp0jbzuLm5yc3NLQuqBwAAeLg49Iidq6urAgMDFRUVZZ2WnJysqKgo1a1bN1X7ChUq6I8//lB0dLR1aNu2rZo0aaLo6GhOswIAgMeaQ4/YSVJYWJh69uypWrVqqXbt2po8ebLi4+MVEhIiSerRo4eKFCmiiIgIubu7q3Llyjbz58mTR5JSTQcAAHjcODzYdenSRWfOnNHIkSN16tQpVa9eXStWrLDeUHHs2DE5OT1SlwICAAA4hMODnSSFhoYqNDQ0zdfWrVt313nnzp2b+QUBAAA8gjgUBgAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIPxS9PAMCjznDOoYtVu9mMA0B2I9gBQGawWGS4uDq6CgCPOU7FAgAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEi6OLgAAADwaDOcculi1m804Hi4EOwAAkDEWiwwXV0dXgbvgVCwAAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABM4qEIdlOnTlWJEiXk7u6uOnXqaNu2bem2nTlzpho2bKi8efMqb968CgoKumt7AACAx4XDg92iRYsUFham8PBw7dy5U9WqVVNwcLBOnz6dZvt169apW7duWrt2rbZs2aJixYrpmWee0YkTJ7K5cvsYhqErV65YB8MwHF0SAAAwGYcHu0mTJqlPnz4KCQlRQECApk+frpw5c+qzzz5Ls/38+fP16quvqnr16qpQoYJmzZql5ORkRUVFZXPl9omPj1e7du2sQ3x8vKNLAgAAJuPQYJeYmKgdO3YoKCjIOs3JyUlBQUHasmVLhvq4evWqbty4oXz58mVVmQAAAI8EF0cu/OzZs0pKSpKPj4/NdB8fH+3duzdDfQwdOlR+fn424fB2CQkJSkhIsI5funTp/gsGAAB4iDn8VOyDeP/997Vw4UItWbJE7u7uabaJiIiQt7e3dShWrFg2VwkAAJA9HBrsChQoIGdnZ8XGxtpMj42Nla+v713n/e9//6v3339fq1atUtWqVdNtN2zYMF28eNE6HD9+PFNqBwAAeNg4NNi5uroqMDDQ5saHlBsh6tatm+5848eP19ixY7VixQrVqlXrrstwc3NT7ty5bQYAAAAzcug1dpIUFhamnj17qlatWqpdu7YmT56s+Ph4hYSESJJ69OihIkWKKCIiQpL0wQcfaOTIkVqwYIFKlCihU6dOSZK8vLzk5eXlsPUAbmcYhs2dz56enrJYLA6sCADwOHB4sOvSpYvOnDmjkSNH6tSpU6pevbpWrFhhvaHi2LFjcnL6/wOL06ZNU2Jiojp27GjTT3h4uEaNGpWdpQPpSnm8TYqlS5fyhwcAIMs5PNhJUmhoqEJDQ9N8bd26dTbjR44cyfqCAAAAHkGP9F2xAAAA+H8EOwAAAJMg2AEAAJjEQ3GNHcyLu0MBAMg+BDtkKe4OBQAg+3AqFgAAwCQ4YnebwCFfZFnflpuJ8r5tvPGIhTJcXLNkWTsm9MiSfs0oq95z3m8AgCNwxA4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEDyiGJB7Um9kM5xy6WLWbzTgAAFmNYAdkBYslywIsAADp4VQsAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEd8VmEx5/AQAAshrBLrvw+AsAJsQfrcDDhWAHALh//NEKPFS4xg4AAMAkCHYAAAAmwalYZCmuvwEAIPsQ7JC1uP4GAIBsw6lYAAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk3gogt3UqVNVokQJubu7q06dOtq2bdtd23/99deqUKGC3N3dVaVKFf3000/ZVCkAAMDDy+HBbtGiRQoLC1N4eLh27typatWqKTg4WKdPn06z/ebNm9WtWze99NJL2rVrl9q3b6/27dtrz5492Vw5AADAw8XhwW7SpEnq06ePQkJCFBAQoOnTpytnzpz67LPP0mz/0UcfqXnz5hoyZIgqVqyosWPHqmbNmpoyZUo2Vw4AAPBwcWiwS0xM1I4dOxQUFGSd5uTkpKCgIG3ZsiXNebZs2WLTXpKCg4PTbQ8AAPC4cHHkws+ePaukpCT5+PjYTPfx8dHevXvTnOfUqVNptj916lSa7RMSEpSQkGAdv3jxoiTp0qVLqdomJVyzq/6HVVrrdi9mWHfWO+NY70fX47rekv3rzno/2ljv1NMMw7h3B4YDnThxwpBkbN682Wb6kCFDjNq1a6c5T44cOYwFCxbYTJs6dapRqFChNNuHh4cbkhgYGBgYGBgYHunh+PHj98xWDj1iV6BAATk7Oys2NtZmemxsrHx9fdOcx9fX1672w4YNU1hYmHU8OTlZcXFxyp8/vywWywOugX0uXbqkYsWK6fjx48qdO3e2LtuRWO/Ha72lx3fdWW/W+3HAemf/ehuGocuXL8vPz++ebR0a7FxdXRUYGKioqCi1b99e0q3gFRUVpdDQ0DTnqVu3rqKiovTGG29Yp61evVp169ZNs72bm5vc3NxspuXJkyczyr9vuXPnfqw+DClY78fP47rurPfjhfV+vDhqvb29vTPUzqHBTpLCwsLUs2dP1apVS7Vr19bkyZMVHx+vkJAQSVKPHj1UpEgRRURESJJef/11NWrUSBMnTlSrVq20cOFC/fbbb5oxY4YjVwMAAMDhHB7sunTpojNnzmjkyJE6deqUqlevrhUrVlhvkDh27JicnP7/5t169eppwYIFGj58uN5++22VLVtW3333nSpXruyoVQAAAHgoODzYSVJoaGi6p17XrVuXalqnTp3UqVOnLK4q87m5uSk8PDzVqWGzY70fr/WWHt91Z71Z78cB6/1wr7fFMDJy7ywAAAAedg7/5QkAAABkDoIdAACASRDsAAAATIJgl01u3LihoUOHqkqVKvL09JSfn5969Oihf//919GlZbnIyEg988wz1odCR0dHO7qkbDF16lSVKFFC7u7uqlOnjrZt2+bokrJURESEnnjiCeXKlUuFChVS+/bttW/fPkeXleWmTZumqlWrWp9tVbduXS1fvtzRZWW7999/XxaLxeYZo2Y0atQoWSwWm6FChQqOLitbnDhxQi+++KLy588vDw8PValSRb/99pujy8pyJUqUSPWeWywWDRgwwNGlpYlgl02uXr2qnTt3asSIEdq5c6ciIyO1b98+tW3b1tGlZbn4+Hg1aNBAH3zwgaNLyTaLFi1SWFiYwsPDtXPnTlWrVk3BwcE6ffq0o0vLMr/88osGDBigrVu3avXq1bpx44aeeeYZxcfHO7q0LFW0aFG9//772rFjh3777Tc1bdpU7dq1059//uno0rLN9u3b9b///U9Vq1Z1dCnZolKlSjp58qR12Lhxo6NLynLnz59X/fr1lSNHDi1fvlx//fWXJk6cqLx58zq6tCy3fft2m/d79erVkvTwPp0jI7/piqyxbds2Q5Jx9OhRR5eSLWJiYgxJxq5duxxdSparXbu2MWDAAOt4UlKS4efnZ0RERDiwqux1+vRpQ5Lxyy+/OLqUbJc3b15j1qxZji4jW1y+fNkoW7assXr1aqNRo0bG66+/7uiSslR4eLhRrVo1R5eR7YYOHWo0aNDA0WU8FF5//XWjdOnSRnJysqNLSRNH7Bzo4sWLslgsDv+JM2SuxMRE7dixQ0FBQdZpTk5OCgoK0pYtWxxYWfa6ePGiJClfvnwOriT7JCUlaeHChYqPj0/3Zw7NZsCAAWrVqpXN/m52Bw4ckJ+fn0qVKqUXXnhBx44dc3RJWe77779XrVq11KlTJxUqVEg1atTQzJkzHV1WtktMTNS8efPUu3fvbP+9+Ywi2DnI9evXNXToUHXr1u2x/K09Mzt79qySkpKsv56SwsfHR6dOnXJQVdkrOTlZb7zxhurXr/9Y/CrMH3/8IS8vL7m5uemVV17RkiVLFBAQ4OiystzChQu1c+dO608+Pg7q1KmjuXPnasWKFZo2bZpiYmLUsGFDXb582dGlZanDhw9r2rRpKlu2rFauXKn+/fvrtdde0+eff+7o0rLVd999pwsXLqhXr16OLiVdBLssMn/+fHl5eVmHDRs2WF+7ceOGOnfuLMMwNG3aNAdWmfnutt54fAwYMEB79uzRwoULHV1Ktihfvryio6P166+/qn///urZs6f++usvR5eVpY4fP67XX39d8+fPl7u7u6PLyTYtWrRQp06dVLVqVQUHB+unn37ShQsXtHjxYkeXlqWSk5NVs2ZNjRs3TjVq1FDfvn3Vp08fTZ8+3dGlZavZs2erRYsW8vPzc3Qp6XooflLMjNq2bas6depYx4sUKSLp/0Pd0aNH9fPPP5vuaF166/04KVCggJydnRUbG2szPTY2Vr6+vg6qKvuEhobqhx9+0Pr161W0aFFHl5MtXF1dVaZMGUlSYGCgtm/fro8++kj/+9//HFxZ1tmxY4dOnz6tmjVrWqclJSVp/fr1mjJlihISEuTs7OzACrNHnjx5VK5cOR08eNDRpWSpwoULpzoKXbFiRX377bcOqij7HT16VGvWrFFkZKSjS7krgl0WyZUrl3LlymUzLSXUHThwQGvXrlX+/PkdVF3WSWu9Hzeurq4KDAxUVFSU2rdvL+nWX7tRUVHp/iayGRiGoYEDB2rJkiVat26dSpYs6eiSHCY5OVkJCQmOLiNLNWvWTH/88YfNtJCQEFWoUEFDhw59LEKdJF25ckWHDh1S9+7dHV1Klqpfv36qxxft379f/v7+Dqoo+82ZM0eFChVSq1atHF3KXRHsssmNGzfUsWNH7dy5Uz/88IOSkpKs11vly5dPrq6uDq4w68TFxenYsWPWZ/alfDn4+vqa9ghWWFiYevbsqVq1aql27dqaPHmy4uPjFRIS4ujSssyAAQO0YMECLV26VLly5bLu397e3vLw8HBwdVln2LBhatGihYoXL67Lly9rwYIFWrdunVauXOno0rJUrly5Ul0/6enpqfz585v6usrBgwerTZs28vf317///qvw8HA5OzurW7duji4tSw0aNEj16tXTuHHj1LlzZ23btk0zZszQjBkzHF1atkhOTtacOXPUs2dPubg85NHJ0bflPi5SHvWR1rB27VpHl5el5syZk+Z6h4eHO7q0LPXJJ58YxYsXN1xdXY3atWsbW7dudXRJWSq9/XvOnDmOLi1L9e7d2/D39zdcXV2NggULGs2aNTNWrVrl6LIc4nF43EmXLl2MwoULG66urkaRIkWMLl26GAcPHnR0Wdli2bJlRuXKlQ03NzejQoUKxowZMxxdUrZZuXKlIcnYt2+fo0u5J4thGEZ2h0kAAABkPu6KBQAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwA4C7aNy4sd544w1Hl5Ft9u3bJ19fX12+fPm+++jVq5f1d5Kl1NvwySeffKx+PB7ITgQ7AOk6c+aM+vfvr+LFi8vNzU2+vr4KDg7Wpk2brG0sFou+++47u/suUaKEJk+enHnFpsNisVgHb29v1a9fXz///HOWL/dRNWzYMA0cOFC5cuWSJK1bt04Wi0UXLly47z4jIyM1duxY6/jw4cP11ltvKTk5+UHLBXAHgh2AdD333HPatWuXPv/8c+3fv1/ff/+9GjdurHPnzjm6NLvMmTNHJ0+e1KZNm1SgQAG1bt1ahw8fdnRZD51jx47phx9+UK9evTK133z58lmDoiS1aNFCly9f1vLlyzN1OQAIdgDSceHCBW3YsEEffPCBmjRpIn9/f9WuXVvDhg1T27ZtJd066iZJHTp0kMVisY4fOnRI7dq1k4+Pj7y8vPTEE09ozZo11r4bN26so0ePatCgQdajaZI0atQoVa9e3aaOyZMnW/uVbh1Bql27tjw9PZUnTx7Vr19fR48eveu65MmTR76+vqpcubKmTZuma9euafXq1ZKkPXv2qEWLFvLy8pKPj4+6d++us2fPpttXWkco8+TJo7lz50qSjhw5IovFosjISDVp0kQ5c+ZUtWrVtGXLFmv7c+fOqVu3bipSpIhy5sypKlWq6KuvvrLp85tvvlGVKlXk4eGh/PnzKygoSPHx8ZKk7du36+mnn1aBAgXk7e2tRo0aaefOnanqnDVrljp06KCcOXOqbNmy+v777++6nRYvXqxq1aqpSJEi6bbJyHt0pztPxTo7O6tly5ZauHDhXesBYD+CHYA0eXl5ycvLS999950SEhLSbLN9+3ZJ/39ELGX8ypUratmypaKiorRr1y41b95cbdq00bFjxyTdOjVXtGhRjRkzRidPntTJkyczVNPNmzfVvn17NWrUSLt379aWLVvUt29fazDMCA8PD0lSYmKiLly4oKZNm6pGjRr67bfftGLFCsXGxqpz584Z7i8977zzjgYPHqzo6GiVK1dO3bp1082bNyVJ169fV2BgoH788Uft2bNHffv2Vffu3bVt2zZJ0smTJ9WtWzf17t1bf//9t9atW6dnn31WhmFIki5fvqyePXtq48aN2rp1q8qWLauWLVumui5u9OjR6ty5s3bv3q2WLVvqhRdeUFxcXLo1b9iwQbVq1Xrgdc+I2rVra8OGDdmyLOBx4uLoAgA8nFxcXDR37lz16dNH06dPV82aNdWoUSN17dpVVatWlSQVLFhQ0v8fEUtRrVo1VatWzTo+duxYLVmyRN9//71CQ0OVL18+OTs7K1euXDbz3culS5d08eJFtW7dWqVLl5YkVaxYMcPzX716VcOHD5ezs7MaNWqkKVOmqEaNGho3bpy1zWeffaZixYpp//79KleuXIb7vtPgwYPVqlUrSbcCVqVKlXTw4EFVqFBBRYoU0eDBg61tBw4cqJUrV2rx4sWqXbu2Tp48qZs3b+rZZ5+Vv7+/JKlKlSrW9k2bNrVZ1owZM5QnTx798ssvat26tXV6r1691K1bN0nSuHHj9PHHH2vbtm1q3rx5mjUfPXo024Kdn5+fjh8/ruTkZDk5cYwByCx8mgCk67nnntO///6r77//Xs2bN9e6detUs2ZN62nH9Fy5ckWDBw9WxYoVlSdPHnl5eenvv/+2HrG7X/ny5VOvXr0UHBysNm3a6KOPPsrQ0b5u3brJy8tLuXLl0rfffqvZs2eratWq+v3337V27Vrr0UkvLy9VqFBB0q3TyQ8iJfxKUuHChSVJp0+fliQlJSVp7NixqlKlivLlyycvLy+tXLnSun2qVaumZs2aqUqVKurUqZNmzpyp8+fPW/uLjY1Vnz59VLZsWXl7eyt37ty6cuVKqu17ew2enp7KnTu3tYa0XLt2Te7u7g+03hnl4eGh5OTkdI8GA7g/BDsAd+Xu7q6nn35aI0aM0ObNm9WrVy+Fh4ffdZ7BgwdryZIlGjdunDZs2KDo6GhVqVJFiYmJd53PycnJeroxxY0bN2zG58yZoy1btqhevXpatGiRypUrp61bt9613w8//FDR0dE6deqUTp06pZ49e0q6FUDbtGmj6Ohom+HAgQN66qmn0uzLYrHcs0ZJypEjh808kqx3gU6YMEEfffSRhg4dqrVr1yo6OlrBwcHW7ePs7KzVq1dr+fLlCggI0CeffKLy5csrJiZGktSzZ09FR0fro48+0ubNmxUdHa38+fOn2r6315BSx93uRC1QoIBNgExLRt6jjIiLi5Onp6f11DiAzEGwA2CXgIAA60X80q3wkJSUZNNm06ZN6tWrlzp06KAqVarI19dXR44csWnj6uqaar6CBQvq1KlTNsEhOjo6VQ01atTQsGHDtHnzZlWuXFkLFiy4a82+vr4qU6aM9dRxipo1a+rPP/9UiRIlVKZMGZvB09Mzzb4KFixoc5TwwIEDunr16l2Xf6dNmzapXbt2evHFF1WtWjWVKlVK+/fvt2ljsVhUv359jR49Wrt27ZKrq6uWLFlinf+1115Ty5YtValSJbm5ud31ho+MqlGjhv7666+7tsnoe3Qve/bsUY0aNeyeD8DdEewApOncuXNq2rSp5s2bp927dysmJkZff/21xo8fr3bt2lnblShRQlFRUTp16pT1aE/ZsmUVGRmp6Oho/f7773r++edTHSkqUaKE1q9frxMnTlhDSePGjXXmzBmNHz9ehw4d0tSpU20eiRETE6Nhw4Zpy5YtOnr0qFatWqUDBw7YdZ3d7QYMGKC4uDh169ZN27dv16FDh7Ry5UqFhISkCp0pmjZtqilTpmjXrl367bff9Morr6Q6MnYvZcuW1erVq7V582b9/fff6tevn2JjY62v//rrrxo3bpx+++03HTt2TJGRkTpz5ox1PcuWLasvv/xSf//9t3799Ve98MILmXLkKzg4WFu2bEl33aV7v0cZtWHDBj3zzDMPUi6ANBDsAKTJy8tLderU0YcffqinnnpKlStX1ogRI9SnTx9NmTLF2m7ixIlavXq1ihUrZj0CM2nSJOXNm1f16tVTmzZtFBwcrJo1a9r0P2bMGB05ckSlS5e2HkmrWLGiPv30U02dOlXVqlXTtm3bbG4yyJkzp/bu3avnnntO5cqVU9++fTVgwAD169fvvtbRz89PmzZtUlJSkp555hlVqVJFb7zxhvLkyZPuBf0TJ05UsWLF1LBhQz3//PMaPHiwcubMaddyhw8frpo1ayo4OFiNGzeWr6+vzS815M6dW+vXr1fLli1Vrlw5DR8+XBMnTlSLFi0kSbNnz9b58+dVs2ZNde/eXa+99poKFSp0X9vgdi1atJCLi4vNo2lSArmLy6177e71HmXEiRMntHnzZoWEhDxwzQBsWYw7L5YAADy2pk6dqu+//14rV66UJC1cuFB9+vR5oJ8Yu9PQoUN1/vx5zZgxI9P6BHALjzsBAFj169dPFy5c0MWLF3XixAlNmTJFzZo1y9RlFCpUSGFhYZnaJ4BbOGIHAEjlu+++U/fu3VWvXj3NnDlTxYsXd3RJADKAYAcAAGAS3DwBAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEv8HGLZ9cr19diAAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='pay_3', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pelunasan (Juli) dengan Gagal Bayar')\n",
"plt.xlabel('Status Pelunasan (Juli)')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Pada grafik status penjualan pada bulan Juli cukup menarik karena ditemukan nilai yang sama pada keterlambatan 5 bulan dan keterlambatan 7 bulan\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRaUlEQVR4nO3deXgNd///8ddJIglJRKwRS2Lf1yhFlZI2dlE7taQtLaKW8lVtiXCX0lItSi2lvVG0VUtrT6ktiqCt1i6WW62NNUhI5veHX04dSUg4cRjPx3XNdZk5n5l5z5xzxiufWY7FMAxDAAAAeOI5OboAAAAA2AfBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDvc0fPhwWSwWnT9/3tGl4AnWrVs3BQQEOLqMx9bChQuVM2dOXb169ZGv22KxaPjw4dbxqVOnqnDhwoqPj3+o5darV0/16tV7uOKQqWbPni2LxaKjR486uhTYEcHOBJK/nDt27Ej19Xr16ql8+fKPuCrz2rRpkxo1aqQCBQrI3d1dhQsXVrNmzTRv3jxrm2vXrmn48OFav379A69ny5YtGj58uC5evPjwRWdQ8mcqeXB3d1fJkiUVFhamM2fOPPJ6zCwxMVHh4eHq06ePPD09rdMDAgLUtGnTR15Pt27dlJCQoC+++OKRr9ss4uPjNXHiRD333HPy8fGRq6ur/Pz81Lx5c33zzTdKTEx0dIkZkvwHfvLg5OSk/Pnzq2nTptq6daujy8NdXBxdAPAk+fbbb9WuXTtVrlxZffv2lY+Pj2JiYrRhwwZNnz5dHTt2lHQ72EVEREjSA/dabNmyRREREerWrZty5Mhhpy3ImBEjRqhIkSK6ceOGNm3apClTpmj58uXas2ePsmXL5pCazGbZsmXav3+/evTo4ZD1X79+XS4u//5X4O7urq5du2r8+PHq06ePLBaLQ+p6Up07d06NGjVSdHS0goOD9f777ytnzpw6ffq01q5dq44dO+rQoUMaOnSoo0vNsClTpsjT01NJSUk6ceKEpk+frueff17btm1T5cqVHV0e/j+CHZABw4cPV9myZbV161a5urravHb27FkHVZV5GjVqpGrVqkmSXn/9deXKlUvjx4/XkiVL1KFDBwdXZw6zZs1S7dq1VaBAAYes393dPcW0tm3bauzYsVq3bp3q16/vgKqeXJ07d9auXbv0/fff6+WXX7Z5bciQIdqxY4f279/voOoeTuvWrZU7d27reEhIiMqXL69vv/32sQx2t27dUlJSUopjtdlxKvYpdPToUVksFs2ePTvFa3dfb5Ps/Pnzatu2rbJnz65cuXKpb9++unHjxgMtM7lb/9ChQ9beKG9vb4WGhuratWs2816/fl1vvfWWcufOLS8vLzVv3lwnT55Mscxjx46pV69eKlWqlLJmzapcuXKpTZs2Ka4dST7FuHnzZg0YMEB58uSRh4eHWrZsqXPnzt133x0+fFjPPPNMqgeKvHnzWvdFnjx5JEkRERHW0xfJ9f7+++/q1q2bihYtKnd3d/n6+urVV1/VP//8Y7OPBg0aJEkqUqSIdRlHjx7N0L6+cuWK+vXrp4CAALm5uSlv3rx68cUXtXPnzvtua2qS/5OPiYmxTpszZ44CAwOVNWtW5cyZU+3bt9eJEyfuuZz169fLYrGkOFWd2rZ169ZNnp6eOnnypEJCQuTp6ak8efJo4MCBKU5pffzxx6pVq5Zy5cqlrFmzKjAwUN99912K9a9Zs0bPPfeccuTIIU9PT5UqVUrvvvuu9fWEhAQNGzZMgYGB8vb2loeHh+rUqaN169alWu/HH3+sadOmqVixYnJzc9Mzzzyj7du333MfSNKNGze0cuVKBQUF3bdtZu2z1L7zgYGBypkzp5YsWXLfuiRZtz1r1qyqXr26Nm7cmGq7+Ph4hYeHq3jx4nJzc1OhQoX0f//3fymu57NYLAoLC9PixYtVvnx5ubm5qVy5clq5cmWq+6VatWpyd3dXsWLF9MUXX1iPMXeaNWuW6tevr7x588rNzU1ly5bVlClTUiwv+RT4pk2bVL16dbm7u6to0aL6+uuv77sfoqKitGrVKvXo0SNFqEtWrVo1derUyTqe3s+aJP3zzz/q3LmzsmfPrhw5cqhr16767bffUrz/6TnG2IOvr68k2fT4pmd7DMNQQECAWrRokWKZN27ckLe3t9544410L0+y/S5OmDDB+l3866+/7LrNTwJ67Ezk0qVLqd7kcPPmzYdedtu2bRUQEKDRo0dr69at+uyzz3ThwoV0HezutcwiRYpo9OjR2rlzp2bMmKG8efNqzJgx1jbdunXTwoUL1blzZz377LP65Zdf1KRJkxTL2r59u7Zs2aL27durYMGCOnr0qKZMmaJ69erpr7/+SnHasE+fPvLx8VF4eLiOHj2qCRMmKCwsTAsWLLhnzf7+/oqMjNT//vc/FSxYMNU2efLk0ZQpU9SzZ0+1bNnSeoCvWLGipNuh4siRIwoNDZWvr6/+/PNPTZs2TX/++ae2bt0qi8Wil19+WQcOHNA333yjTz75xPpXcp48edIVQJO9+eab+u677xQWFqayZcvqn3/+0aZNm7R3715VrVo13ctJdvjwYUlSrly5JEkffPCBhg4dqrZt2+r111/XuXPnNHHiRD3//PPatWuX3U4hJyYmKjg4WDVq1NDHH3+stWvXaty4cSpWrJh69uxpbffpp5+qefPm6tSpkxISEjR//ny1adNGP/74o/Vz8+eff6pp06aqWLGiRowYITc3Nx06dEibN2+2Lufy5cuaMWOGOnTooO7du+vKlSuaOXOmgoODUz3tNG/ePF25ckVvvPGGLBaLxo4dq5dffllHjhxRlixZ0tyu6OhoJSQkPNB7cT/p3WdpqVq1qs0+ScvMmTP1xhtvqFatWurXr5+OHDmi5s2bK2fOnCpUqJC1XVJSkpo3b65NmzapR48eKlOmjP744w998sknOnDggBYvXmyz3E2bNmnRokXq1auXvLy89Nlnn6lVq1Y6fvy49fO3a9cuNWzYUPnz51dERIQSExM1YsQI6x9Wd5oyZYrKlSun5s2by8XFRcuWLVOvXr2UlJSk3r1727Q9dOiQWrdurddee01du3bVl19+qW7duikwMFDlypVLc18sW7ZMkvTKK6/cd78lS+9nLSkpSc2aNdO2bdvUs2dPlS5dWkuWLFHXrl1TLDM9x5gHERsba63l5MmTGjlypNzd3dW2bdsMbY/FYtErr7yisWPHKjY2Vjlz5rTOv2zZMl2+fNm6DzP6XZw1a5Zu3LihHj16yM3NzWbZTw0DT7xZs2YZku45lCtXzto+JibGkGTMmjUrxbIkGeHh4dbx8PBwQ5LRvHlzm3a9evUyJBm//fbbAy/z1VdftWnXsmVLI1euXNbx6OhoQ5LRr18/m3bdunVLscxr166lWG9UVJQhyfj6669T7KugoCAjKSnJOr1///6Gs7OzcfHixRTLudPMmTMNSYarq6vxwgsvGEOHDjU2btxoJCYm2rQ7d+5cihrvVes333xjSDI2bNhgnfbRRx8ZkoyYmBibthnZ197e3kbv3r3vuU2pSd5Pa9euNc6dO2ecOHHCmD9/vpErVy4ja9asxv/+9z/j6NGjhrOzs/HBBx/YzPvHH38YLi4uNtO7du1q+Pv7W8fXrVtnSDLWrVt3323r2rWrIckYMWKETdsqVaoYgYGBNtPu3rcJCQlG+fLljfr161unffLJJ4Yk49y5c2lu/61bt4z4+HibaRcuXDDy5ctn87lNrjdXrlxGbGysdfqSJUsMScayZcvSXIdhGMaMGTMMScYff/yR4jV/f3+jSZMm1vHM2mdpfU579OhhZM2a9Z71JyQkGHnz5jUqV65ss7+mTZtmSDLq1q1rnfbf//7XcHJyMjZu3GizjKlTpxqSjM2bN9vU5Orqahw6dMg67bfffjMkGRMnTrROa9asmZEtWzbj5MmT1mkHDx40XFxcjLv/e0vtexccHGwULVrUZpq/v3+K7+LZs2cNNzc34+23377n/mjZsqUhKcVx5Pr168a5c+esw4ULF6yvpfez9v333xuSjAkTJlinJSYmGvXr10/x/qf3GJP8Pb/7GHO35GP23UOOHDmMlStX2rRN7/bs37/fkGRMmTLFpm3z5s2NgIAA6/E5o9/F7NmzG2fPnr3n9pgdp2JNZPLkyVqzZk2KIbmn6GHc/Rdtnz59JEnLly9/4GW++eabNuN16tTRP//8o8uXL0uS9bRLr169Ul33nbJmzWr9982bN/XPP/+oePHiypEjR6qnHXv06GHzV2udOnWUmJioY8eO3bPmV199VStXrlS9evW0adMmjRw5UnXq1FGJEiW0ZcuW+2xxylpv3Lih8+fP69lnn5WkBz5FmpYcOXLo119/1d9///1A8wcFBSlPnjwqVKiQ2rdvL09PT/3www8qUKCAFi1apKSkJLVt21bnz5+3Dr6+vipRokSqp5IeRmqflyNHjthMu3PfXrhwQZcuXVKdOnVs9mtyL+KSJUuUlJSU6rqcnZ2tp9uTkpIUGxurW7duqVq1aqm+R+3atZOPj49NbZJS1He35FNjd85rT+nZZ2nx8fHR9evXU1wecacdO3bo7NmzevPNN20uT+jWrZu8vb1t2n777bcqU6aMSpcubfN5ST69f/fnJSgoSMWKFbOOV6xYUdmzZ7fWn5iYqLVr1yokJER+fn7WdsWLF1ejRo1S1HrnZyP57EbdunV15MgRXbp0yaZt2bJlre+hdLunvFSpUvfdd8nHrjvvbpZuP0ImT5481uG5556zvpbez9rKlSuVJUsWde/e3TrNyckpxbH57m215zHm+++/15o1a7R69WrNmjVLJUuWVKtWrWyOfendnpIlS6pGjRqaO3eudVpsbKxWrFihTp06WY/PGf0utmrVKtUe26cJp2JNpHr16tYL3e/k4+Pz0M+hK1GihM14sWLF5OTk9FDPPypcuLDNePJ/bhcuXFD27Nl17NgxOTk5qUiRIjbtihcvnmJZ169f1+jRozVr1iydPHlShmFYX7v7oH2/dd9PcHCwgoODde3aNUVHR2vBggWaOnWqmjZtqn379lmvtUtLbGysIiIiNH/+/BQ3XKRW68MYO3asunbtqkKFCikwMFCNGzdWly5dVLRo0XTNP3nyZJUsWVIuLi7Kly+fSpUqJSen238PHjx4UIZhpPhsJLvXKciMcnd3T3Gw9vHxSfF+/fjjj/rPf/6j3bt321y3dWeIb9eunWbMmKHXX39d77zzjho0aKCXX35ZrVu3tm6bJH311VcaN26c9u3bZ3M5w92fR+nhPk+SbD6v9pLefXa/mu512i75D6G7PwNZsmRJ8Rk7ePCg9u7dm+Z/und/F+7ep5Jt/WfPntX169dTPR6kNm3z5s0KDw9XVFRUirB66dIlmyB6v3WnxcvLS5J09epVm+W1atXK+sipt99+O8V1jun5rB07dkz58+dPcVlJatuaWceY559/3ubmidatW6tEiRLq06ePoqOjM7Q9ktSlSxeFhYXp2LFj8vf317fffqubN2+qc+fONu0y8l1MbdrThmD3FErrQJ2RZyvdvYwHWaazs3Oq0x/kP7k+ffpo1qxZ6tevn2rWrClvb29ZLBa1b98+1V4Ze6w7W7ZsqlOnjurUqaPcuXMrIiJCK1asSPWalzu1bdtWW7Zs0aBBg1S5cmXr4wMaNmyYZg/SnTKyr9u2bas6derohx9+0OrVq/XRRx9pzJgxWrRoUaq9GndL648F6fZfzxaLRStWrEh1f97da/Gg2yCl/X7daePGjWrevLmef/55ff7558qfP7+yZMmiWbNm2TxjMGvWrNqwYYPWrVunn376SStXrtSCBQtUv359rV69Ws7OzpozZ466deumkJAQDRo0SHnz5pWzs7NGjx5tvc4wPfXd7/OUfK3YhQsX0rxmM1lm7LN7uXDhgrJly2bT+/MwkpKSVKFCBY0fPz7V1++8Hk+y7/Hh8OHDatCggUqXLq3x48erUKFCcnV11fLly/XJJ5+k+N496LpLly4tSdqzZ49q165tnV6oUCHr9t39h3ZGP2vp8bDHmPTy9PRUjRo1tGTJEsXFxcnDwyND29O+fXv1799fc+fO1bvvvqs5c+aoWrVqKlWqlLVNRvePvT6vTzKC3VMouTfh7gff3us05MGDB23+Ejp06JCSkpKsvybwIMu8H39/fyUlJSkmJsamR+DQoUMp2n733Xfq2rWrxo0bZ51248aNR/Zw3+Twc+rUKUlp/yd84cIFRUZGKiIiQsOGDbNOP3jwYIq2aS0jo/s6f/786tWrl3r16qWzZ8+qatWq+uCDD9IV7O6lWLFiMgxDRYoUUcmSJTM0b2Z8Xr7//nu5u7tr1apVcnNzs06fNWtWirZOTk5q0KCBGjRooPHjx2vUqFF67733tG7dOgUFBem7775T0aJFtWjRIpv3ITw8/IHrS01yEIiJiVGFChXu2TYz9tm9xMTEqEyZMvds4+/vL+n25/fOx6LcvHlTMTExqlSpknVasWLF9Ntvv6lBgwZ2eTZe3rx55e7unurx4O5py5YtU3x8vJYuXWrTG2fvywWaNm2qDz/8UHPnzrUJdveS3s+av7+/1q1bp2vXrtn02t29rRk5xtjDrVu3JN3upfTw8MjQdydnzpxq0qSJ5s6dq06dOmnz5s2aMGGCTZtH9V00E66xewplz55duXPn1oYNG2ymf/7552nOM3nyZJvxiRMnSpI1HDzIMu8nODg41WUkr/tOzs7OKf6anjhxot2f8B4ZGZnq9ORrDZP/0kw+8N79n3ByT8Ddtd59MJMkDw+PVJeR3n2dmJiY4rRL3rx55efn99A/FyVJL7/8spydnRUREZFiewzDuOejFfz9/eXs7GzXz4uzs7MsFovNe3706NEUd1sm39l3p+Q765L3S2rv06+//qqoqKgHri81gYGBcnV1TfNXY+6UGfvsXnbu3KlatWrds021atWUJ08eTZ06VQkJCdbps2fPTvG5bdu2rU6ePKnp06enWM7169cVFxeXofqcnZ0VFBSkxYsX21xDeujQIa1YsSJFW0kpLtFILfQ/jNq1a+vFF1/UtGnT0nxUzN3flfR+1oKDg3Xz5k2b/ZeUlJTi2JyRY8zDio2N1ZYtW+Tr62u9BCWj353OnTvrr7/+0qBBg+Ts7Kz27dvbvP6ovotmQo/dU+r111/Xhx9+qNdff13VqlXThg0bdODAgTTbx8TEqHnz5mrYsKGioqI0Z84cdezY0eYv8owu834CAwPVqlUrTZgwQf/884/1cSfJy7zzr7emTZvqv//9r7y9vVW2bFlFRUVp7dq11lNd9tKiRQsVKVJEzZo1U7FixRQXF6e1a9dq2bJleuaZZ9SsWTNJt08HlC1bVgsWLFDJkiWVM2dOlS9fXuXLl9fzzz+vsWPH6ubNmypQoIBWr15t81y4O7dfkt577z21b99eWbJkUbNmzeTh4ZGufX3lyhUVLFhQrVu3VqVKleTp6am1a9dq+/btNj2bD6pYsWL6z3/+oyFDhujo0aMKCQmRl5eXYmJi9MMPP6hHjx4aOHBgqvN6e3urTZs2mjhxoiwWi4oVK6Yff/zxoR7y3KRJE40fP14NGzZUx44ddfbsWU2ePFnFixfX77//bm03YsQIbdiwQU2aNJG/v7/Onj2rzz//XAULFrRe1N60aVMtWrRILVu2VJMmTRQTE6OpU6eqbNmydv09V3d3d7300ktau3atRowYcc+2mbHP0hIdHa3Y2NhUnzN2pyxZsug///mP3njjDdWvX1/t2rVTTEyMZs2aleIau86dO2vhwoV68803tW7dOtWuXVuJiYnat2+fFi5cqFWrVqV52j8tw4cP1+rVq1W7dm317NlTiYmJmjRpksqXL6/du3db27300ktydXVVs2bN9MYbb+jq1auaPn268ubNa+1lt5c5c+aoYcOGCgkJUaNGjRQUFCQfHx/rL09s2LDBprc8vZ+1kJAQVa9eXW+//bYOHTqk0qVLa+nSpdY/VJKPh9mzZ0/3MSajvvvuO3l6esowDP3999+aOXOmLly4oKlTp1rXn9HvTpMmTZQrVy59++23atSoUYprlB/Vd9FUHuUtuMgcybesb9++PdXX69ata/O4E8O4fTv8a6+9Znh7exteXl5G27ZtjbNnz6b5aJK//vrLaN26teHl5WX4+PgYYWFhxvXr1x9qmXc/biK1W+/j4uKM3r17Gzlz5jQ8PT2NkJAQ623yH374obXdhQsXjNDQUCN37tyGp6enERwcbOzbt8/w9/c3unbtet99ldajJO72zTffGO3btzeKFStmZM2a1XB3dzfKli1rvPfee8bly5dt2m7ZssUIDAw0XF1dbfbB//73P6Nly5ZGjhw5DG9vb6NNmzbG33//nepjJ0aOHGkUKFDAcHJystk36dnX8fHxxqBBg4xKlSoZXl5ehoeHh1GpUiXj888/v+c23ms/peb77783nnvuOcPDw8Pw8PAwSpcubfTu3dvYv3+/tc3djzsxjNuPhGnVqpWRLVs2w8fHx3jjjTeMPXv2pProDg8PjxTrTf4c3WnmzJlGiRIlDDc3N6N06dLGrFmzUrSLjIw0WrRoYfj5+Rmurq6Gn5+f0aFDB+PAgQPWNklJScaoUaMMf39/w83NzahSpYrx448/ptiO5EcsfPTRRynqS+39TM2iRYsMi8ViHD9+3GZ64cKFUzxmKDP2WWp1Dh482ChcuLDNI4Hu5fPPPzeKFCliuLm5GdWqVTM2bNhg1K1b1+ZxJ4Zx+/EoY8aMMcqVK2e4ubkZPj4+RmBgoBEREWFcunTJpqbUHtNz9/fZMG6/n1WqVDFcXV2NYsWKGTNmzDDefvttw93d3abd0qVLjYoVKxru7u5GQECAMWbMGOPLL79Mccy5+zEzyVLbnrRcv37dmDBhglGzZk0je/bshouLi+Hr62s0bdrUmDt3rnHr1i1r2/R+1gzj9vvfsWNHw8vLy/D29ja6detmbN682ZBkzJ8/39ouvceYh3nciYeHh1GzZk1j4cKFNm0zsj3Jkh+fNW/evBSv2eO7+LSxGEYm3I4FZKLdu3erSpUqmjNnjs0T3IEnUWJiosqWLau2bdtq5MiR1unJ1x/997//faT1xMfHKyAgQO+884769u37SNdtLyEhIfrzzz8z7bqyx8nixYvVsmVLbdq0Kd3X9T1u+vfvr5kzZ+r06dP8BrUdcI0dHmvXr19PMW3ChAlycnLS888/74CKAPtydnbWiBEjNHnyZOuppcOHD+vChQsqW7bsI69n1qxZypIlS4pn4D2u7j5GHDx4UMuXL1e9evUcU1AmuntbExMTNXHiRGXPnj1Tfr3kUbhx44bmzJmjVq1aEershB47PNYiIiIUHR2tF154QS4uLlqxYoVWrFihHj166IsvvnB0eYBdHTlyRMuXL9eUKVN06NAh7du3j+dy3Uf+/Pmtv4t67NgxTZkyRfHx8dq1a1eaz1h8Ur3++uu6fv26atasqfj4eC1atEhbtmzRqFGjNGTIEEeXlyFnz57V2rVr9d1332nx4sXauXNnip8Hw4Ph5gk81mrVqqU1a9Zo5MiRunr1qgoXLqzhw4frvffec3RpgN1t2LBBAwYMULly5bRkyRJCXTo0bNhQ33zzjU6fPi03NzfVrFlTo0aNMl2ok6T69etr3Lhx+vHHH3Xjxg0VL15cEydOVFhYmKNLy7C//vpLnTp1Ut68efXZZ58R6uyIHjsAAACT4Bo7AAAAkyDYAQAAmMRTd41dUlKS/v77b3l5ednlZ20AAAAyk2EYunLlivz8/OTkdO8+uacu2P39998pfmwaAADgcXfixAkVLFjwnm2eumDn5eUl6fbOyZ49u4OrAQAAuLfLly+rUKFC1gxzL09dsLvz9/QIdgAA4EmRnkvIuHkCAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmHBrsNGzaoWbNm8vPzk8Vi0eLFi+87z/r161W1alW5ubmpePHimj17dqbXCQAA8CRwaLCLi4tTpUqVNHny5HS1j4mJUZMmTfTCCy9o9+7d6tevn15//XWtWrUqkysFAAB4/Lk4cuWNGjVSo0aN0t1+6tSpKlKkiMaNGydJKlOmjDZt2qRPPvlEwcHBmVUmAADAE+GJusYuKipKQUFBNtOCg4MVFRXloIoAwDEMw9DVq1etg2EYji7Jbsy8bU8D3j/HcmiPXUadPn1a+fLls5mWL18+Xb58WdevX1fWrFlTzBMfH6/4+Hjr+OXLlzO9TgDIbHFxcWrRooV1fMmSJfL09HRgRfZj5m17GvD+OdYTFewexOjRoxUREeHoMgAAT6jAQV87uoQMi/6oi6NLgIM8UadifX19debMGZtpZ86cUfbs2VPtrZOkIUOG6NKlS9bhxIkTj6JUAACAR+6J6rGrWbOmli9fbjNtzZo1qlmzZprzuLm5yc3NLbNLAwAAcDiH9thdvXpVu3fv1u7duyXdfpzJ7t27dfz4cUm3e9u6dPm3O/nNN9/UkSNH9H//93/at2+fPv/8cy1cuFD9+/d3RPkAAACPFYcGux07dqhKlSqqUqWKJGnAgAGqUqWKhg0bJkk6deqUNeRJUpEiRfTTTz9pzZo1qlSpksaNG6cZM2bwqBMAAAA5+FRsvXr17nkbdGq/KlGvXj3t2rUrE6sCAAB4Mj1RN08AAAAgbQQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk3BxdAEAkBkMw1BcXJx13MPDQxaLxYEVAUDmI9gBMKW4uDi1aNHCOr5kyRJ5eno6sCIAyHycigUAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJuDi6AAAwu8BBX9t9mZZbCfK+Y7ze0PkyXFzttvzoj7rYbVkAHh167AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEnwgGIAAJ5i9n6AdmY/PFviAdr3Qo8dAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkHB7sJk+erICAALm7u6tGjRratm3bPdtPmDBBpUqVUtasWVWoUCH1799fN27ceETVAgAAPL4cGuwWLFigAQMGKDw8XDt37lSlSpUUHByss2fPptp+3rx5eueddxQeHq69e/dq5syZWrBggd59991HXDkAAMDjx6HBbvz48erevbtCQ0NVtmxZTZ06VdmyZdOXX36ZavstW7aodu3a6tixowICAvTSSy+pQ4cO9+3lAwAAeBo4LNglJCQoOjpaQUFB/xbj5KSgoCBFRUWlOk+tWrUUHR1tDXJHjhzR8uXL1bhx40dSMwAAwOPMYT8pdv78eSUmJipfvnw20/Ply6d9+/alOk/Hjh11/vx5PffcczIMQ7du3dKbb755z1Ox8fHxio+Pt45fvnzZPhsAAADwmHH4zRMZsX79eo0aNUqff/65du7cqUWLFumnn37SyJEj05xn9OjR8vb2tg6FChV6hBUDAAA8Og7rscudO7ecnZ115swZm+lnzpyRr69vqvMMHTpUnTt31uuvvy5JqlChguLi4tSjRw+99957cnJKmVOHDBmiAQMGWMcvX75MuAMAAKbksB47V1dXBQYGKjIy0jotKSlJkZGRqlmzZqrzXLt2LUV4c3Z2liQZhpHqPG5ubsqePbvNAAAAYEYO67GTpAEDBqhr166qVq2aqlevrgkTJiguLk6hoaGSpC5duqhAgQIaPXq0JKlZs2YaP368qlSpoho1aujQoUMaOnSomjVrZg14AAAATyuHBrt27drp3LlzGjZsmE6fPq3KlStr5cqV1hsqjh8/btND9/7778tisej999/XyZMnlSdPHjVr1kwffPCBozYBAADgseHQYCdJYWFhCgsLS/W19evX24y7uLgoPDxc4eHhj6AyAACAJ8sTdVcsAAAA0kawAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEm4OLoAAAgc9LXdl2m5lSDvO8brDZ0vw8XVbsuP/qiL3ZYFAPZCjx0AAIBJZCjY3bx5Uy4uLtqzZ09m1QMAAIAHlKFglyVLFhUuXFiJiYmZVQ8AAAAeUIZPxb733nt69913FRsbmxn1AAAA4AFl+OaJSZMm6dChQ/Lz85O/v788PDxsXt+5c6fdigMAAED6ZTjYhYSEZEIZAAAAeFgZDnbh4eGZUQcAAAAeEo87AQAAMIkM99glJibqk08+0cKFC3X8+HElJCTYvM5NFQAAAI6R4R67iIgIjR8/Xu3atdOlS5c0YMAAvfzyy3JyctLw4cMzoUQAAACkR4aD3dy5czV9+nS9/fbbcnFxUYcOHTRjxgwNGzZMW7duzYwaAQAAkA4ZDnanT59WhQoVJEmenp66dOmSJKlp06b66aefMlzA5MmTFRAQIHd3d9WoUUPbtm27Z/uLFy+qd+/eyp8/v9zc3FSyZEktX748w+sFAAAwmwwHu4IFC+rUqVOSpGLFimn16tWSpO3bt8vNzS1Dy1qwYIEGDBig8PBw7dy5U5UqVVJwcLDOnj2bavuEhAS9+OKLOnr0qL777jvt379f06dPV4ECBTK6GcBTzzAMXb161ToYhuHokgAADynDN0+0bNlSkZGRqlGjhvr06aNXXnlFM2fO1PHjx9W/f/8MLWv8+PHq3r27QkNDJUlTp07VTz/9pC+//FLvvPNOivZffvmlYmNjtWXLFmXJkkWSFBAQkNFNACApLi5OLVq0sI4vWbJEnp6eDqwIAPCwMhzsPvzwQ+u/27VrJ39/f23ZskUlSpRQs2bN0r2chIQERUdHa8iQIdZpTk5OCgoKUlRUVKrzLF26VDVr1lTv3r21ZMkS5cmTRx07dtTgwYPl7Oyc6jzx8fGKj4+3jl++fDndNQIAADxJMhzs4uLibH5G7Nlnn9Wzzz6b4RWfP39eiYmJypcvn830fPnyad++fanOc+TIEf3888/q1KmTli9frkOHDqlXr166efNmmg9OHj16tCIiIjJcHwAgfQIHfW3X5VluJcj7jvF6Q+fLcHG16zqiP+pi1+UBj4sMX2OXL18+vfrqq9q0aVNm1HNPSUlJyps3r6ZNm6bAwEC1a9dO7733nqZOnZrmPEOGDNGlS5esw4kTJx5hxQAAAI9OhoPdnDlzFBsbq/r166tkyZL68MMP9ffff2d4xblz55azs7POnDljM/3MmTPy9fVNdZ78+fOrZMmSNqddy5Qpo9OnT6d4UHIyNzc3Zc+e3WYAAAAwowwHu5CQEC1evFgnT57Um2++qXnz5snf319NmzbVokWLdOvWrXQtx9XVVYGBgYqMjLROS0pKUmRkpGrWrJnqPLVr19ahQ4eUlJRknXbgwAHlz59frq727aYHAAB40jzwb8XmyZNHAwYM0O+//67x48dr7dq1at26tfz8/DRs2DBdu3btvssYMGCApk+frq+++kp79+5Vz549FRcXZ71LtkuXLjY3V/Ts2VOxsbHq27evDhw4oJ9++kmjRo1S7969H3QzAAAATCPDN08kO3PmjL766ivNnj1bx44dU+vWrfXaa6/pf//7n8aMGaOtW7dan3GXlnbt2uncuXMaNmyYTp8+rcqVK2vlypXWGyqOHz8uJ6d/s2ehQoW0atUq9e/fXxUrVlSBAgXUt29fDR48+EE3AwAAwDQyHOwWLVqkWbNmadWqVSpbtqx69eqlV155RTly5LC2qVWrlsqUKZOu5YWFhSksLCzV19avX59iWs2aNfnpMgAAgFRkONiFhoaqffv22rx5s5555plU2/j5+em999576OIAAACQfhkOdqdOnVK2bNnu2SZr1qxpPlcOAAAAmSPDwe7OUHfjxo0UjxnhcSIAAACOkeG7YuPi4hQWFqa8efPKw8NDPj4+NgMAAAAcI8PB7v/+7//0888/a8qUKXJzc9OMGTMUEREhPz8/ff21fX9WBgAAAOmX4VOxy5Yt09dff6169eopNDRUderUUfHixeXv76+5c+eqU6dOmVEnAAAA7iPDwS42NlZFixaVdPt6utjYWEnSc889p549e9q3OgBAqgznLLpUsYPNOABk+FRs0aJFFRMTI0kqXbq0Fi5cKOl2T96dz7IDAGQii0WGi6t1kMXi6IoAPAYyHOxCQ0P122+/SZLeeecdTZ48We7u7urfv78GDRpk9wIBAACQPhk+Fdu/f3/rv4OCgrRv3z5FR0erePHiqlixol2LAwAAQPo98G/FJvP395e/v789agEAAMBDyNCp2CtXrig6OlpXr16VJO3cuVNdunRRmzZtNHfu3EwpEAAAAOmT7h67DRs2qGnTprp69ap8fHz0zTffqHXr1ipQoICcnZ21aNEiXbt2Td27d8/MeoGnUuAg+z8j0nIrQd53jNcbOv/2Rfh2Ev1RF7stCwCQPunusXv//ffVpk0bnThxQv369VO7du0UFhamvXv3as+ePYqIiNDkyZMzs1YAAADcQ7qD3e+//65BgwapQIECGjx4sC5fvqx27dpZX2/fvr0OHz6cKUUCAADg/tId7C5fvqycOXNKklxdXZUtWzZ5eXlZX/fy8tK1a9fsXyEAAADSJd3BzmKxyHLHAzDvHgcAAIBjpfvmCcMw1KBBA7m43J7l2rVratasmVxdb19sfevWrcypEAAAAOmS7mAXHh5uM96iRYsUbVq1avXwFQEAAOCBPHCwAwAAwOMlw78VCwAAgMcTwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASaTrrtjPPvss3Qt86623HrgYAAAAPLh0BbtPPvkkXQuzWCwEOwAAAAdJV7CLiYnJ7DoAAADwkLjGDgAAwCTS/csTd/rf//6npUuX6vjx40pISLB5bfz48XYpDAAAABmT4WAXGRmp5s2bq2jRotq3b5/Kly+vo0ePyjAMVa1aNTNqBAAAQDpk+FTskCFDNHDgQP3xxx9yd3fX999/rxMnTqhu3bpq06ZNZtQIAACAdMhwj93evXv1zTff3J7ZxUXXr1+Xp6enRowYoRYtWqhnz552LxKA/RnOWXSpYgebcQB4WBxbHCvDPXYeHh7W6+ry58+vw4cPW187f/68/SoDkLksFhkurtZBFoujKwJgBhxbHCrDPXbPPvusNm3apDJlyqhx48Z6++239ccff2jRokV69tlnM6NGAAAApEOGg9348eN19epVSVJERISuXr2qBQsWqESJEtwRCwAA4EAZDnZFixa1/tvDw0NTp061a0EAAAB4MDygGAAAwCQy3GPn4+MjSyoXQlosFrm7u6t48eLq1q2bQkND7VIgAAAA0ifDwW7YsGH64IMP1KhRI1WvXl2StG3bNq1cuVK9e/dWTEyMevbsqVu3bql79+52LxgAAACpy3Cw27Rpk/7zn//ozTfftJn+xRdfaPXq1fr+++9VsWJFffbZZwQ7AACARyjD19itWrVKQUFBKaY3aNBAq1atkiQ1btxYR44cefjqAAAAkG4ZDnY5c+bUsmXLUkxftmyZcubMKUmKi4uTl5fXw1cHAACAdMvwqdihQ4eqZ8+eWrdunfUau+3bt2v58uXWR5+sWbNGdevWtW+lAAAAuKcMB7vu3burbNmymjRpkhYtWiRJKlWqlH755RfVqlVLkvT222/bt0oAAADcV4aDnSTVrl1btWvXtnctAAAAeAgPFOyS3bhxQwkJCTbTsmfP/lAFAQAA4MFk+OaJa9euKSwsTHnz5pWHh4d8fHxsBgAAADhGhoPdoEGD9PPPP2vKlClyc3PTjBkzFBERIT8/P3399deZUSMAAADSIcOnYpctW6avv/5a9erVU2hoqOrUqaPixYvL399fc+fOVadOnTKjTgAAANxHhnvsYmNjVbRoUUm3r6eLjY2VJD333HPasGGDfasDAABAumU42BUtWlQxMTGSpNKlS2vhwoWSbvfk5ciRw67FAQAAIP0yHOxCQ0P122+/SZLeeecdTZ48We7u7urfv78GDRpk9wIBAACQPhm+xq5///7WfwcFBWnfvn2Kjo5W8eLFVbFiRbsWBwAAgPR7qOfYSZK/v7/8/f3tUQsAAAAeQrqD3fXr1xUZGammTZtKkoYMGaL4+Hjr687Ozho5cqTc3d3tXyUAAADuK93B7quvvtJPP/1kDXaTJk1SuXLllDVrVknSvn375OfnZ3OqFgAAAI9Oum+emDt3rnr06GEzbd68eVq3bp3WrVunjz76yHqHLAAAAB69dPfYHTp0SBUqVLCOu7u7y8np31xYvXp19e7d277VAcADMpyz6FLFDjbjAGB26Q52Fy9etLmm7ty5czavJyUl2bwOAA5lschwcXV0FQDwSKX7VGzBggW1Z8+eNF///fffVbBgQbsUBQAAgIxLd7Br3Lixhg0bphs3bqR47fr164qIiFCTJk3sWhwAAADSL93B7t1331VsbKxKlSqljz76SEuWLNGSJUs0duxYlSpVShcuXNC77777QEVMnjxZAQEBcnd3V40aNbRt27Z0zTd//nxZLBaFhIQ80HoBAADMJN3X2OXLl09btmxRz5499c4778gwDEmSxWLRiy++qM8//1z58uXLcAELFizQgAEDNHXqVNWoUUMTJkxQcHCw9u/fr7x586Y539GjRzVw4EDVqVMnw+sEAAAwowz9VmyRIkW0cuVKnTt3Tlu3btXWrVt17tw5rVy5UkWLFn2gAsaPH6/u3bsrNDRUZcuW1dSpU5UtWzZ9+eWXac6TmJioTp06KSIi4oHXCwAAYDYZCnbJcubMqerVq6t69erKmTPnA688ISFB0dHRCgoK+rcgJycFBQUpKioqzflGjBihvHnz6rXXXrvvOuLj43X58mWbAQAAwIweKNjZy/nz55WYmJjiFG6+fPl0+vTpVOfZtGmTZs6cqenTp6drHaNHj5a3t7d1KFSo0EPXDQAA8DhyaLDLqCtXrqhz586aPn26cufOna55hgwZokuXLlmHEydOZHKVAAAAjpHumycyQ+7cueXs7KwzZ87YTD9z5ox8fX1TtD98+LCOHj2qZs2aWaclJSVJklxcXLR//34VK1bMZh43Nze5ubllQvUAAACPF4f22Lm6uiowMFCRkZHWaUlJSYqMjFTNmjVTtC9durT++OMP7d692zo0b95cL7zwgnbv3s1pVgAA8FRzaI+dJA0YMEBdu3ZVtWrVVL16dU2YMEFxcXEKDQ2VJHXp0kUFChTQ6NGj5e7urvLly9vMnyNHDklKMR0AAOBp4/Bg165dO507d07Dhg3T6dOnVblyZa1cudJ6Q8Xx48fl5PREXQoIAADgEA4PdpIUFhamsLCwVF9bv379PeedPXu2/QsCAAB4AtEVBgAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwicci2E2ePFkBAQFyd3dXjRo1tG3btjTbTp8+XXXq1JGPj498fHwUFBR0z/YAAABPC4cHuwULFmjAgAEKDw/Xzp07ValSJQUHB+vs2bOptl+/fr06dOigdevWKSoqSoUKFdJLL72kkydPPuLK788wDF29etU6GIbh6JIAAICJOTzYjR8/Xt27d1doaKjKli2rqVOnKlu2bPryyy9TbT937lz16tVLlStXVunSpTVjxgwlJSUpMjLyEVd+f3FxcWrRooV1iIuLc3RJAADAxBwa7BISEhQdHa2goCDrNCcnJwUFBSkqKipdy7h27Zpu3rypnDlzZlaZAAAATwQXR678/PnzSkxMVL58+Wym58uXT/v27UvXMgYPHiw/Pz+bcHin+Ph4xcfHW8cvX7784AUDAAA8xhx+KvZhfPjhh5o/f75++OEHubu7p9pm9OjR8vb2tg6FChV6xFUCAAA8Gg4Ndrlz55azs7POnDljM/3MmTPy9fW957wff/yxPvzwQ61evVoVK1ZMs92QIUN06dIl63DixAm71A7z4+YXAMCTxqGnYl1dXRUYGKjIyEiFhIRIkvVGiLCwsDTnGzt2rD744AOtWrVK1apVu+c63Nzc5ObmZs+y8ZRIvvkl2ZIlS+Tp6enAioCng+GcRZcqdrAZB5A+Dg12kjRgwAB17dpV1apVU/Xq1TVhwgTFxcUpNDRUktSlSxcVKFBAo0ePliSNGTNGw4YN07x58xQQEKDTp09Lkjw9PflPFwDMwGKR4eLq6CqAJ5LDg127du107tw5DRs2TKdPn1blypW1cuVK6w0Vx48fl5PTv2eMp0yZooSEBLVu3dpmOeHh4Ro+fPijLB0AAOCx4vBgJ0lhYWFpnnpdv369zfjRo0czvyAAAIAn0GMR7PBkMgzD5qHLHh4eslgsDqwIAICnG8EOD4ybCwAAeLw80c+xAwAAwL8IdgAAACbBqViYRuCgr+26PMutBHnfMV5v6Hy7PoIh+qMudlsWAAASPXYAAACmQY/dHZ60Hh+JXh8AAPAveuwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACbB406eIk/a41wc/SgXwzmLLlXsYDMOAMDjjGAHpMVisftzBwEAyEycigUAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk+Cu2EzE4zIAAMCjRLDLTDwuAwAAPEKcigUAADAJgh0AAIBJEOwAAABMgmvs8MC4OQQAgMcLwQ4PjptDAAB4rHAqFgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADCJxyLYTZ48WQEBAXJ3d1eNGjW0bdu2e7b/9ttvVbp0abm7u6tChQpavnz5I6oUAADg8eXwYLdgwQINGDBA4eHh2rlzpypVqqTg4GCdPXs21fZbtmxRhw4d9Nprr2nXrl0KCQlRSEiI9uzZ84grBwAAeLw4PNiNHz9e3bt3V2hoqMqWLaupU6cqW7Zs+vLLL1Nt/+mnn6phw4YaNGiQypQpo5EjR6pq1aqaNGnSI64cAADg8eLQYJeQkKDo6GgFBQVZpzk5OSkoKEhRUVGpzhMVFWXTXpKCg4PTbA8AAPC0cHHkys+fP6/ExETly5fPZnq+fPm0b9++VOc5ffp0qu1Pnz6davv4+HjFx8dbxy9duiRJunz5coq2ifHXM1T/4yC17UjLk7Z9Gdk2ydzb96Rtm8T23Ynte/ywff8y+/aZQfL2GoZx/8aGA508edKQZGzZssVm+qBBg4zq1aunOk+WLFmMefPm2UybPHmykTdv3lTbh4eHG5IYGBgYGBgYGJ7o4cSJE/fNVg7tscudO7ecnZ115swZm+lnzpyRr69vqvP4+vpmqP2QIUM0YMAA63hSUpJiY2OVK1cuWSyWh9yC+7t8+bIKFSqkEydOKHv27Jm+vkeN7XuysX1PNjNvn5m3TWL7nnSPevsMw9CVK1fk5+d337YODXaurq4KDAxUZGSkQkJCJN0OXpGRkQoLC0t1npo1ayoyMlL9+vWzTluzZo1q1qyZans3Nze5ubnZTMuRI4c9ys+Q7Nmzm/LDnYzte7KxfU82M2+fmbdNYvuedI9y+7y9vdPVzqHBTpIGDBigrl27qlq1aqpevbomTJiguLg4hYaGSpK6dOmiAgUKaPTo0ZKkvn37qm7duho3bpyaNGmi+fPna8eOHZo2bZojNwMAAMDhHB7s2rVrp3PnzmnYsGE6ffq0KleurJUrV1pvkDh+/LicnP69ebdWrVqaN2+e3n//fb377rsqUaKEFi9erPLlyztqEwAAAB4LDg92khQWFpbmqdf169enmNamTRu1adMmk6uyDzc3N4WHh6c4HWwWbN+Tje17spl5+8y8bRLb96R7nLfPYhjpuXcWAAAAjzuH//IEAAAA7INgBwAAYBIEOwAAAJMg2GWimzdvavDgwapQoYI8PDzk5+enLl266O+//3Z0aXazaNEivfTSS9YHPu/evdvRJdnN5MmTFRAQIHd3d9WoUUPbtm1zdEl2MXr0aD3zzDPy8vJS3rx5FRISov379zu6LLuZMmWKKlasaH2+VM2aNbVixQpHl5VpPvzwQ1ksFptnez7Jhg8fLovFYjOULl3a0WXZ1cmTJ/XKK68oV65cypo1qypUqKAdO3Y4uiy7CAgISPH+WSwW9e7d29Gl2UViYqKGDh2qIkWKKGvWrCpWrJhGjhyZvp/6ekQIdpno2rVr2rlzp4YOHaqdO3dq0aJF2r9/v5o3b+7o0uwmLi5Ozz33nMaMGePoUuxqwYIFGjBggMLDw7Vz505VqlRJwcHBOnv2rKNLe2i//PKLevfura1bt2rNmjW6efOmXnrpJcXFxTm6NLsoWLCgPvzwQ0VHR2vHjh2qX7++WrRooT///NPRpdnd9u3b9cUXX6hixYqOLsWuypUrp1OnTlmHTZs2Oboku7lw4YJq166tLFmyaMWKFfrrr780btw4+fj4OLo0u9i+fbvNe7dmzRpJemKeZHE/Y8aM0ZQpUzRp0iTt3btXY8aM0dixYzVx4kRHl/avdPykK+xo27ZthiTj2LFjji7FrmJiYgxJxq5duxxdil1Ur17d6N27t3U8MTHR8PPzM0aPHu3AqjLH2bNnDUnGL7/84uhSMo2Pj48xY8YMR5dhV1euXDFKlChhrFmzxqhbt67Rt29fR5dkF+Hh4UalSpUcXUamGTx4sPHcc885uoxHpm/fvkaxYsWMpKQkR5diF02aNDFeffVVm2kvv/yy0alTJwdVlBI9do/YpUuXZLFYHPKzZkifhIQERUdHKygoyDrNyclJQUFBioqKcmBlmePSpUuSpJw5czq4EvtLTEzU/PnzFRcXl+bPDj6pevfurSZNmth8Ts3i4MGD8vPzU9GiRdWpUycdP37c0SXZzdKlS1WtWjW1adNGefPmVZUqVTR9+nRHl5UpEhISNGfOHL366quP5LfZH4VatWopMjJSBw4ckCT99ttv2rRpkxo1auTgyv71WDyg+Glx48YNDR48WB06dDD1b+c96c6fP6/ExETrr58ky5cvn/bt2+egqjJHUlKS+vXrp9q1a5vq11v++OMP1axZUzdu3JCnp6d++OEHlS1b1tFl2c38+fO1c+dObd++3dGl2F2NGjU0e/ZslSpVSqdOnVJERITq1KmjPXv2yMvLy9HlPbQjR45oypQpGjBggN59911t375db731llxdXdW1a1dHl2dXixcv1sWLF9WtWzdHl2I377zzji5fvqzSpUvL2dlZiYmJ+uCDD9SpUydHl2ZFj50dzZ07V56entZh48aN1tdu3ryptm3byjAMTZkyxYFVPrh7bR+eTL1799aePXs0f/58R5diV6VKldLu3bv166+/qmfPnuratav++usvR5dlFydOnFDfvn01d+5cubu7O7ocu2vUqJHatGmjihUrKjg4WMuXL9fFixe1cOFCR5dmF0lJSapatapGjRqlKlWqqEePHurevbumTp3q6NLsbubMmWrUqJH8/PwcXYrdLFy4UHPnztW8efO0c+dOffXVV/r444/11VdfObo0K3rs7Kh58+aqUaOGdbxAgQKS/g11x44d088///zE9taltX1mkzt3bjk7O+vMmTM208+cOSNfX18HVWV/YWFh+vHHH7VhwwYVLFjQ0eXYlaurq4oXLy5JCgwM1Pbt2/Xpp5/qiy++cHBlDy86Olpnz55V1apVrdMSExO1YcMGTZo0SfHx8XJ2dnZghfaVI0cOlSxZUocOHXJ0KXaRP3/+FL3HZcqU0ffff++gijLHsWPHtHbtWi1atMjRpdjVoEGD9M4776h9+/aSpAoVKujYsWMaPXr0Y9PjSrCzIy8vrxSnCpJD3cGDB7Vu3TrlypXLQdU9vNS2z4xcXV0VGBioyMhIhYSESLr9V3ZkZGSav2n8JDEMQ3369NEPP/yg9evXq0iRIo4uKdMlJSUpPj7e0WXYRYMGDfTHH3/YTAsNDVXp0qU1ePBgU4U6Sbp69aoOHz6szp07O7oUu6hdu3aKxwsdOHBA/v7+Dqooc8yaNUt58+ZVkyZNHF2KXV27dk1OTrYnO52dnZWUlOSgilIi2GWimzdvqnXr1tq5c6d+/PFHJSYm6vTp05JuX6ju6urq4AofXmxsrI4fP259Nl/yAcvX1/eJ7t0aMGCAunbtqmrVqql69eqaMGGC4uLiFBoa6ujSHlrv3r01b948LVmyRF5eXtbPpLe3t7Jmzerg6h7ekCFD1KhRIxUuXFhXrlzRvHnztH79eq1atcrRpdmFl5dXiushPTw8lCtXLlNcJzlw4EA1a9ZM/v7++vvvvxUeHi5nZ2d16NDB0aXZRf/+/VWrVi2NGjVKbdu21bZt2zRt2jRNmzbN0aXZTVJSkmbNmqWuXbvKxcVcMaNZs2b64IMPVLhwYZUrV067du3S+PHj9eqrrzq6tH85+rZcM0t+BEhqw7p16xxdnl3MmjUr1e0LDw93dGkPbeLEiUbhwoUNV1dXo3r16sbWrVsdXZJdpPWZnDVrlqNLs4tXX33V8Pf3N1xdXY08efIYDRo0MFavXu3osjKVmR530q5dOyN//vyGq6urUaBAAaNdu3bGoUOHHF2WXS1btswoX7684ebmZpQuXdqYNm2ao0uyq1WrVhmSjP379zu6FLu7fPmy0bdvX6Nw4cKGu7u7UbRoUeO9994z4uPjHV2alcUwHqPHJQMAAOCBcVcsAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAKSiXr166tevn6PLeGT2798vX19fXblyJVPXExAQoAkTJkiSEhISFBAQoB07dmTqOoGnCcEOQArnzp1Tz549VbhwYbm5ucnX11fBwcHavHmztY3FYtHixYszvOw7/2PPTBaLxTp4e3urdu3a+vnnnzN9vU+qIUOGqE+fPvLy8pIkrV+/XhaLRRcvXrTrerZv364ePXpIklxdXTVw4EANHjzYrusAnmYEOwAptGrVSrt27dJXX32lAwcOaOnSpapXr57++ecfR5eWIbNmzdKpU6e0efNm5c6dW02bNtWRI0ccXdZj5/jx4/rxxx/VrVu3TF9Xnjx5lC1bNut4p06dtGnTJv3555+Zvm7gaUCwA2Dj4sWL2rhxo8aMGaMXXnhB/v7+ql69uoYMGaLmzZtLut3rJkktW7aUxWKxjh8+fFgtWrRQvnz55OnpqWeeeUZr1661LrtevXo6duyY+vfvb+1Nk6Thw4ercuXKNnVMmDDBulzpdg9S9erV5eHhoRw5cqh27do6duzYPbclR44c8vX1Vfny5TVlyhRdv35da9askSTt2bNHjRo1kqenp/Lly6fOnTvr/PnzaS4rtR7KHDlyaPbs2ZKko0ePymKxaNGiRXrhhReULVs2VapUSVFRUdb2//zzjzp06KACBQooW7ZsqlChgr755hubZX733XeqUKGCsmbNqly5cikoKEhxcXGSbvd2vfjii8qdO7e8vb1Vt25d7dy5M0WdM2bMUMuWLZUtWzaVKFFCS5cuved+WrhwoSpVqqQCBQqk2SY971G3bt0UEhKijz/+WPnz51euXLnUu3dv3bx509rm7h5bHx8f1a5dW/Pnz79njQDSh2AHwIanp6c8PT21ePFixcfHp9pm+/btkv7tEUsev3r1qho3bqzIyEjt2rVLDRs2VLNmzXT8+HFJ0qJFi1SwYEGNGDFCp06d0qlTp9JV061btxQSEqK6devq999/V1RUlHr06GENhumRNWtWSbev67p48aLq16+vKlWqaMeOHVq5cqXOnDmjtm3bpnt5aXnvvfc0cOBA7d69WyVLllSHDh1069YtSdKNGzcUGBion376SXv27FGPHj3UuXNnbdu2TZJ06tQpdejQQa+++qr27t2r9evX6+WXX5ZhGJKkK1euqGvXrtq0aZO2bt2qEiVKqHHjximui4uIiFDbtm31+++/q3HjxurUqZNiY2PTrHnjxo2qVq3aQ2+7JK1bt06HDx/WunXr9NVXX2n27NnW8JuW6tWra+PGjXZZP/C0c3F0AQAeLy4uLpo9e7a6d++uqVOnqmrVqqpbt67at2+vihUrSrp9Ok36t0csWaVKlVSpUiXr+MiRI/XDDz9o6dKlCgsLU86cOeXs7CwvLy+b+e7n8uXLunTpkpo2bapixYpJksqUKZPu+a9du6b3339fzs7Oqlu3riZNmqQqVapo1KhR1jZffvmlChUqpAMHDqhkyZLpXvbdBg4cqCZNmki6HbDKlSunQ4cOqXTp0ipQoIAGDhxobdunTx+tWrVKCxcuVPXq1XXq1CndunVLL7/8svz9/SVJFSpUsLavX7++zbqmTZumHDly6JdfflHTpk2t07t166YOHTpIkkaNGqXPPvtM27ZtU8OGDVOt+dixY3YLdj4+Ppo0aZKcnZ1VunRpNWnSRJGRkerevXua8/j5+d239xVA+tBjByCFVq1a6e+//9bSpUvVsGFDrV+/XlWrVr1vz8vVq1c1cOBAlSlTRjly5JCnp6f27t1r7bF7UDlz5lS3bt0UHBysZs2a6dNPP01Xb1+HDh3k6ekpLy8vff/995o5c6YqVqyo3377TevWrbP2Tnp6eqp06dKSbp9OfhjJ4VeS8ufPL0k6e/asJCkxMVEjR45UhQoVlDNnTnl6emrVqlXW/VOpUiU1aNBAFSpUUJs2bTR9+nRduHDBurwzZ86oe/fuKlGihLy9vZU9e3ZdvXo1xf69swYPDw9lz57dWkNqrl+/Lnd394fa7mTlypWTs7OzdTx//vz3XLd0uzf12rVrdlk/8LQj2AFIlbu7u1588UUNHTpUW7ZsUbdu3RQeHn7PeQYOHKgffvhBo0aN0saNG7V7925VqFBBCQkJ95zPycnJerox2Z3XZUm3T/tGRUWpVq1aWrBggUqWLKmtW7fec7mffPKJdu/erdOnT+v06dPq2rWrpNsBtFmzZtq9e7fNcPDgQT3//POpLstisdy3RknKkiWLzTySlJSUJEn66KOP9Omnn2rw4MFat26ddu/ereDgYOv+cXZ21po1a7RixQqVLVtWEydOVKlSpRQTEyNJ6tq1q3bv3q1PP/1UW7Zs0e7du5UrV64U+/fOGpLrSK4hNblz57YJkKlJz3v0IOuWpNjYWGsvMICHQ7ADkC5ly5a1XsQv3f4PPDEx0abN5s2b1a1bN7Vs2VIVKlSQr6+vjh49atPG1dU1xXx58uTR6dOnbYLD7t27U9RQpUoVDRkyRFu2bFH58uU1b968e9bs6+ur4sWLpwgNVatW1Z9//qmAgAAVL17cZvDw8Eh1WXny5LHpJTx48GCGe5k2b96sFi1a6JVXXlGlSpVUtGhRHThwwKaNxWJR7dq1FRERoV27dsnV1VU//PCDdf633npLjRs3Vrly5eTm5nbPGz7Sq0qVKvrrr7/u2Sa979GD2LNnj6pUqWKXZQFPO4IdABv//POP6tevrzlz5uj3339XTEyMvv32W40dO1YtWrSwtgsICFBkZKROnz5t7e0pUaKEFi1apN27d+u3335Tx44dU/TWBAQEaMOGDTp58qQ1lNSrV0/nzp3T2LFjdfjwYU2ePFkrVqywzhMTE6MhQ4YoKipKx44d0+rVq3Xw4MEMXWd3p969eys2NlYdOnTQ9u3bdfjwYa1atUqhoaEpQmey+vXra9KkSdq1a5d27NihN998M0Xv1P2UKFFCa9as0ZYtW7R371698cYbOnPmjPX1X3/9VaNGjdKOHTt0/PhxLVq0SOfOnbNuZ4kSJfTf//5Xe/fu1a+//qpOnTpZbwp5GMHBwYqKikpz26X7v0cPY+PGjXrppZfssizgaUewA2DD09NTNWrU0CeffKLnn39e5cuX19ChQ9W9e3dNmjTJ2m7cuHFas2aNChUqZO1tGT9+vHx8fFSrVi01a9ZMwcHBqlq1qs3yR4wYoaNHj6pYsWLWnrQyZcro888/1+TJk1WpUiVt27bN5iaDbNmyad++fWrVqpVKliypHj16qHfv3nrjjTceaBv9/Py0efNmJSYm6qWXXlKFChXUr18/5ciRQ05OqR8Wx40bp0KFCqlOnTrq2LGjBg4caPM8tvR4//33VbVqVQUHB6tevXry9fVVSEiI9fXs2bNrw4YNaty4sUqWLKn3339f48aNU6NGjSRJM2fO1IULF1S1alV17txZb731lvLmzftA++BOjRo1kouLi82jaZIDuYvL7Xvs7vcePaioqChdunRJrVu3fuhlAZAsxt0XTQAAnjqTJ0/W0qVLtWrVKknS/Pnz1b1790z/ibF27dqpUqVKevfddzN1PcDTgsedAAD0xhtv6OLFi7p06ZJOnjypSZMmqUGDBpm6zoSEBFWoUEH9+/fP1PUATxN67AAAVosXL1bnzp1Vq1YtTZ8+XYULF3Z0SQAygGAHAABgEtw8AQAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBL/D6HVAO8EZpMFAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='pay_4', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pelunasan (Juni) dengan Gagal Bayar')\n",
"plt.xlabel('Status Pelunasan (Juni)')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Tidak jauh berbeda dengan grafik status penjualan pada bulan Agustus, ditemukan nilai keterlambatan selama 6 bulan untuk bulan Juni\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRf0lEQVR4nO3deXxM9/7H8fckkUUSkVgSWxM7aQmi1FZaaWOprbWrJW1pkba4XNWWWNrS9lq6BLWU9paiRXVDNaW2KKLRqqVFLFViiTVISM7vD7/MNTIhg2Q4Xs/H4zwezpnvOedzzkzGe75nsxiGYQgAAAB3PRdnFwAAAIDbg2AHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmCHGxo5cqQsFouOHz/u7FJwF+vVq5dCQkKcXcYda8GCBQoICNC5c+fybZ2rVq2SxWLRqlWrrNM6d+6sjh073vKyLRaLRo4cecvLQd7hb9KcCHYmMXv2bFksFm3evNnu602aNNEDDzyQz1WZ19q1a9W8eXOVKlVKnp6euu+++9SqVSvNnTvX2ub8+fMaOXKkzX+ajlq/fr1GjhypU6dO3XrRDsr6TGUNnp6eqlSpkqKjo5WcnJzv9ZhZRkaGYmJi9OKLL8rHx8c6PSQkRBaLRREREXbnmz59uvX9yelv31FDhw7VwoULtXXr1tuyvHvR0aNH9corr6hatWry8fGRp6enKlSooKioKK1du9bZ5TmsSZMmNt8F7u7uKlu2rPr06aODBw86uzxcw83ZBQB3my+++EKdOnVSjRo19PLLL8vf319JSUlavXq1pk+frq5du0q6EuxGjRol6coX481Yv369Ro0apV69eqlw4cK3aQscM3r0aJUtW1YXL17U2rVrNWXKFH3//ffatm2bChYs6JSazOabb77Rrl271KdPn2yveXp6auXKlTpy5IiCgoJsXpszZ448PT118eLFm1rvww8/rAsXLsjd3d06rWbNmqpdu7bGjx+vTz/99KaWey/buHGjWrZsqbNnz6pz58564YUX5OHhoaSkJH311VeaPXu2fv75Zz388MPOLtUhpUuX1tixYyVJ6enp2r59u6ZOnarly5drx44dfBfcQQh2gINGjhyp0NBQbdiwweY/ROnKL3Wzad68uWrXri1Jeu6551SkSBFNmDBBS5YsUZcuXZxcnTnMmjVLDRo0UKlSpbK91qBBA23atEnz58/Xyy+/bJ3+999/a82aNWrXrp0WLlx4U+t1cXGRp6dntukdO3ZUTEyMJk+ebNODiOs7efKk2rZtKzc3NyUmJqpKlSo2r7/xxhuaN2+evLy8nFThzfPz89PTTz9tM61s2bKKjo7WunXr9NhjjzmpspylpqbK29vb2WXkOw7F3qP27dsni8Wi2bNnZ3stp3Njjh8/ro4dO6pQoUIqUqSIXn75ZZueAkeWmXXe3u7du629UX5+foqKitL58+dt5r1w4YJeeuklFS1aVL6+vmrdurUOHTqUbZn79+9Xv379VLlyZXl5ealIkSLq0KGD9u3bZ7O8rEOM69at06BBg1SsWDF5e3urXbt2Onbs2A333Z49e/Tggw9mC3WSVLx4ceu+KFasmCRp1KhR1kMYWfX+9ttv6tWrl8qVKydPT08FBQXpmWee0YkTJ2z20ZAhQyRd+QLNWsa+ffsc2tdnz57VgAEDFBISIg8PDxUvXlyPPfaYtmzZcsNttefRRx+VJCUlJVmnffbZZwoPD5eXl5cCAgLUuXPnGx6isXd+l2T/c9SrVy/5+Pjo0KFDatu2rXx8fFSsWDENHjxYGRkZNvP/5z//Uf369VWkSBF5eXkpPDxcX375Zbb1r1ixQg0bNlThwoXl4+OjypUr69VXX7W+np6erhEjRig8PFx+fn7y9vZWo0aNtHLlSrv1/uc//9G0adNUvnx5eXh46MEHH9SmTZuuuw8k6eLFi1q2bFmOh1s9PT315JNP2hzml6TPP/9c/v7+ioyMtDvfzp071b59ewUEBMjT01O1a9fW119/bdMmp/fgscceU2pqqlasWHHD+tPS0jRw4EAVK1bM+vf5999/22176NAhPfPMMwoMDJSHh4fuv/9+ffzxx3ZrWrBggd58802VLl1anp6eatq0qXbv3p1tmbGxsSpXrpy8vLxUp04drVmzRk2aNLHpJc+v93Lq1Kk6fPiwJk2alC3USVf+Nrt06aIHH3zQOi2331vSle+Nxo0by8vLS6VLl9Ybb7yhWbNmWb8XsixZskQtW7ZUyZIl5eHhofLly2vMmDHZ/lZuVVYPspvb//qIcrM9e/fulcVi0cSJE7Mtc/369bJYLPr8889zvTzpf9/rP//8s/r166fixYurdOnSt3V77xb02JnM6dOn7V7kcOnSpVtedseOHRUSEqKxY8dqw4YNev/993Xy5MlbOlzTsWNHlS1bVmPHjtWWLVs0Y8YMFS9eXG+//ba1Ta9evbRgwQJ1795dDz30kH7++We1bNky27I2bdqk9evXq3PnzipdurT27dunKVOmqEmTJtq+fXu2QwUvvvii/P39FRMTo3379mnSpEmKjo7W/Pnzr1tzcHCw4uLi9Pfff+f4xVGsWDFNmTJFffv2Vbt27fTkk09KkqpXry7pSqjYu3evoqKiFBQUpD/++EPTpk3TH3/8oQ0bNshisejJJ5/Un3/+qc8//1wTJ05U0aJFrcvOTQDN8sILL+jLL79UdHS0QkNDdeLECa1du1Y7duxQrVq1cr2cLHv27JEkFSlSRJL05ptvavjw4erYsaOee+45HTt2TB988IEefvhh/frrr7ftEHJGRoYiIyNVt25d/ec//9GPP/6o8ePHq3z58urbt6+13XvvvafWrVurW7duSk9P17x589ShQwd9++231s/NH3/8oSeeeELVq1fX6NGj5eHhod27d2vdunXW5Zw5c0YzZsxQly5d1Lt3b509e1YzZ85UZGSkNm7cqBo1atjUN3fuXJ09e1bPP/+8LBaL3nnnHT355JPau3evChQokON2JSQkKD09/brvRdeuXfX4449rz549Kl++vHV97du3t7vsP/74w9oD+Morr8jb21sLFixQ27ZttXDhQrVr1+66+zo0NFReXl5at27dDds+99xz+uyzz9S1a1fVr19fP/30k92/z+TkZD300EOyWCyKjo5WsWLFtHTpUj377LM6c+aMBgwYYNN+3LhxcnFx0eDBg3X69Gm988476tatm3755RdrmylTpig6OlqNGjXSwIEDtW/fPrVt21b+/v42f5v59V5+88038vLysv6950Zuv7cOHTqkRx55RBaLRcOGDZO3t7dmzJghDw+PbMucPXu2fHx8NGjQIPn4+Oinn37SiBEjdObMGb377ru5ru1qGRkZ1v9bLl26pB07digmJkYVKlRQgwYNHNqecuXKqUGDBpozZ44GDhxos545c+bI19dXbdq0cWj/ZOnXr5+KFSumESNGKDU19aa29a5nwBRmzZplSLrucP/991vbJyUlGZKMWbNmZVuWJCMmJsY6HhMTY0gyWrdubdOuX79+hiRj69atN73MZ555xqZdu3btjCJFiljHExISDEnGgAEDbNr16tUr2zLPnz+fbb3x8fGGJOPTTz/Ntq8iIiKMzMxM6/SBAwcarq6uxqlTp7It52ozZ840JBnu7u7GI488YgwfPtxYs2aNkZGRYdPu2LFj2Wq8Xq2ff/65IclYvXq1ddq7775rSDKSkpJs2jqyr/38/Iz+/ftfd5vsydpPP/74o3Hs2DHj4MGDxrx584wiRYoYXl5ext9//23s27fPcHV1Nd58802beX///XfDzc3NZnrPnj2N4OBg6/jKlSsNScbKlStvuG09e/Y0JBmjR4+2aVuzZk0jPDzcZtq1+zY9Pd144IEHjEcffdQ6beLEiYYk49ixYzlu/+XLl420tDSbaSdPnjQCAwNtPrdZ9RYpUsRISUmxTl+yZIkhyfjmm29yXIdhGMaMGTMMScbvv/+e7bXg4GCjZcuWxuXLl42goCBjzJgxhmEYxvbt2w1Jxs8//2x9nzZt2mSdr2nTpka1atWMixcvWqdlZmYa9evXNypWrGidltN7YBiGUalSJaN58+bXrT0xMdGQZPTr189meteuXbN9Dp999lmjRIkSxvHjx23adu7c2fDz87O+b1k1Va1a1Wb/v/feezb7KS0tzShSpIjx4IMPGpcuXbK2mz17tiHJaNy4sXVafr2X/v7+Ro0aNbJNP3PmjHHs2DHrcO7cOetruf3eevHFFw2LxWL8+uuv1mknTpwwAgICsn1H2Fvm888/bxQsWNDmM3Ht32ROGjdubPf/lKpVqxp79+61aZvb7fnoo48MScaOHTus09LT042iRYsaPXv2dHh5WX8HDRs2NC5fvnzDbTIzDsWaTGxsrFasWJFtyOopuhX9+/e3GX/xxRclSd9///1NL/OFF16wGW/UqJFOnDihM2fOSJKWLVsm6cqvMHvrvtrV561cunRJJ06cUIUKFVS4cGG7hx379Okji8Vis+6MjAzt37//ujU/88wzWrZsmZo0aaK1a9dqzJgxatSokSpWrKj169ffYIuz13rx4kUdP35cDz30kCTd9CHSnBQuXFi//PKL/vnnn5uaPyIiQsWKFVOZMmXUuXNn+fj4aPHixSpVqpQWLVqkzMxMdezYUcePH7cOQUFBqlixYrZDXbfK3udl7969NtOu3rcnT57U6dOn1ahRI5v9mtWLuGTJEmVmZtpdl6urq/Vwe2ZmplJSUnT58mXVrl3b7nvUqVMn+fv729QmKVt918o6/H71vPZq6dixo/Xw1Jw5c1SmTBnrOq6WkpKin376SR07dtTZs2et78mJEycUGRmpv/76S4cOHbpuTVn13OgWR1l/+y+99JLN9Gt73wzD0MKFC9WqVSsZhmHzWYmMjNTp06ez7dOoqCib0x2u3Z+bN2/WiRMn1Lt3b5tDgd26dcu2L/PrvTxz5ozdcxK7d++uYsWKWYehQ4daX8vt99ayZctUr149m97FgIAAdevWLdv6rl5m1megUaNGOn/+vHbu3HndbchJSEiI9f+TpUuXatKkSTp9+rSaN29ucwQht9vTsWNHeXp6as6cOdZpy5cv1/Hjx23O5XP0e713795ydXW9qW00Cw7FmkydOnWsJ7pfLTdf0jdSsWJFm/Hy5cvLxcXF7rkguXXffffZjGd9mZ48eVKFChXS/v375eLiorJly9q0q1ChQrZlXbhwQWPHjtWsWbN06NAhGYZhfe306dMOrftGIiMjFRkZqfPnzyshIUHz58/X1KlT9cQTT2jnzp3Wc+1ykpKSolGjRmnevHnZLriwV+uteOedd9SzZ0+VKVNG4eHhatGihXr06KFy5crlav7Y2FhVqlRJbm5uCgwMVOXKleXicuU34V9//SXDMLJ9NrJc77CVozw9Pa3nLWbx9/fP9n59++23euONN5SYmKi0tDTr9KtDfKdOnTRjxgw999xzeuWVV9S0aVM9+eSTat++vXXbJOmTTz7R+PHjtXPnTpvTGa79PEq39nmSZPN5tadr1656//33tXXrVs2dO1edO3e22aYsu3fvlmEYGj58uIYPH253WUePHrV7oca19dhb/tWy/j6zDg9nqVy5ss34sWPHdOrUKU2bNk3Tpk3Lsaar3Wh/Zv0Au/a7wM3Nze692fLjvfT19bV7H8LRo0crOjpakrJdZJDb7639+/erXr162ZZt77vwjz/+0Ouvv66ffvrJ+iPZ3jId4e3tbXMeaLNmzdSwYUPVrl1b48aN0/jx4x3ansKFC1tvETVmzBhJV36wlCpVynoeryPLy2Lv/bzXEOzuUTl9YTtycu21y7iZZeb0y+pG/8nZ8+KLL2rWrFkaMGCA6tWrJz8/P1ksFnXu3Nlur8ztWHfBggXVqFEjNWrUSEWLFtWoUaO0dOlS9ezZ87rzdezYUevXr9eQIUNUo0YN+fj4KDMzU82aNcuxB+lqjuzrjh07qlGjRlq8eLF++OEHvfvuu3r77be1aNEiNW/e/IbryunHgnSl98NisWjp0qV29+f1rqh09POSm1/ha9asUevWrfXwww9r8uTJKlGihAoUKKBZs2bZXHzg5eWl1atXa+XKlfruu++0bNkyzZ8/X48++qh++OEHubq66rPPPlOvXr3Utm1bDRkyRMWLF5erq6vGjh1rPc8wN/Xd6POUda7iyZMnr3uyd926dVW+fHkNGDBASUlJ1tvqXCvr8zN48OAcL6ywFwaudfLkyRwDu6Oyanr66adz/Nu49qjC7fxuyK/3skqVKtq6dasuXbpk86PmekdMHP3eupFTp06pcePGKlSokEaPHq3y5cvL09NTW7Zs0dChQ29qmTnJuhhl9erVN7U9PXr00BdffKH169erWrVq+vrrr9WvXz+bH1eO7p+78Yrj241gd4/K+gV67Y1vr3cY8q+//rL5NbR7925lZmZafx3fzDJvJDg4WJmZmUpKSrL5T8be1XFffvmlevbsaf3lKF05zJlfN/fNCj+HDx+WlHNwOXnypOLi4jRq1CiNGDHCOv2vv/7K1janZTi6r0uUKKF+/fqpX79+Onr0qGrVqqU333wzV8HuesqXLy/DMFS2bFlVqlTJoXnz4vOycOFCeXp6avny5TYnlc+aNStbWxcXFzVt2lRNmzbVhAkT9NZbb+m1117TypUrFRERoS+//FLlypXTokWLbN6HmJiYm67PnqyrJ5OSklStWrXrtu3SpYveeOMNVa1aNdsJ/1myemILFCiQ45W2N3L58mUdPHhQrVu3vm67rL/PPXv22PTS7dq1y6Zd1hWzGRkZN12TvXVLV74LHnnkEZva9+3bZxOm8uu9fOKJJ7RhwwYtXrw410/vyO33VnBwsN3vvWunrVq1SidOnNCiRYts7pV39VXst1NGRoZNL6Uj38PNmjVTsWLFNGfOHNWtW1fnz59X9+7dbdo4+3v9bsQ5dveoQoUKqWjRoja/tCRp8uTJOc4TGxtrM/7BBx9IkjUc3MwybySrx+HaZWSt+2qurq7ZflF/8MEHt/0S/7i4OLvTs843yvoPLutqrWu/gLJ6A66tddKkSdmWmXUPpmuXkdt9nZGRke1wRfHixVWyZEmbw5Q368knn5Srq6tGjRqVbXsMw7C5fcu1goOD5erqels/L66urrJYLDbv+b59+/TVV1/ZtEtJSck2b1ZQytov9t6nX375RfHx8Tddnz3h4eFyd3fP1ZMjnnvuOcXExNj8J3et4sWLq0mTJvroo4+sPzKulpsrqrdv366LFy+qfv36122X9bf//vvv20y/9rPs6uqqp556SgsXLtS2bdtuqqZr1a5dW0WKFNH06dN1+fJl6/Q5c+ZkO2SaX+9l3759FRgYqIEDB+rPP//M9rq9Hr/cfm9FRkYqPj5eiYmJ1mkpKSk256hlLe/adaWnp9/S31VOVq5cqXPnziksLMxm/bn9HnZzc1OXLl20YMECzZ49W9WqVbPbc5sf3+tmQo/dPey5557TuHHj9Nxzz6l27dpavXq13S+jLElJSWrdurWaNWum+Ph46y0Orv6jdnSZNxIeHq6nnnpKkyZN0okTJ6y3O8la5tW/vp944gn997//lZ+fn0JDQxUfH68ff/zReqjrdmnTpo3Kli2rVq1aqXz58kpNTdWPP/6ob775Rg8++KBatWol6cohgdDQUM2fP1+VKlVSQECAHnjgAT3wwAN6+OGH9c477+jSpUsqVaqUfvjhB7u/qMPDwyVJr732mjp37qwCBQqoVatW8vb2ztW+Pnv2rEqXLq327dsrLCxMPj4++vHHH7Vp06brhoPcKl++vN544w0NGzbMeqsJX19fJSUlafHixerTp48GDx5sd14/Pz916NBBH3zwgSwWi8qXL69vv/32lm7y3LJlS02YMEHNmjVT165ddfToUcXGxqpChQr67bffrO1Gjx6t1atXq2XLlgoODtbRo0c1efJklS5dWg0bNpR05fO0aNEitWvXTi1btlRSUpKmTp2q0NDQ2/o8V09PTz3++OP68ccfNXr06Ou2DQ4OztXzV2NjY9WwYUNVq1ZNvXv3Vrly5ZScnKz4+Hj9/fffN3xc2IoVK1SwYMEb3nS2Ro0a6tKliyZPnqzTp0+rfv36iouLs9uzNG7cOK1cuVJ169ZV7969FRoaqpSUFG3ZskU//vij3bB9Pe7u7ho5cqRefPFFPfroo+rYsaP27dun2bNnq3z58tm+G/LjvQwICNDixYvVqlUrhYWFqXPnznrwwQdVoEABHTx4UF988YUk23P4cvu99e9//1ufffaZHnvsMb344ovW253cd999SklJsW5v/fr15e/vr549e+qll16SxWLRf//735s6hH2106dP67PPPpN0pVd0165dmjJliry8vPTKK684vD1ZevTooffff18rV660uc3VzS4P4nYnZmHvlgdXa9y4sc3tTgzjymXkzz77rOHn52f4+voaHTt2NI4ePZrjrUm2b99utG/f3vD19TX8/f2N6Oho48KFC7e0zGtvN5G1HVdfup+ammr079/fCAgIMHx8fIy2bdsau3btMiQZ48aNs7Y7efKkERUVZRQtWtTw8fExIiMjjZ07dxrBwcE2l8/ntK+ud+uHq33++edG586djfLlyxteXl6Gp6enERoaarz22mvGmTNnbNquX7/eCA8PN9zd3W32wd9//220a9fOKFy4sOHn52d06NDB+Oeff+zeHmXMmDFGqVKlDBcXF5t9k5t9nZaWZgwZMsQICwszfH19DW9vbyMsLMyYPHnydbfxevvJnoULFxoNGzY0vL29DW9vb6NKlSpG//79jV27dlnb2Lu1wrFjx4ynnnrKKFiwoOHv7288//zzxrZt2+ze7sTb2zvberM+R1ebOXOmUbFiRcPDw8OoUqWKMWvWrGzt4uLijDZt2hglS5Y03N3djZIlSxpdunQx/vzzT2ubzMxM46233jKCg4MNDw8Po2bNmsa3336bbTuybpHx7rvvZqvP3vtpz6JFiwyLxWIcOHDAZnrW7U6uJ6f3ac+ePUaPHj2MoKAgo0CBAkapUqWMJ554wvjyyy+tbXL6zNetW9d4+umnb1i3YRjGhQsXjJdeeskoUqSI4e3tbbRq1co4ePCg3W1PTk42+vfvb5QpU8YoUKCAERQUZDRt2tSYNm1atpq++OILm3lzusXP+++/b32P6tSpY6xbt84IDw83mjVrZm2Tn++lYRjG4cOHjSFDhhihoaGGl5eX4eHhYZQrV87o0aOHze2MDCP331uGYRi//vqr0ahRI8PDw8MoXbq0MXbsWOP99983JBlHjhyxtlu3bp3x0EMPGV5eXkbJkiWNf//738by5cuzvdc3e7sTi8ViBAQEGK1btzYSEhJuenuy3H///YaLi4vx999/Z3vtVr/X70UWw7jFGA84QWJiomrWrKnPPvvM7uX+wN0kIyNDoaGh6tixo/UKQWdJTExUrVq1tGXLlhzP47uTZWZmqlixYnryySc1ffp0Z5eT5wYMGKCPPvpI586du2tv81GzZk0FBATkeJoLHMM5drjjXbhwIdu0SZMmycXF5a57kDZgj6urq0aPHq3Y2NjbemjwZowbN07t27e/K0LdxYsXsx1i/PTTT5WSkmLzSDGzuPa78MSJE/rvf/+rhg0b3rWhbvPmzUpMTFSPHj2cXYpp0GOHO96oUaOUkJCgRx55RG5ublq6dKmWLl2qPn366KOPPnJ2eQCcZNWqVRo4cKA6dOigIkWKaMuWLZo5c6aqVq2qhIQEu89zvpvVqFFDTZo0UdWqVZWcnKyZM2fqn3/+UVxc3F33I3fbtm1KSEjQ+PHjdfz4ce3du1eenp7OLssUuHgCd7z69etrxYoVGjNmjM6dO6f77rtPI0eO1Guvvebs0gA4UUhIiMqUKaP3339fKSkpCggIUI8ePTRu3DjThTpJatGihb788ktNmzZNFotFtWrV0syZM++6UCdduY3J6NGjVblyZX3++eeEutuIHjsAAACT4Bw7AAAAkyDYAQAAmMQ9d45dZmam/vnnH/n6+t7wAdcAAADOZhiGzp49q5IlS9o8S9eeey7Y/fPPPypTpoyzywAAAHDIwYMHVbp06eu2ueeCna+vr6QrO6dQoUJOrgYAAOD6zpw5ozJlylgzzPXcc8Eu6/BroUKFCHYAAOCukZtTyLh4AgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJpwa71atXq1WrVipZsqQsFou++uqrG86zatUq1apVSx4eHqpQoYJmz56d53UCAADcDZwa7FJTUxUWFqbY2NhctU9KSlLLli31yCOPKDExUQMGDNBzzz2n5cuX53GlAAAAdz43Z668efPmat68ea7bT506VWXLltX48eMlSVWrVtXatWs1ceJERUZG5lWZAAAAd4W76hy7+Ph4RURE2EyLjIxUfHy8kyoCAABmZxiGzp07Zx0Mw3B2STlyao+do44cOaLAwECbaYGBgTpz5owuXLggLy+vbPOkpaUpLS3NOn7mzJk8rxMAAJhHamqq2rRpYx1fsmSJfHx8nFhRzu6qYHczxo4dq1GjRjm7DABAPgsf8qmzS7gtEt7t4VD7e3W7ccVddSg2KChIycnJNtOSk5NVqFAhu711kjRs2DCdPn3aOhw8eDA/SgUAAMh3d1WPXb169fT999/bTFuxYoXq1auX4zweHh7y8PDI69IAAACczqk9dufOnVNiYqISExMlXbmdSWJiog4cOCDpSm9bjx7/64p94YUXtHfvXv373//Wzp07NXnyZC1YsEADBw50RvkAAAB3FKcGu82bN6tmzZqqWbOmJGnQoEGqWbOmRowYIUk6fPiwNeRJUtmyZfXdd99pxYoVCgsL0/jx4zVjxgxudQIAACAnH4pt0qTJdS8ZtvdUiSZNmujXX3/Nw6oAAADuTnfVxRMAAADIGcEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEzCzdkFAIAZGIah1NRU67i3t7csFosTKwJwLyLYAcBtkJqaqjZt2ljHlyxZIh8fHydWBOBeRLADANw0eiqBOwvBDgBw0+ipBO4sXDwBAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCScHuxiY2MVEhIiT09P1a1bVxs3brxu+0mTJqly5cry8vJSmTJlNHDgQF28eDGfqgUAALhzOTXYzZ8/X4MGDVJMTIy2bNmisLAwRUZG6ujRo3bbz507V6+88opiYmK0Y8cOzZw5U/Pnz9err76az5UDAADceZwa7CZMmKDevXsrKipKoaGhmjp1qgoWLKiPP/7Ybvv169erQYMG6tq1q0JCQvT444+rS5cuN+zlAwAAuBc4Ldilp6crISFBERER/yvGxUURERGKj4+3O0/9+vWVkJBgDXJ79+7V999/rxYtWuRLzQAAAHcyN2et+Pjx48rIyFBgYKDN9MDAQO3cudPuPF27dtXx48fVsGFDGYahy5cv64UXXrjuodi0tDSlpaVZx8+cOXN7NgAAAOAO4/SLJxyxatUqvfXWW5o8ebK2bNmiRYsW6bvvvtOYMWNynGfs2LHy8/OzDmXKlMnHigEAAPKP03rsihYtKldXVyUnJ9tMT05OVlBQkN15hg8fru7du+u5556TJFWrVk2pqanq06ePXnvtNbm4ZM+pw4YN06BBg6zjZ86cIdwBAABTclqPnbu7u8LDwxUXF2edlpmZqbi4ONWrV8/uPOfPn88W3lxdXSVJhmHYncfDw0OFChWyGQAAAMzIaT12kjRo0CD17NlTtWvXVp06dTRp0iSlpqYqKipKktSjRw+VKlVKY8eOlSS1atVKEyZMUM2aNVW3bl3t3r1bw4cPV6tWrawBDwAA4F7l1GDXqVMnHTt2TCNGjNCRI0dUo0YNLVu2zHpBxYEDB2x66F5//XVZLBa9/vrrOnTokIoVK6ZWrVrpzTffdNYmAAAA3DGcGuwkKTo6WtHR0XZfW7Vqlc24m5ubYmJiFBMTkw+VAQAA3F3uqqtiAQAAkDOCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAk3ZxcAAABwq8KHfJpny7ZcTpffVeNNhs+T4eaeJ+tKeLfHLc1Pjx0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgkeKAbhnmOGRQ7f6uCEA5kaPHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmHgt2lS5fk5uambdu25VU9AAAAuEkOBbsCBQrovvvuU0ZGRl7VAwAAgJvk8KHY1157Ta+++qpSUlLyoh4AdznDMHTu3DnrYBiGs0sCgHuGm6MzfPjhh9q9e7dKliyp4OBgeXt727y+ZcuW21YcgLtPamqq2rRpYx1fsmSJfHx8nFgRANw7HA52bdu2zYMyAAAAcKscDnYxMTF5UQcAAABuEbc7AQAAMAmHe+wyMjI0ceJELViwQAcOHFB6errN61xUAQAA4BwO99iNGjVKEyZMUKdOnXT69GkNGjRITz75pFxcXDRy5Mg8KBEAAAC54XCwmzNnjqZPn65//etfcnNzU5cuXTRjxgyNGDFCGzZsyIsaAQAAkAsOB7sjR46oWrVqkiQfHx+dPn1akvTEE0/ou+++c7iA2NhYhYSEyNPTU3Xr1tXGjRuv2/7UqVPq37+/SpQoIQ8PD1WqVEnff/+9w+sFAAAwG4eDXenSpXX48GFJUvny5fXDDz9IkjZt2iQPDw+HljV//nwNGjRIMTEx2rJli8LCwhQZGamjR4/abZ+enq7HHntM+/bt05dffqldu3Zp+vTpKlWqlKObAQAAYDoOXzzRrl07xcXFqW7dunrxxRf19NNPa+bMmTpw4IAGDhzo0LImTJig3r17KyoqSpI0depUfffdd/r444/1yiuvZGv/8ccfKyUlRevXr1eBAgUkSSEhIY5uAgAAgCk5HOzGjRtn/XenTp0UHBys9evXq2LFimrVqlWul5Oenq6EhAQNGzbMOs3FxUURERGKj4+3O8/XX3+tevXqqX///lqyZImKFSumrl27aujQoXJ1dbU7T1pamtLS0qzjZ86cyXWNAAAAdxOHg11qaqrNY8QeeughPfTQQw6v+Pjx48rIyFBgYKDN9MDAQO3cudPuPHv37tVPP/2kbt266fvvv9fu3bvVr18/Xbp0KccbJ48dO1ajRo1yuD4AAIC7jcPn2AUGBuqZZ57R2rVr86Ke68rMzFTx4sU1bdo0hYeHq1OnTnrttdc0derUHOcZNmyYTp8+bR0OHjyYjxUDAADkH4eD3WeffaaUlBQ9+uijqlSpksaNG6d//vnH4RUXLVpUrq6uSk5OtpmenJysoKAgu/OUKFFClSpVsjnsWrVqVR05ciTbjZKzeHh4qFChQjYDAACAGTkc7Nq2bauvvvpKhw4d0gsvvKC5c+cqODhYTzzxhBYtWqTLly/najnu7u4KDw9XXFycdVpmZqbi4uJUr149u/M0aNBAu3fvVmZmpnXan3/+qRIlSsjd3d3RTQEAADCVm35WbLFixTRo0CD99ttvmjBhgn788Ue1b99eJUuW1IgRI3T+/PkbLmPQoEGaPn26PvnkE+3YsUN9+/ZVamqq9SrZHj162Fxc0bdvX6WkpOjll1/Wn3/+qe+++05vvfWW+vfvf7ObAQAAYBoOXzyRJTk5WZ988olmz56t/fv3q3379nr22Wf1999/6+2339aGDRus97jLSadOnXTs2DGNGDFCR44cUY0aNbRs2TLrBRUHDhyQi8v/smeZMmW0fPlyDRw4UNWrV1epUqX08ssva+jQoTe7GQAAAKbhcLBbtGiRZs2apeXLlys0NFT9+vXT008/rcKFC1vb1K9fX1WrVs3V8qKjoxUdHW33tVWrVmWbVq9ePR5dBgAAYIfDwS4qKkqdO3fWunXr9OCDD9ptU7JkSb322mu3XBwAAAByz+Fgd/jwYRUsWPC6bby8vHK8rxwAAADyhsPB7upQd/HixWy3GeF2IgAAAM7h8FWxqampio6OVvHixeXt7S1/f3+bAQAAAM7hcI/dv//9b61cuVJTpkxR9+7dFRsbq0OHDumjjz6yeY4sgDtX+JBP82zZlsvp8rtqvMnweTLcbv99JhPe7XHblwkAdzuHg90333yjTz/9VE2aNFFUVJQaNWqkChUqKDg4WHPmzFG3bt3yok4AAADcgMOHYlNSUlSuXDlJV86nS0lJkSQ1bNhQq1evvr3VAQAAINccDnblypVTUlKSJKlKlSpasGCBpCs9eVffyw4AAAD5y+FgFxUVpa1bt0qSXnnlFcXGxsrT01MDBw7UkCFDbnuBAAAAyB2Hz7EbOHCg9d8RERHauXOnEhISVKFCBVWvXv22FgcAuHVmuFhG4oIZIDdu+lmxWYKDgxUcHHw7agEAAMAtcOhQ7NmzZ5WQkKBz585JkrZs2aIePXqoQ4cOmjNnTp4UCAAAgNzJdY/d6tWr9cQTT+jcuXPy9/fX559/rvbt26tUqVJydXXVokWLdP78efXu3Tsv6wUAAEAOct1j9/rrr6tDhw46ePCgBgwYoE6dOik6Olo7duzQtm3bNGrUKMXGxuZlrQAAALiOXAe73377TUOGDFGpUqU0dOhQnTlzRp06dbK+3rlzZ+3ZsydPigQAAMCN5TrYnTlzRgEBAZIkd3d3FSxYUL6+vtbXfX19df78+dtfIQAAAHIl18HOYrHIYrHkOA4AAADnyvXFE4ZhqGnTpnJzuzLL+fPn1apVK7m7X7lf0eXLl/OmQgAAAORKroNdTEyMzXibNm2ytXnqqaduvSIAAADclJsOdgAAALizOPysWAAAANyZCHYAAAAmQbADAAAwCYIdAACASRDsAAAATCJXV8W+//77uV7gSy+9dNPFALj7Ga4FdLp6F5txAED+yFWwmzhxYq4WZrFYCHbAvc5ikeHm7uwqAOCelKtgl5SUlNd1AAAA4BZxjh0AAIBJ5PrJE1f7+++/9fXXX+vAgQNKT0+3eW3ChAm3pTAAAAA4xuFgFxcXp9atW6tcuXLauXOnHnjgAe3bt0+GYahWrVp5USMAAAByweFDscOGDdPgwYP1+++/y9PTUwsXLtTBgwfVuHFjdejQIS9qBAAAQC44HOx27NihHj16SJLc3Nx04cIF+fj4aPTo0Xr77bdve4EAAADIHYeDnbe3t/W8uhIlSmjPnj3W144fP377KgMAAIBDHD7H7qGHHtLatWtVtWpVtWjRQv/617/0+++/a9GiRXrooYfyokYAAADkgsPBbsKECTp37pwkadSoUTp37pzmz5+vihUrckUsAACAEzkc7MqVK2f9t7e3t6ZOnXpbCwIAAMDN4QbFAAAAJuFwj52/v78sFku26RaLRZ6enqpQoYJ69eqlqKio21IgAAAAcsfhYDdixAi9+eabat68uerUqSNJ2rhxo5YtW6b+/fsrKSlJffv21eXLl9W7d+/bXjAAAADsczjYrV27Vm+88YZeeOEFm+kfffSRfvjhBy1cuFDVq1fX+++/T7ADAADIRw6fY7d8+XJFRERkm960aVMtX75cktSiRQvt3bv31qsDgLuE4VpAp6t3sQ6GawFnlwTgHuRwsAsICNA333yTbfo333yjgIAASVJqaqp8fX1vvToAuFtYLDLc3K2D7JyLDAB5zeFDscOHD1ffvn21cuVK6zl2mzZt0vfff2+99cmKFSvUuHHj21spAAAArsvhYNe7d2+Fhobqww8/1KJFiyRJlStX1s8//6z69etLkv71r3/d3ioBAABwQw4HO0lq0KCBGjRocLtrAQAAwC24qWCX5eLFi0pPT7eZVqhQoVsqCAAAADfH4Ysnzp8/r+joaBUvXlze3t7y9/e3GQAAAOAcDge7IUOG6KefftKUKVPk4eGhGTNmaNSoUSpZsqQ+/fTTvKgRAAAAueDwodhvvvlGn376qZo0aaKoqCg1atRIFSpUUHBwsObMmaNu3brlRZ0AAAC4AYd77FJSUlSuXDlJV86nS0lJkSQ1bNhQq1evvr3VAQAAINccDnblypVTUlKSJKlKlSpasGCBpCs9eYULF76txQEAACD3HA52UVFR2rp1qyTplVdeUWxsrDw9PTVw4EANGTLkthcIAACA3HH4HLuBAwda/x0REaGdO3cqISFBFSpUUPXq1W9rcQAAAMi9W7qPnSQFBwcrODj4dtQCAACAW5DrYHfhwgXFxcXpiSeekCQNGzZMaWlp1tddXV01ZswYeXp63v4qAQAAcEO5DnaffPKJvvvuO2uw+/DDD3X//ffLy8tLkrRz506VLFnS5lAtAAAA8k+uL56YM2eO+vTpYzNt7ty5WrlypVauXKl3333XeoUsAAAA8l+ug93u3btVrVo167inp6dcXP43e506dbR9+/bbWx0AAAByLdeHYk+dOmVzTt2xY8dsXs/MzLR5HQAAAPkr1z12pUuX1rZt23J8/bffflPp0qVvS1EAAABwXK6DXYsWLTRixAhdvHgx22sXLlzQqFGj1LJly9taHAAAAHIv18Hu1VdfVUpKiipXrqx3331XS5Ys0ZIlS/TOO++ocuXKOnnypF599dWbKiI2NlYhISHy9PRU3bp1tXHjxlzNN2/ePFksFrVt2/am1gsAAGAmuT7HLjAwUOvXr1ffvn31yiuvyDAMSZLFYtFjjz2myZMnKzAw0OEC5s+fr0GDBmnq1KmqW7euJk2apMjISO3atUvFixfPcb59+/Zp8ODBatSokcPrBAAAMCOHnhVbtmxZLVu2TMeOHdOGDRu0YcMGHTt2TMuWLVO5cuVuqoAJEyaod+/eioqKUmhoqKZOnaqCBQvq448/znGejIwMdevWTaNGjbrp9QIAAJiNQ8EuS0BAgOrUqaM6deooICDgpleenp6uhIQERURE/K8gFxdFREQoPj4+x/lGjx6t4sWL69lnn73hOtLS0nTmzBmbAQAAwIxuKtjdLsePH1dGRka2Q7iBgYE6cuSI3XnWrl2rmTNnavr06blax9ixY+Xn52cdypQpc8t1AwAA3ImcGuwcdfbsWXXv3l3Tp09X0aJFczXPsGHDdPr0aetw8ODBPK4SAADAOXJ98UReKFq0qFxdXZWcnGwzPTk5WUFBQdna79mzR/v27VOrVq2s0zIzMyVJbm5u2rVrl8qXL28zj4eHhzw8PPKgegAAgDuLU3vs3N3dFR4erri4OOu0zMxMxcXFqV69etnaV6lSRb///rsSExOtQ+vWrfXII48oMTGRw6wAAOCe5tQeO0kaNGiQevbsqdq1a6tOnTqaNGmSUlNTFRUVJUnq0aOHSpUqpbFjx8rT01MPPPCAzfyFCxeWpGzTAQAA7jVOD3adOnXSsWPHNGLECB05ckQ1atTQsmXLrBdUHDhwQC4ud9WpgAAAAE7h9GAnSdHR0YqOjrb72qpVq6477+zZs29/QQAAAHchusIAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCTcnF0AAADAncxwLaDT1bvYjN+pCHYAAADXY7HIcHN3dhW5wqFYAAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJN2cXAAC4exmuBXS6ehebcQDOQ7ADANw8i0WGm7uzqwDw/+6IQ7GxsbEKCQmRp6en6tatq40bN+bYdvr06WrUqJH8/f3l7++viIiI67YHAAC4Vzg92M2fP1+DBg1STEyMtmzZorCwMEVGRuro0aN2269atUpdunTRypUrFR8frzJlyujxxx/XoUOH8rlyxxiGoXPnzlkHwzCcXRIAADAZpwe7CRMmqHfv3oqKilJoaKimTp2qggUL6uOPP7bbfs6cOerXr59q1KihKlWqaMaMGcrMzFRcXFw+V+6Y1NRUtWnTxjqkpqY6uyQAAGAyTg126enpSkhIUEREhHWai4uLIiIiFB8fn6tlnD9/XpcuXVJAQEBelQk4jB5aAIAzOPXiiePHjysjI0OBgYE20wMDA7Vz585cLWPo0KEqWbKkTTi8WlpamtLS0qzjZ86cufmCgVzK6qHNsmTJEvn4+DixIgDAvcDph2Jvxbhx4zRv3jwtXrxYnp6edtuMHTtWfn5+1qFMmTL5XCUAAED+cGqwK1q0qFxdXZWcnGwzPTk5WUFBQded9z//+Y/GjRunH374QdWrV8+x3bBhw3T69GnrcPDgwdtSOwAAwJ3GqcHO3d1d4eHhNhc+ZF0IUa9evRzne+eddzRmzBgtW7ZMtWvXvu46PDw8VKhQIZsBAADAjJx+g+JBgwapZ8+eql27turUqaNJkyYpNTVVUVFRkqQePXqoVKlSGjt2rCTp7bff1ogRIzR37lyFhIToyJEjkiQfHx/OYQIAAPc0pwe7Tp066dixYxoxYoSOHDmiGjVqaNmyZdYLKg4cOCAXl/91LE6ZMkXp6elq3769zXJiYmI0cuTI/CwdAADgjuL0YCdJ0dHRio6OtvvaqlWrbMb37duX9wUBAADche6IYAc4S/iQT/NkuZbL6fK7arzJ8Hl59jzNhHd75MlyAQB3n7v6dicAAAD4H4IdAACASRDsAAAATIJz7K6SV+dbSZxzBQAA8h49dgAAACZBjx3ylGEYSk1NtY57e3vLYrE4sSIAAMyLYIc8lZqaqjZt2ljHlyxZwhNCAADIIxyKBQAAMAl67IA8YLgW0OnqXWzGAQDIawQ7IC9YLHl21TMAADnhUCwAAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJblCcT+70JxGED/k0T5ZruZwuv6vGmwyfl2c37k14t0eeLBcAgLsFwS6/8CQCAACQxzgUCwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJPgkWLIU3f6M3IBADATgh3yFs/IBQAg33AoFgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABM4o4IdrGxsQoJCZGnp6fq1q2rjRs3Xrf9F198oSpVqsjT01PVqlXT999/n0+VAgAA3LmcHuzmz5+vQYMGKSYmRlu2bFFYWJgiIyN19OhRu+3Xr1+vLl266Nlnn9Wvv/6qtm3bqm3bttq2bVs+Vw4AAHBncXqwmzBhgnr37q2oqCiFhoZq6tSpKliwoD7++GO77d977z01a9ZMQ4YMUdWqVTVmzBjVqlVLH374YT5XDgAAcGdxarBLT09XQkKCIiIirNNcXFwUERGh+Ph4u/PEx8fbtJekyMjIHNsDAADcK9ycufLjx48rIyNDgYGBNtMDAwO1c+dOu/McOXLEbvsjR47YbZ+Wlqa0tDTr+OnTpyVJZ86cydY2I+2CQ/Xfqext242YYdvZ7txju+9e9+p2S45vO9t9d2O7s08zDOPGCzCc6NChQ4YkY/369TbThwwZYtSpU8fuPAUKFDDmzp1rMy02NtYoXry43fYxMTGGJAYGBgYGBgaGu3o4ePDgDbOVU3vsihYtKldXVyUnJ9tMT05OVlBQkN15goKCHGo/bNgwDRo0yDqemZmplJQUFSlSRBaL5Ra3wDFnzpxRmTJldPDgQRUqVChf1+1MbPe9td3SvbvtbDfbfS9gu/N/uw3D0NmzZ1WyZMkbtnVqsHN3d1d4eLji4uLUtm1bSVeCV1xcnKKjo+3OU69ePcXFxWnAgAHWaStWrFC9evXstvfw8JCHh4fNtMKFC9+O8m9aoUKF7qk/hixs973nXt12tvvewnbfW5y13X5+frlq59RgJ0mDBg1Sz549Vbt2bdWpU0eTJk1SamqqoqKiJEk9evRQqVKlNHbsWEnSyy+/rMaNG2v8+PFq2bKl5s2bp82bN2vatGnO3AwAAACnc3qw69Spk44dO6YRI0boyJEjqlGjhpYtW2a9QOLAgQNycfnfxbv169fX3Llz9frrr+vVV19VxYoV9dVXX+mBBx5w1iYAAADcEZwe7CQpOjo6x0Ovq1atyjatQ4cO6tChQx5Xdft5eHgoJiYm26Fhs2O7763tlu7dbWe72e57Adt9Z2+3xTByc+0sAAAA7nROf/IEAAAAbg+CHQAAgEkQ7AAAAEyCYJdPLl26pKFDh6patWry9vZWyZIl1aNHD/3zzz/OLi3PLVq0SI8//rj1ptCJiYnOLilfxMbGKiQkRJ6enqpbt642btzo7JLy1NixY/Xggw/K19dXxYsXV9u2bbVr1y5nl5XnpkyZourVq1vvbVWvXj0tXbrU2WXlu3HjxslisdjcY9SMRo4cKYvFYjNUqVLF2WXli0OHDunpp59WkSJF5OXlpWrVqmnz5s3OLivPhYSEZHvPLRaL+vfv7+zS7CLY5ZPz589ry5YtGj58uLZs2aJFixZp165dat26tbNLy3Opqalq2LCh3n77bWeXkm/mz5+vQYMGKSYmRlu2bFFYWJgiIyN19OhRZ5eWZ37++Wf1799fGzZs0IoVK3Tp0iU9/vjjSk1NdXZpeap06dIaN26cEhIStHnzZj366KNq06aN/vjjD2eXlm82bdqkjz76SNWrV3d2Kfni/vvv1+HDh63D2rVrnV1Snjt58qQaNGigAgUKaOnSpdq+fbvGjx8vf39/Z5eW5zZt2mTzfq9YsUKS7ty7c+Tmma7IGxs3bjQkGfv373d2KfkiKSnJkGT8+uuvzi4lz9WpU8fo37+/dTwjI8MoWbKkMXbsWCdWlb+OHj1qSDJ+/vlnZ5eS7/z9/Y0ZM2Y4u4x8cfbsWaNixYrGihUrjMaNGxsvv/yys0vKUzExMUZYWJizy8h3Q4cONRo2bOjsMu4IL7/8slG+fHkjMzPT2aXYRY+dE50+fVoWi8XpjzjD7ZWenq6EhARFRERYp7m4uCgiIkLx8fFOrCx/nT59WpIUEBDg5EryT0ZGhubNm6fU1NQcH3NoNv3791fLli1tPu9m99dff6lkyZIqV66cunXrpgMHDji7pDz39ddfq3bt2urQoYOKFy+umjVravr06c4uK9+lp6frs88+0zPPPJPvz5vPLYKdk1y8eFFDhw5Vly5d7sln7ZnZ8ePHlZGRYX16SpbAwEAdOXLESVXlr8zMTA0YMEANGjS4J54K8/vvv8vHx0ceHh564YUXtHjxYoWGhjq7rDw3b948bdmyxfrIx3tB3bp1NXv2bC1btkxTpkxRUlKSGjVqpLNnzzq7tDy1d+9eTZkyRRUrVtTy5cvVt29fvfTSS/rkk0+cXVq++uqrr3Tq1Cn16tXL2aXkiGCXR+bMmSMfHx/rsGbNGutrly5dUseOHWUYhqZMmeLEKm+/62037h39+/fXtm3bNG/ePGeXki8qV66sxMRE/fLLL+rbt6969uyp7du3O7usPHXw4EG9/PLLmjNnjjw9PZ1dTr5p3ry5OnTooOrVqysyMlLff/+9Tp06pQULFji7tDyVmZmpWrVq6a233lLNmjXVp08f9e7dW1OnTnV2aflq5syZat68uUqWLOnsUnJ0RzxSzIxat26tunXrWsdLlSol6X+hbv/+/frpp59M11uX03bfS4oWLSpXV1clJyfbTE9OTlZQUJCTqso/0dHR+vbbb7V69WqVLl3a2eXkC3d3d1WoUEGSFB4erk2bNum9997TRx995OTK8k5CQoKOHj2qWrVqWadlZGRo9erV+vDDD5WWliZXV1cnVpg/ChcurEqVKmn37t3OLiVPlShRIlsvdNWqVbVw4UInVZT/9u/frx9//FGLFi1ydinXRbDLI76+vvL19bWZlhXq/vrrL61cuVJFihRxUnV5x95232vc3d0VHh6uuLg4tW3bVtKVX7txcXE5PhPZDAzD0IsvvqjFixdr1apVKlu2rLNLcprMzEylpaU5u4w81bRpU/3+++8206KiolSlShUNHTr0ngh1knTu3Dnt2bNH3bt3d3YpeapBgwbZbl/0559/Kjg42EkV5b9Zs2apePHiatmypbNLuS6CXT65dOmS2rdvry1btujbb79VRkaG9XyrgIAAubu7O7nCvJOSkqIDBw5Y79mX9eUQFBRk2h6sQYMGqWfPnqpdu7bq1KmjSZMmKTU1VVFRUc4uLc/0799fc+fO1ZIlS+Tr62v9fPv5+cnLy8vJ1eWdYcOGqXnz5rrvvvt09uxZzZ07V6tWrdLy5cudXVqe8vX1zXb+pLe3t4oUKWLq8yoHDx6sVq1aKTg4WP/8849iYmLk6uqqLl26OLu0PDVw4EDVr19fb731ljp27KiNGzdq2rRpmjZtmrNLyxeZmZmaNWuWevbsKTe3Ozw6Ofuy3HtF1q0+7A0rV650dnl5atasWXa3OyYmxtml5akPPvjAuO+++wx3d3ejTp06xoYNG5xdUp7K6fM9a9YsZ5eWp5555hkjODjYcHd3N4oVK2Y0bdrU+OGHH5xdllPcC7c76dSpk1GiRAnD3d3dKFWqlNGpUydj9+7dzi4rX3zzzTfGAw88YHh4eBhVqlQxpk2b5uyS8s3y5csNScauXbucXcoNWQzDMPI7TAIAAOD246pYAAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7ALCjSZMmGjBggLPLyDe7du1SUFCQzp49m2frCAkJ0aRJkyRJ6enpCgkJ0ebNm/NsfcC9iGAHIJtjx46pb9++uu++++Th4aGgoCBFRkZq3bp11jYWi0VfffWVw8u++j/3vGSxWKyDn5+fGjRooJ9++inP13u3GjZsmF588UX5+vpKklatWiWLxSJ/f39dvHjRpu2mTZus+9YRmzZtUp8+fSRJ7u7uGjx4sIYOHXp7NgCAJIIdADueeuop/frrr/rkk0/0559/6uuvv1aTJk104sQJZ5fmkFmzZunw4cNat26dihYtqieeeEJ79+51dll3nAMHDujbb79Vr169sr3m6+urxYsX20ybOXOm7rvvPofXU6xYMRUsWNA63q1bN61du1Z//PGHw8sCYB/BDoCNU6dOac2aNXr77bf1yCOPKDg4WHXq1NGwYcPUunVrSVd63SSpXbt2slgs1vE9e/aoTZs2CgwMlI+Pjx588EH9+OOP1mU3adJE+/fv18CBA216fEaOHKkaNWrY1DFp0iTrcqUrPUh16tSRt7e3ChcurAYNGmj//v3X3ZbChQsrKChIDzzwgKZMmaILFy5oxYoVkqRt27apefPm8vHxUWBgoLp3767jx4/nuCx7PZSFCxfW7NmzJUn79u2TxWLRokWL9Mgjj6hgwYIKCwtTfHy8tf2JEyfUpUsXlSpVSgULFlS1atX0+eef2yzzyy+/VLVq1eTl5aUiRYooIiJCqampkq70eD322GMqWrSo/Pz81LhxY23ZsiVbnTNmzFC7du1UsGBBVaxYUV9//fV199OCBQsUFhamUqVKZXutZ8+e+vjjj63jFy5c0Lx589SzZ89sbdeuXatGjRrJy8tLZcqU0UsvvWStXcreW+vv768GDRpo3rx5160PQO4R7ADY8PHxkY+Pj7766iulpaXZbbNp0yZJ/+sRyxo/d+6cWrRoobi4OP36669q1qyZWrVqpQMHDkiSFi1apNKlS2v06NE6fPiwDh8+nKuaLl++rLZt26px48b67bffFB8frz59+jh0KNDLy0vSlXO7Tp06pUcffVQ1a9bU5s2btWzZMiUnJ6tjx465Xl5OXnvtNQ0ePFiJiYmqVKmSunTposuXL0uSLl68qPDwcH333Xfatm2b+vTpo+7du2vjxo2SpMOHD6tLly565plntGPHDq1atUpPPvmkDMOQJJ09e1Y9e/bU2rVrtWHDBlWsWFEtWrTIdl7cqFGj1LFjR/32229q0aKFunXrppSUlBxrXrNmjWrXrm33te7du2vNmjXW93DhwoUKCQlRrVq1bNrt2bNHzZo101NPPaXffvtN8+fP19q1axUdHX3d/VWnTh2tWbPmum0AOMAAgGt8+eWXhr+/v+Hp6WnUr1/fGDZsmLF161abNpKMxYsX33BZ999/v/HBBx9Yx4ODg42JEyfatImJiTHCwsJspk2cONEIDg42DMMwTpw4YUgyVq1alettuLq+1NRUo1+/foarq6uxdetWY8yYMcbjjz9u0/7gwYOGJGPXrl2GYRhG48aNjZdfftnu8rL4+fkZs2bNMgzDMJKSkgxJxowZM6yv//HHH4YkY8eOHTnW2bJlS+Nf//qXYRiGkZCQYEgy9u3bl6ttzMjIMHx9fY1vvvnGps7XX3/dOn7u3DlDkrF06dIclxMWFmaMHj3aZtrKlSsNScbJkyeNtm3bGqNGjTIMwzAeeeQR47333jMWL15sXP1fyLPPPmv06dPHZhlr1qwxXFxcjAsXLhiGYf+9f++994yQkJBcbS+AG6PHDkA2Tz31lP755x99/fXXatasmVatWqVatWpZDzvm5Ny5cxo8eLCqVq2qwoULy8fHRzt27LD29tysgIAA9erVS5GRkWrVqpXee++9XPX2denSRT4+PvL19dXChQs1c+ZMVa9eXVu3btXKlSutvZM+Pj6qUqWKpCs9T7eievXq1n+XKFFCknT06FFJUkZGhsaMGaNq1aopICBAPj4+Wr58uXX/hIWFqWnTpqpWrZo6dOig6dOn6+TJk9blJScnq3fv3qpYsaL8/PxUqFAhnTt3Ltv+vboGb29vFSpUyFqDPRcuXJCnp2eOrz/zzDOaPXu29u7dq/j4eHXr1i1bm61bt2r27Nk2+zQyMlKZmZlKSkrKcdleXl46f/58jq8DcAzBDoBdnp6eeuyxxzR8+HCtX79evXr1UkxMzHXnGTx4sBYvXqy33npLa9asUWJioqpVq6b09PTrzufi4mI93Jjl0qVLNuOzZs1SfHy86tevr/nz56tSpUrasGHDdZc7ceJEJSYm6siRIzpy5Ij1vLBz586pVatWSkxMtBn++usvPfzww3aXZbFYblijJBUoUMBmHknKzMyUJL377rt67733NHToUK1cuVKJiYmKjIy07h9XV1etWLFCS5cuVWhoqD744ANVrlzZGox69uypxMREvffee1q/fr0SExNVpEiRbPv36hqy6siqwZ6iRYvaBMhrNW/eXBcuXNCzzz6rVq1aqUiRItnanDt3Ts8//7zN/ty6dav++usvlS9fPsdlp6SkqFixYjm+DsAxbs4uAMDdITQ01ObigQIFCigjI8Omzbp169SrVy+1a9dO0pX/7Pft22fTxt3dPdt8xYoV05EjR2QYhjUMJSYmZquhZs2aqlmzpoYNG6Z69epp7ty5euihh3KsOSgoSBUqVMg2vVatWtZzxdzccvc1WKxYMZtewr/++svhnqZ169apTZs2evrppyVdCXx//vmnQkNDrW0sFosaNGigBg0aaMSIEQoODtbixYs1aNAgrVu3TpMnT1aLFi0kSQcPHrzuBR+5VbNmTW3fvj3H193c3NSjRw+98847Wrp0qd02tWrV0vbt2+3u7+vZtm2batas6dA8AHJGjx0AGydOnNCjjz6qzz77TL/99puSkpL0xRdf6J133lGbNm2s7UJCQhQXF6cjR45Ye3sqVqyoRYsWWXtrunbtmq2nKCQkRKtXr9ahQ4esoaRJkyY6duyY3nnnHe3Zs0exsbE2ASIpKUnDhg1TfHy89u/frx9++EF//fWXqlatelPb2L9/f6WkpKhLly7atGmT9uzZo+XLlysqKipb6Mzy6KOP6sMPP9Svv/6qzZs364UXXsjWM3YjFStW1IoVK7R+/Xrt2LFDzz//vJKTk62v//LLL3rrrbe0efNmHThwQIsWLdKxY8es21mxYkX997//1Y4dO/TLL7+oW7du1otCbkVkZKTi4+Nz3HZJGjNmjI4dO6bIyEi7rw8dOlTr169XdHS0tfdzyZIlN7x4Ys2aNXr88cdvqX4A/0OwA2DDx8dHdevW1cSJE/Xwww/rgQce0PDhw9W7d299+OGH1nbjx4/XihUrVKZMGWuPy4QJE+Tv76/69eurVatWioyMzHb15OjRo7Vv3z6VL1/eegiuatWqmjx5smJjYxUWFqaNGzdq8ODB1nkKFiyonTt36qmnnlKlSpXUp08f9e/fX88///xNbWPJkiW1bt06ZWRk6PHHH1e1atU0YMAAFS5cWC4u9r8Wx48frzJlyqhRo0bq2rWrBg8ebHNPttx4/fXXVatWLUVGRqpJkyYKCgpS27Ztra8XKlRIq1evVosWLVSpUiW9/vrrGj9+vJo3by7pyv3jTp48qVq1aql79+566aWXVLx48ZvaB1dr3ry53NzcbG5Ncy13d3cVLVo0xyuRq1evrp9//ll//vmnGjVqpJo1a2rEiBEqWbJkjsuMj4/X6dOn1b59+1veBgBXWIxrTxoBANxzYmNj9fXXX2v58uX5ts5OnTopLCxMr776ar6tEzA7zrEDAOj555/XqVOndPbsWetjxfJSenq6qlWrpoEDB+b5uoB7CT12AAAAJsE5dgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADCJ/wN+3d89VWaqIQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='pay_5', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pelunasan (Mei) dengan Gagal Bayar')\n",
"plt.xlabel('Status Pelunasan (Mei)')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Tidak jauh berbeda dengan grafik status penjualan pada bulan Juli, ditemukan nilai keterlambatan yang sama untuk 5 bulan dan 6 bulan untuk bulan Mei\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQMElEQVR4nO3deXgN9//+8fskkYQkYk8ETexL7VGKKiWa2qldVURLq6JIqaoSS0urpfqplK+lUS2lC0UVJagllIYotdWulti3WEIyvz/8cuo0JySEE+P5uK65rszMe2ZeMznn5M57lmMxDMMQAAAAHnlOji4AAAAAmYNgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBxvDhg2TxWLR6dOnHV0KHmFdu3ZVQECAo8vIsr777jvlyZNHly9fdlgNBw8elMVi0fTp063TUt7/KW7cuKEiRYroiy++uK9trVq1ShaLRatWrbqv9eDBCggIUNeuXR1dBu4Twe4RNH36dFksFv3xxx9259erV0/ly5d/yFWZ19q1a9WoUSMVKlRI7u7ueuKJJ9SsWTPNmjXL2ubKlSsaNmzYff3hiomJ0bBhw3T+/Pn7LzqDUl5TKYO7u7tKlSqlsLAwxcfHP/R6zCwpKUkRERHq3bu3PD097c738/OTxWLR4sWLHVDhv7Jly6bw8HB98MEHunbtmkNreZT9+eefCg0NVdGiReXu7i5PT09VrlxZb7/9tvbv3+/o8jLs9s8Ki8UiDw8PlStXTu+//76uXLni6PIeey6OLgDIyr7//nu1b99elStXVp8+fZQ7d24dOHBAq1ev1pQpU9SpUydJt4Ld8OHDJd0K1vciJiZGw4cPV9euXZUrV65M2oOMGTFihIoWLapr165p7dq1mjhxon755Rdt375dOXLkcEhNZrNw4ULt3r1bPXr0sDt/xYoVOn78uAICAjRz5kw1atTogdTh7++vq1evKlu2bHdsFxoaqnfeeUezZs1St27dHkgtZjZlyhT17NlT+fLl00svvaQyZcro5s2b2r59u2bMmKHx48fr6tWrcnZ2dnSpGdKwYUN16dJFknT58mWtWbNGQ4YM0datW/X99987uLrHG8EOuINhw4apXLly2rBhg1xdXW3mnTx50kFVPTiNGjVStWrVJEmvvvqq8ubNq3Hjxmn+/Pnq2LGjg6szh6ioKNWuXVuFChWyO/+bb75R1apVFRISonfffVcJCQny8PDItO3fvHlTycnJcnV1lbu7+13b58qVS88//7ymT59OsMugmJgY9ezZU7Vr19bPP/8sLy8vm/ljx47VBx984KDq7k+pUqXUuXNn6/jrr7+uxMREzZ07V9euXUvXa+thy+z3UlbFqdjHgL1raVJYLBYNGzYs1fTTp0+rXbt2ypkzp/Lmzas+ffrYnIrJyDpTrtvZu3evtTfK29tboaGhqbrtr169qjfffFP58uWTl5eXmjdvrqNHj6Za56FDh/TGG2+odOnSyp49u/Lmzau2bdvq4MGDNutLOcW4bt06hYeHK3/+/PLw8FCrVq106tSpux67ffv26amnnkoV6iSpQIEC1mORP39+SdLw4cOtpydS6v3zzz/VtWtXFStWTO7u7vL19VW3bt105swZm2M0YMAASVLRokWt6zh48GCGjvWlS5fUt29fBQQEyM3NTQUKFFDDhg21efPmu+6rPfXr15ckHThwwDrtm2++UWBgoLJnz648efKoQ4cOOnLkyB3Xk9Y1Vvb2rWvXrvL09NTRo0fVsmVLeXp6Kn/+/Orfv7+SkpJslv/kk09Uq1Yt5c2bV9mzZ1dgYKB++OGHVNtftmyZnnnmGeXKlUuenp4qXbq03n33Xev8xMREDR06VIGBgfL29paHh4fq1KmjlStX2q33k08+0eTJk1W8eHG5ubnpqaee0qZNm+54DCTp2rVrWrJkiYKCguzOv3r1qubNm6cOHTqoXbt2unr1qubPn5+qXcox2r9/v4KDg+Xh4SE/Pz+NGDFChmHYrXf8+PHWenfs2HHH19V/NWzYUGvXrtXZs2fv2vaff/5Ry5Yt5eHhoQIFCqhfv366fv263ba///67XnjhBXl7eytHjhyqW7eu1q1bZ9PmUf78SPk8mDlzZqpQJ0nu7u4aOXKkTW/dmjVr1LZtWz3xxBNyc3NTkSJF1K9fP129ejXV8t9//73KlSsnd3d3lS9fXvPmzbN7fWt63yf3y9fXVxaLRS4u//YZpWd/oqKiZLFYtGXLllTrHDVqlJydnXX06NF0r0/69z2yb98+NW7cWF5eXnrppZcyfZ+zInrsHmEXLlywe5PDjRs37nvd7dq1U0BAgEaPHq0NGzbof//7n86dO6cZM2bc1zqLFi2q0aNHa/PmzZo6daoKFCigjz76yNqma9eu+u677/Tyyy/r6aef1m+//aYmTZqkWtemTZsUExOjDh06qHDhwjp48KAmTpyoevXqaceOHalOG/bu3Vu5c+dWRESEDh48qPHjxyssLExz5sy5Y83+/v6Kjo7WP//8o8KFC9ttkz9/fk2cOFE9e/ZUq1at9OKLL0qSKlasKOlWqNi/f79CQ0Pl6+urv/76S5MnT9Zff/2lDRs2yGKx6MUXX9SePXv07bff6tNPP1W+fPms607PH5AUr7/+un744QeFhYWpXLlyOnPmjNauXaudO3eqatWq6V5Pin379kmS8ubNK0n64IMPNGTIELVr106vvvqqTp06pc8//1zPPvustmzZkmmnkJOSkhQcHKwaNWrok08+0fLlyzV27FgVL15cPXv2tLb77LPP1Lx5c7300ktKTEzU7Nmz1bZtW/3888/W181ff/2lpk2bqmLFihoxYoTc3Ny0d+9emwBx8eJFTZ06VR07dlT37t116dIlTZs2TcHBwdq4caMqV65sU9+sWbN06dIlvfbaa7JYLBozZoxefPFF7d+//46nNmNjY5WYmJjm72LBggW6fPmyOnToIF9fX9WrV08zZ860nvL/7zF64YUX9PTTT2vMmDFasmSJIiIidPPmTY0YMcKmbVRUlK5du6YePXrIzc1NefLkUXJy8l1/DykCAwNlGIZiYmLUtGnTNNtdvXpVDRo00OHDh/Xmm2/Kz89PX3/9tVasWJGq7YoVK9SoUSMFBgYqIiJCTk5OioqKUv369bVmzRpVr17dpv2j9vlx5coVrVixQvXq1Uvzs8Oe77//XleuXFHPnj2VN29ebdy4UZ9//rn++ecfm1OcixYtUvv27VWhQgWNHj1a586d0yuvvGK3Jzg975OMunbtmvXvT0JCgtatW6evvvpKnTp1sgl26dmfNm3aqFevXpo5c6aqVKlis52ZM2eqXr161v1K7/GRbvVOBwcH65lnntEnn3zy+FxOYuCRExUVZUi64/Dkk09a2x84cMCQZERFRaValyQjIiLCOh4REWFIMpo3b27T7o033jAkGVu3br3ndXbr1s2mXatWrYy8efNax2NjYw1JRt++fW3ade3aNdU6r1y5kmq769evNyQZM2bMSHWsgoKCjOTkZOv0fv36Gc7Ozsb58+dTred206ZNMyQZrq6uxnPPPWcMGTLEWLNmjZGUlGTT7tSpU6lqvFOt3377rSHJWL16tXXaxx9/bEgyDhw4YNM2I8fa29vb6NWr1x33yZ6U47R8+XLj1KlTxpEjR4zZs2cbefPmNbJnz278888/xsGDBw1nZ2fjgw8+sFl227ZthouLi830kJAQw9/f3zq+cuVKQ5KxcuXKu+5bSEiIIckYMWKETdsqVaoYgYGBNtP+e2wTExON8uXLG/Xr17dO+/TTTw1JxqlTp9Lc/5s3bxrXr1+3mXbu3DnDx8fH5nWbUm/evHmNs2fPWqfPnz/fkGQsXLgwzW0YhmFMnTrVkGRs27bN7vymTZsatWvXto5PnjzZcHFxMU6ePGnTLuUY9e7d2zotOTnZaNKkieHq6mrd15R6c+bMmWod9o59ynv1v44dO2ZIMj766KM77t/48eMNScZ3331nnZaQkGCUKFHC5vefnJxslCxZ0ggODrZ5X165csUoWrSo0bBhw1Q1PWqfH1u3brVbj2EYxpkzZ4xTp05Zh9tfe/ZqGz16tGGxWIxDhw5Zp1WoUMEoXLiwcenSJeu0VatWGZJs3nv21mnvfWIYhuHv72+EhISkuU8p0vq707JlS+PatWt33HZa+9OxY0fDz8/P5rN18+bNqV6j6V1fynvknXfeuev+mA2nYh9hkZGRWrZsWaohpafofvTq1ctmvHfv3pKkX3755Z7X+frrr9uM16lTR2fOnNHFixclSUuWLJEkvfHGG3a3fbvs2bNbf75x44bOnDmjEiVKKFeuXHZPO/bo0cPmMQ516tRRUlKSDh06dMeau3XrpiVLlqhevXpau3atRo4cqTp16qhkyZKKiYm5yx6nrjXlv9ynn35aku75FGlacuXKpd9//13Hjh27p+WDgoKUP39+FSlSRB06dJCnp6fmzZunQoUKae7cuUpOTla7du10+vRp6+Dr66uSJUumOm15v+y9Xv57B+Htx/bcuXO6cOGC6tSpY3NcU3oR58+fn2YvlbOzs/V0e3Jyss6ePaubN2+qWrVqdn9H7du3V+7cuW1qk3TXOxxTTr/fvuzt85YuXWpzLWPr1q1lsVj03Xff2V1fWFiY9WeLxaKwsDAlJiZq+fLlNu1at25tvVzgXqTUe7fHIP3yyy8qWLCg2rRpY52WI0eOVDeKxMXF6e+//1anTp105swZ62spISFBDRo00OrVq1P9rh61z4+Uuuzd+VysWDHlz5/fOixYsMBubQkJCTp9+rRq1aolwzCspyqPHTumbdu2qUuXLjbrr1u3ripUqHDH/U3rfZJRLVq0sP7NmT9/vgYNGqQlS5aoU6dONpcDpGd/JKlLly46duyYzefIzJkzlT17drVu3TrD60txew//44JTsY+w6tWrWy90v13u3Lnv+zl0JUuWtBkvXry4nJycUl2DkhFPPPGEzXjKH4tz584pZ86cOnTokJycnFS0aFGbdiVKlEi1rqtXr2r06NGKiorS0aNHbT5ILly4kKFt301wcLCCg4N15coVxcbGas6cOZo0aZKaNm2qXbt2Wa+1S8vZs2c1fPhwzZ49O9UNF/ZqvR9jxoxRSEiIihQposDAQDVu3FhdunRRsWLF0rV8ZGSkSpUqJRcXF/n4+Kh06dJycrr1/9/ff/8twzBSvTZS3O3uyoxwd3dPFURy586d6vf1888/6/3331dcXJzNdVy3/xFu3769pk6dqldffVXvvPOOGjRooBdffFFt2rSx7pskffXVVxo7dqx27dplcznDf1+P0v29niTZvF5TzJkzRzdu3FCVKlW0d+9e6/QaNWpo5syZqf7ZcnJySvV7LVWqlCSlep/a24eMSKn39uNqz6FDh1SiRIlU7UqXLm0z/vfff0uSQkJC0lzXhQsXbALwo/b5kXJNnb1nFc6fP183btzQ1q1b1b9/f5t5hw8f1tChQ7VgwYJU60+pLSVQ2tu3EiVKpAps6XmfZFThwoVtrhVt3ry58ubNq/79++vnn39Ws2bN0r0/0q3rOAsWLKiZM2eqQYMGSk5O1rfffqsWLVrYXJ+Y3vVJkouLS4ZOg5sFwe4xkNab978XomdkHfeyzrRu57f3R+5uevfuraioKPXt21c1a9aUt7e3LBaLOnToYLdXJjO2nSNHDtWpU0d16tRRvnz5NHz4cC1evPiOf5ykW9cGxcTEaMCAAapcubI8PT2VnJysF154IV3XOWXkWLdr10516tTRvHnz9Ouvv+rjjz/WRx99pLlz56brsRlp/bMg3erJSnm2mr3jaa9n4l72QUr793W7NWvWqHnz5nr22Wf1xRdfqGDBgsqWLZuioqJsnjGYPXt2rV69WitXrtSiRYu0ZMkSzZkzR/Xr19evv/4qZ2dnffPNN+ratatatmypAQMGqECBAnJ2dtbo0aOt1xmmp767vZ5SrlU8d+5cqj84M2fOlCTVrl3b7rL79+9Pd0D/r9t7Oe5Fyh/QlGs/71fK6/7jjz9Odf1iiv++nh61z48SJUrIxcVF27dvTzWvbt26kmRzLZp06/3QsGFDnT17VgMHDlSZMmXk4eGho0ePqmvXrhm6LjJFet8nmaFBgwaSpNWrV6tZs2YZ2h9nZ2d16tRJU6ZM0RdffKF169bp2LFjNnfeZvT4uLm52fzz9rgg2D0GUv67/O+Db+90GuHvv/+2+c937969Sk5Ott5tdS/rvBt/f38lJyfrwIEDNr1Ct/depPjhhx8UEhKisWPHWqddu3btoT3cNyX8HD9+XFLaweXcuXOKjo7W8OHDNXToUOv0lB6L26W1jowe64IFC+qNN97QG2+8oZMnT6pq1ar64IMP7vt5aMWLF5dhGCpatKi1Zyi9HsTr5ccff5S7u7uWLl0qNzc36/SoqKhUbZ2cnNSgQQM1aNBA48aN06hRozR48GCtXLlSQUFB+uGHH1SsWDHNnTvX5vcQERFxz/XZU6ZMGUm37jK+/ZTZgQMHFBMTo7CwMOsf/RTJycl6+eWXNWvWLL333ns20/fv32/zu9izZ48kZfq3fqTcFV22bNk7tvP399f27dtlGIbNcdy9e7dNu+LFi0uScubMmeYdwhmV1T4/PDw8VK9ePf322286evRomo+3ud22bdu0Z88effXVV9ZnxEm3bsC6nb+/vyT7+/bfaRl5n9yvmzdvSvq3lzK9+5OiS5cuGjt2rBYuXKjFixcrf/78Cg4Ots7P6PoeV49flH0M5cyZU/ny5dPq1attpt/pa4IiIyNtxj///HNJsoaDe1nn3aS8gf+7jpRt387Z2TnVf8uff/55hnoh0yM6Otru9JRrDVNOMaXcbfXfPwwp/+n/t9bx48enWmfK85X+u470HuukpKRUpyIKFCggPz+/NB83kREvvviinJ2dNXz48FT7YxiGzeNb/svf31/Ozs6Z+npxdnaWxWKx+Z0fPHhQP/30k007e4/oSOklSjku9n5Pv//+u9avX3/P9dkTGBgoV1fXVN8ak9Jb9/bbb6tNmzY2Q7t27VS3bl1rm9tNmDDB+rNhGJowYYKyZctm7TnJLLGxsbJYLKpZs+Yd2zVu3FjHjh2zeZTGlStXNHnyZJt2gYGBKl68uD755BO7pyozcid4iqz4+TF06FAlJSWpc+fOdvfzvzXYex0ahqHPPvvMpp2fn5/Kly+vGTNm2Kz3t99+07Zt21KtMz3vk8ywcOFCSVKlSpWs207ZhxT29idFxYoVVbFiRU2dOlU//vijOnToYNOrmdH1Pa7osXtMvPrqq/rwww/16quvqlq1alq9erX1v3t7Dhw4oObNm+uFF17Q+vXr9c0336hTp07WN+y9rPNuAgMD1bp1a40fP15nzpyxPq4gZZ239wA0bdpUX3/9tby9vVWuXDmtX79ey5cvt57qyiwtWrRQ0aJF1axZMxUvXlwJCQlavny5Fi5cqKeeesp6HUn27NlVrlw5zZkzR6VKlVKePHlUvnx5lS9fXs8++6zGjBmjGzduqFChQvr1119tngt3+/5L0uDBg9WhQwdly5ZNzZo1k4eHR7qO9aVLl1S4cGG1adNGlSpVkqenp5YvX65NmzbZ9Ezcq+LFi+v999/XoEGDdPDgQbVs2VJeXl46cOCA5s2bpx49eqS6XiiFt7e32rZtq88//1wWi0XFixfXzz//fF8PeW7SpInGjRunF154QZ06ddLJkycVGRmpEiVK6M8//7S2GzFihFavXq0mTZrI399fJ0+e1BdffKHChQvrmWeekXTr9TR37ly1atVKTZo00YEDBzRp0iSVK1cuU7/P1d3dXc8//7yWL19u80iSmTNnqnLlyipSpIjd5Zo3b67evXtr8+bN1keluLu7a8mSJQoJCVGNGjW0ePFiLVq0SO++++593Shhz7Jly1S7du27vr+6d++uCRMmqEuXLoqNjVXBggX19ddfp3rMhJOTk6ZOnapGjRrpySefVGhoqAoVKqSjR49q5cqVypkzpzUkpFdW/PyoU6eOJkyYoN69e6tkyZLWb55ITEzUnj17NHPmTLm6usrX11fSrR7d4sWLq3///jp69Khy5sypH3/80e61fKNGjVKLFi1Uu3ZthYaG6ty5c5owYYLKly9v85pN7/sko/bs2aNvvvlG0q3wvmHDBn311VcqUaKEXn755QzvT4ouXbpYP0duPw17r+t7LD2MW2+RuVJuwd+0aZPd+XXr1rV53Ilh3LpF/JVXXjG8vb0NLy8vo127dsbJkyfTfDTJjh07jDZt2hheXl5G7ty5jbCwMOPq1av3tc7/Pm4iZT9uf7xHQkKC0atXLyNPnjyGp6en0bJlS2P37t2GJOPDDz+0tjt37pwRGhpq5MuXz/D09DSCg4ONXbt2pbpdP61jldbjN/7r22+/NTp06GAUL17cyJ49u+Hu7m6UK1fOGDx4sHHx4kWbtjExMUZgYKDh6upqcwz++ecfo1WrVkauXLkMb29vo23bttbHR/z38SgjR440ChUqZDg5Odkcm/Qc6+vXrxsDBgwwKlWqZHh5eRkeHh5GpUqVjC+++OKO+3in42TPjz/+aDzzzDOGh4eH4eHhYZQpU8bo1auXsXv3bmub/z7uxDBuPRKmdevWRo4cOYzcuXMbr732mrF9+3a7jzvx8PBItV17j+KYNm2aUbJkScPNzc0oU6aMERUVlapddHS00aJFC8PPz89wdXU1/Pz8jI4dOxp79uyxtklOTjZGjRpl+Pv7G25ubkaVKlWMn3/+OdV+pDwi5OOPP05Vn73fpz1z5841LBaLcfjwYcMw/n1Mx5AhQ9Jc5uDBg4Yko1+/fjbHaN++fcbzzz9v5MiRw/Dx8TEiIiJsHhdxp3rT+7iT8+fPG66ursbUqVPvum+GYRiHDh0ymjdvbuTIkcPIly+f0adPH2PJkiV2329btmwxXnzxRSNv3ryGm5ub4e/vb7Rr186Ijo5OVdOj+Plx+3526dLFeOKJJwxXV1fDw8PDqFixovHWW28Ze/futWm7Y8cOIygoyPD09DTy5ctndO/e3frolP8+8mj27NlGmTJlDDc3N6N8+fLGggULjNatWxtlypSxaZee94lh3PvjTpydnY3ChQsbPXr0MOLj4+95fwzDMI4fP244OzsbpUqVsrvt9K4vrc+Rx4HFMO7hylPgIYqLi1OVKlX0zTffPDZPDod5JSUlqVy5cmrXrp1Gjhx5T+vo2rWrfvjhh0ztTUzL+PHjNWbMGO3bt+++b8JwhMft86Ny5crKnz//I3vd2enTp1WwYEENHTpUQ4YMcXQ5jySusUOWYu9rc8aPHy8nJyc9++yzDqgIyFzOzs4aMWKEIiMjH0owux83btzQuHHj9N577z0Soe5x+vy4ceOG9WaFFKtWrdLWrVtVr149xxSVCaZPn66kpCTr6VxkHNfYIUsZM2aMYmNj9dxzz8nFxUWLFy/W4sWL1aNHjzSvPwIeNe3bt1f79u0dXcZdZcuWTYcPH3Z0Gen2OH1+HD16VEFBQercubP8/Py0a9cuTZo0Sb6+vqke5vwoWLFihXbs2KEPPvhALVu2zPQ7ux8nBDtkKbVq1dKyZcs0cuRIXb58WU888YSGDRumwYMHO7o0AFnc4/T5kTt3bgUGBmrq1Kk6deqUPDw81KRJE3344YeZfhPIwzBixAjFxMSodu3adu9kRvpxjR0AAIBJcI0dAACASRDsAAAATOKxu8YuOTlZx44dk5eX1319ATIAAMDDYBiGLl26JD8/v7t+/+1jF+yOHTtmurujAACA+R05ckSFCxe+Y5vHLth5eXlJunVwcubM6eBqAAAA7uzixYsqUqSINcPcyWMX7FJOv+bMmZNgBwAAHhnpuYSMmycAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk3BosFu9erWaNWsmPz8/WSwW/fTTT3ddZtWqVapatarc3NxUokQJTZ8+/YHXCQAA8ChwaLBLSEhQpUqVFBkZma72Bw4cUJMmTfTcc88pLi5Offv21auvvqqlS5c+4EoBAACyPhdHbrxRo0Zq1KhRuttPmjRJRYsW1dixYyVJZcuW1dq1a/Xpp58qODj4QZUJAADwSHikrrFbv369goKCbKYFBwdr/fr1DqoIAIBHl2EYunz5snUwDMPRJWUJj/JxcWiPXUadOHFCPj4+NtN8fHx08eJFXb16VdmzZ0+1zPXr13X9+nXr+MWLFx94nQAAPAoSEhLUokUL6/j8+fPl6enpwIqyhkf5uDxSwe5ejB49WsOHD3d0GQAAOwIHzHB0CQ9U7MddHF0CHjOP1KlYX19fxcfH20yLj49Xzpw57fbWSdKgQYN04cIF63DkyJGHUSoAAMBD90j12NWsWVO//PKLzbRly5apZs2aaS7j5uYmNze3B10aAACAwzm0x+7y5cuKi4tTXFycpFuPM4mLi9Phw4cl3ept69Ll327s119/Xfv379fbb7+tXbt26YsvvtB3332nfv36OaJ8AACALMWhwe6PP/5QlSpVVKVKFUlSeHi4qlSpoqFDh0qSjh8/bg15klS0aFEtWrRIy5YtU6VKlTR27FhNnTqVR50AAADIwadi69Wrd8dbiO19q0S9evW0ZcuWB1gVAADAo+mRunkCAAAAaSPYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMwsXRBQAAAKRH4IAZD2U7lpuJ8r5tvN6Q2TJcXB/4dmM/7nLf66DHDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEg4PdpGRkQoICJC7u7tq1KihjRs33rH9+PHjVbp0aWXPnl1FihRRv379dO3atYdULQAAQNbl0GA3Z84chYeHKyIiQps3b1alSpUUHByskydP2m0/a9YsvfPOO4qIiNDOnTs1bdo0zZkzR+++++5DrhwAACDrcWiwGzdunLp3767Q0FCVK1dOkyZNUo4cOfTll1/abR8TE6PatWurU6dOCggI0PPPP6+OHTvetZcPAADgceCwYJeYmKjY2FgFBQX9W4yTk4KCgrR+/Xq7y9SqVUuxsbHWILd//3798ssvaty48UOpGQAAICtz2FeKnT59WklJSfLx8bGZ7uPjo127dtldplOnTjp9+rSeeeYZGYahmzdv6vXXX7/jqdjr16/r+vXr1vGLFy9mzg4AAABkMQ6/eSIjVq1apVGjRumLL77Q5s2bNXfuXC1atEgjR45Mc5nRo0fL29vbOhQpUuQhVgwAAPDwOKzHLl++fHJ2dlZ8fLzN9Pj4ePn6+tpdZsiQIXr55Zf16quvSpIqVKighIQE9ejRQ4MHD5aTU+qcOmjQIIWHh1vHL168SLgDAACm5LAeO1dXVwUGBio6Oto6LTk5WdHR0apZs6bdZa5cuZIqvDk7O0uSDMOwu4ybm5ty5sxpMwAAAJiRw3rsJCk8PFwhISGqVq2aqlevrvHjxyshIUGhoaGSpC5duqhQoUIaPXq0JKlZs2YaN26cqlSpoho1amjv3r0aMmSImjVrZg14AAAAjyuHBrv27dvr1KlTGjp0qE6cOKHKlStryZIl1hsqDh8+bNND995778lisei9997T0aNHlT9/fjVr1kwffPCBo3YBAAAgy3BosJOksLAwhYWF2Z23atUqm3EXFxdFREQoIiLiIVQGAADwaHmk7ooFAABA2gh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTcHF0AQCAzGUYhhISEqzjHh4eslgsDqwIwMNCsAMAk0lISFCLFi2s4/Pnz5enp6cDKwLwsHAqFgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACbh4ugCAACArcABMx7Kdiw3E+V923i9IbNluLg+8O3GftzlgW/jcUWPHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgElkKNjduHFDLi4u2r59+4OqBwAAAPcoQ8EuW7ZseuKJJ5SUlPSg6gEAAMA9yvCp2MGDB+vdd9/V2bNnH0Q9AAAAuEcuGV1gwoQJ2rt3r/z8/OTv7y8PDw+b+Zs3b8604gAAAJB+GQ52LVu2fABlAAAA4H5lONhFREQ8iDoAAABwn3jcCQAAgElkuMcuKSlJn376qb777jsdPnxYiYmJNvO5qQIAAMAxMtxjN3z4cI0bN07t27fXhQsXFB4erhdffFFOTk4aNmzYAygRAAAA6ZHhYDdz5kxNmTJFb731llxcXNSxY0dNnTpVQ4cO1YYNGx5EjQAAAEiHDAe7EydOqEKFCpIkT09PXbhwQZLUtGlTLVq0KMMFREZGKiAgQO7u7qpRo4Y2btx4x/bnz59Xr169VLBgQbm5ualUqVL65ZdfMrxdAAAAs8lwsCtcuLCOHz8uSSpevLh+/fVXSdKmTZvk5uaWoXXNmTNH4eHhioiI0ObNm1WpUiUFBwfr5MmTdtsnJiaqYcOGOnjwoH744Qft3r1bU6ZMUaFChTK6GwAAAKaT4ZsnWrVqpejoaNWoUUO9e/dW586dNW3aNB0+fFj9+vXL0LrGjRun7t27KzQ0VJI0adIkLVq0SF9++aXeeeedVO2//PJLnT17VjExMcqWLZskKSAgIKO7AMAkDMNQQkKCddzDw0MWi8WBFQGAY2U42H344YfWn9u3by9/f3/FxMSoZMmSatasWbrXk5iYqNjYWA0aNMg6zcnJSUFBQVq/fr3dZRYsWKCaNWuqV69emj9/vvLnz69OnTpp4MCBcnZ2trvM9evXdf36dev4xYsX010jgKwtISFBLVq0sI7Pnz9fnp6eDqwIABwrw8EuISHB5mvEnn76aT399NMZ3vDp06eVlJQkHx8fm+k+Pj7atWuX3WX279+vFStW6KWXXtIvv/yivXv36o033tCNGzfSfHDy6NGjNXz48AzXBwAA8KjJ8DV2Pj4+6tatm9auXfsg6rmj5ORkFShQQJMnT1ZgYKDat2+vwYMHa9KkSWkuM2jQIF24cME6HDly5CFWDAAA8PBkONh98803Onv2rOrXr69SpUrpww8/1LFjxzK84Xz58snZ2Vnx8fE20+Pj4+Xr62t3mYIFC6pUqVI2p13Lli2rEydOpHpQcgo3NzflzJnTZgAAADCjDAe7li1b6qefftLRo0f1+uuva9asWfL391fTpk01d+5c3bx5M13rcXV1VWBgoKKjo63TkpOTFR0drZo1a9pdpnbt2tq7d6+Sk5Ot0/bs2aOCBQvK1dU1o7sCAABgKvf8XbH58+dXeHi4/vzzT40bN07Lly9XmzZt5Ofnp6FDh+rKlSt3XUd4eLimTJmir776Sjt37lTPnj2VkJBgvUu2S5cuNjdX9OzZU2fPnlWfPn20Z88eLVq0SKNGjVKvXr3udTcAAABMI8M3T6SIj4/XV199penTp+vQoUNq06aNXnnlFf3zzz/66KOPtGHDBusz7tLSvn17nTp1SkOHDtWJEydUuXJlLVmyxHpDxeHDh+Xk9G/2LFKkiJYuXap+/fqpYsWKKlSokPr06aOBAwfe624AAACYRoaD3dy5cxUVFaWlS5eqXLlyeuONN9S5c2flypXL2qZWrVoqW7ZsutYXFhamsLAwu/NWrVqValrNmjX56jIAAAA7MhzsQkND1aFDB61bt05PPfWU3TZ+fn4aPHjwfRcHAACA9MtwsDt+/Lhy5MhxxzbZs2dP87lyAAAAeDAyHOxuD3XXrl1L9ZgRHicCAADgGBm+KzYhIUFhYWEqUKCAPDw8lDt3bpsBAAAAjpHhYPf2229rxYoVmjhxotzc3DR16lQNHz5cfn5+mjFjxoOoEQAAAOmQ4VOxCxcu1IwZM1SvXj2FhoaqTp06KlGihPz9/TVz5ky99NJLD6JOAAAA3EWGe+zOnj2rYsWKSbp1Pd3Zs2clSc8884xWr16dudUBAAAg3TIc7IoVK6YDBw5IksqUKaPvvvtO0q2evNufZQcAAICHK8PBLjQ0VFu3bpUkvfPOO4qMjJS7u7v69eunAQMGZHqBAAAASJ8MX2PXr18/689BQUHatWuXYmNjVaJECVWsWDFTiwMAAED63fN3xabw9/eXv79/ZtQCAACA+5ChU7GXLl1SbGysLl++LEnavHmzunTporZt22rmzJkPpEAAAACkT7p77FavXq2mTZvq8uXLyp07t7799lu1adNGhQoVkrOzs+bOnasrV66oe/fuD7JeAAAApCHdPXbvvfee2rZtqyNHjqhv375q3769wsLCtHPnTm3fvl3Dhw9XZGTkg6wVAAAAd5DuHrs///xTkydPVqFChTRw4EANGzZM7du3t87v0KGDPvroowdSJIBHS+CAh/MtNJabifK+bbzekNkyXFwf+HZjP+7ywLcBAPci3T12Fy9eVJ48eSRJrq6uypEjh7y8vKzzvby8dOXKlcyvEAAAAOmS7mBnsVhksVjSHAcAAIBjpftUrGEYatCggVxcbi1y5coVNWvWTK6ut0573Lx588FUCAAAgHRJd7CLiIiwGW/RokWqNq1bt77/igAAAHBP7jnYAQAAIGvJ8HfFAgAAIGu6768UAwCkj5kfA8MjYICsgR47AAAAkyDYAQAAmATBDgAAwCTSdY3d//73v3Sv8M0337znYgAAAHDv0hXsPv3003StzGKxEOwAAAAcJF3B7sCBAw+6DgAAANwnrrEDAAAwiXt6jt0///yjBQsW6PDhw0pMTLSZN27cuEwpDAAAABmT4WAXHR2t5s2bq1ixYtq1a5fKly+vgwcPyjAMVa1a9UHUCAAAgHTI8KnYQYMGqX///tq2bZvc3d31448/6siRI6pbt67atm37IGoEAABAOmS4x27nzp369ttvby3s4qKrV6/K09NTI0aMUIsWLdSzZ89MLxIAAOBhMZyz6ULFjjbjj4oM99h5eHhYr6srWLCg9u3bZ513+vTpzKsMAADAESwWGS6u1kEWi6MrSrcM99g9/fTTWrt2rcqWLavGjRvrrbfe0rZt2zR37lw9/fTTD6JGAAAApEOGg924ceN0+fJlSdLw4cN1+fJlzZkzRyVLluSOWAAP1aN8ugQAHoQMB7tixYpZf/bw8NCkSZMytSAASLf/f7oEAHALDygGAAAwiQz32OXOnVsWOxcRWiwWubu7q0SJEuratatCQ0MzpUAAAACkT4aD3dChQ/XBBx+oUaNGql69uiRp48aNWrJkiXr16qUDBw6oZ8+eunnzprp3757pBQMAAMC+DAe7tWvX6v3339frr79uM/3//u//9Ouvv+rHH39UxYoV9b///Y9gBwAA8BBl+Bq7pUuXKigoKNX0Bg0aaOnSpZKkxo0ba//+/fdfHQAAANItw8EuT548WrhwYarpCxcuVJ48eSRJCQkJ8vLyuv/qAAAAkG4ZPhU7ZMgQ9ezZUytXrrReY7dp0yb98ssv1kefLFu2THXr1s3cSgEAAHBHGQ523bt3V7ly5TRhwgTNnTtXklS6dGn99ttvqlWrliTprbfeytwqAQAAcFcZDnaSVLt2bdWuXTuzawEAAMB9uKdgl+LatWtKTEy0mZYzZ877KggAAAD3JsM3T1y5ckVhYWEqUKCAPDw8lDt3bpsBAAAAjpHhYDdgwACtWLFCEydOlJubm6ZOnarhw4fLz89PM2bMeBA1AgAAIB0yfCp24cKFmjFjhurVq6fQ0FDVqVNHJUqUkL+/v2bOnKmXXnrpQdQJAACAu8hwj93Zs2dVrFgxSbeupzt79qwk6ZlnntHq1asztzoAAACkW4aDXbFixXTgwAFJUpkyZfTdd99JutWTlytXrkwtDgAAAOmX4WAXGhqqrVu3SpLeeecdRUZGyt3dXf369dOAAQMyvUAAAACkT4avsevXr5/156CgIO3atUuxsbEqUaKEKlasmKnFAQAAIP3u6zl2kuTv7y9/f//MqAUAAAD3Id3B7urVq4qOjlbTpk0lSYMGDdL169et852dnTVy5Ei5u7tnfpUAAAC4q3QHu6+++kqLFi2yBrsJEyboySefVPbs2SVJu3btkp+fn82pWgAAADw86b55YubMmerRo4fNtFmzZmnlypVauXKlPv74Y+sdsgAAAHj40h3s9u7dqwoVKljH3d3d5eT07+LVq1fXjh07Mrc6AAAApFu6T8WeP3/e5pq6U6dO2cxPTk62mQ8AAICHK909doULF9b27dvTnP/nn3+qcOHCmVIUAAAAMi7dwa5x48YaOnSorl27lmre1atXNXz4cDVp0iRTiwMAAED6pTvYvfvuuzp79qxKly6tjz/+WPPnz9f8+fM1ZswYlS5dWufOndO77757T0VERkYqICBA7u7uqlGjhjZu3Jiu5WbPni2LxaKWLVve03YBAADMJN3X2Pn4+CgmJkY9e/bUO++8I8MwJEkWi0UNGzbUF198IR8fnwwXMGfOHIWHh2vSpEmqUaOGxo8fr+DgYO3evVsFChRIc7mDBw+qf//+qlOnToa3CQAAYEYZ+q7YokWLasmSJTp16pQ2bNigDRs26NSpU1qyZImKFSt2TwWMGzdO3bt3V2hoqMqVK6dJkyYpR44c+vLLL9NcJikpSS+99JKGDx9+z9sFAAAwmwwFuxR58uRR9erVVb16deXJk+eeN56YmKjY2FgFBQX9W5CTk4KCgrR+/fo0lxsxYoQKFCigV1555a7buH79ui5evGgzAAAAmNE9BbvMcvr0aSUlJaU6hevj46MTJ07YXWbt2rWaNm2apkyZkq5tjB49Wt7e3tahSJEi9103AABAVuTQYJdRly5d0ssvv6wpU6YoX7586Vpm0KBBunDhgnU4cuTIA64SAADAMdJ988SDkC9fPjk7Oys+Pt5menx8vHx9fVO137dvnw4ePKhmzZpZpyUnJ0uSXFxctHv3bhUvXtxmGTc3N7m5uT2A6gEAALIWh/bYubq6KjAwUNHR0dZpycnJio6OVs2aNVO1L1OmjLZt26a4uDjr0Lx5cz333HOKi4vjNCsAAHisObTHTpLCw8MVEhKiatWqqXr16ho/frwSEhIUGhoqSerSpYsKFSqk0aNHy93dXeXLl7dZPleuXJKUajoAAMDjxuHBrn379jp16pSGDh2qEydOqHLlylqyZIn1horDhw/LyemRuhQQAADAIRwe7CQpLCxMYWFhduetWrXqjstOnz498wsCAAB4BNEVBgAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkXBxdAAAgcxnO2XShYkebcQCPB4IdAJiNxSLDxdXRVQBwAE7FAgAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAk8gSwS4yMlIBAQFyd3dXjRo1tHHjxjTbTpkyRXXq1FHu3LmVO3duBQUF3bE9AADA48LhwW7OnDkKDw9XRESENm/erEqVKik4OFgnT560237VqlXq2LGjVq5cqfXr16tIkSJ6/vnndfTo0YdcOQAAQNbi8GA3btw4de/eXaGhoSpXrpwmTZqkHDly6Msvv7TbfubMmXrjjTdUuXJllSlTRlOnTlVycrKio6MfcuXAw2MYhi5fvmwdDMNwdEkAgCzIxZEbT0xMVGxsrAYNGmSd5uTkpKCgIK1fvz5d67hy5Ypu3LihPHnyPKgyHwjDMJSQkGAd9/DwkMVicWBFyMoSEhLUokUL6/j8+fPl6enpwIoAAFmRQ4Pd6dOnlZSUJB8fH5vpPj4+2rVrV7rWMXDgQPn5+SkoKMju/OvXr+v69evW8YsXL957wZmIP9QAACCzOfxU7P348MMPNXv2bM2bN0/u7u5224wePVre3t7WoUiRIg+5SgAAgIfDocEuX758cnZ2Vnx8vM30+Ph4+fr63nHZTz75RB9++KF+/fVXVaxYMc12gwYN0oULF6zDkSNHMqV2AACArMahwc7V1VWBgYE2Nz6k3AhRs2bNNJcbM2aMRo4cqSVLlqhatWp33Iabm5ty5sxpMwAAAJiRQ6+xk6Tw8HCFhISoWrVqql69usaPH6+EhASFhoZKkrp06aJChQpp9OjRkqSPPvpIQ4cO1axZsxQQEKATJ05Ikjw9PblGDQAAPNYcHuzat2+vU6dOaejQoTpx4oQqV66sJUuWWG+oOHz4sJyc/u1YnDhxohITE9WmTRub9URERGjYsGEPs3Q8ANwtDADAvXN4sJOksLAwhYWF2Z23atUqm/GDBw8++ILgMNwtDADAvcsSwQ54VAUOmPFQtmO5mSjv28brDZktw8X1gW839uMuD3wbAIDM80g/7gQAAAD/ItgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEnwuJP/4PEVAADgUUWPHQAAgEnQYwc8AgznbLpQsaPNOAAA/0WwAx4FFstDOVUPAHi0cSoWAADAJOixQ7pwUwkAAFkfPXYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkeECxg/DdnwAAILMR7ByF7/4EAACZjFOxAAAAJkGPHbIUTlEDAHDvCHbIWjhFDQDAPeNULAAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTyBLBLjIyUgEBAXJ3d1eNGjW0cePGO7b//vvvVaZMGbm7u6tChQr65ZdfHlKlAAAAWZfDg92cOXMUHh6uiIgIbd68WZUqVVJwcLBOnjxpt31MTIw6duyoV155RVu2bFHLli3VsmVLbd++/SFXDgAAkLU4PNiNGzdO3bt3V2hoqMqVK6dJkyYpR44c+vLLL+22/+yzz/TCCy9owIABKlu2rEaOHKmqVatqwoQJD7lyAACArMWhwS4xMVGxsbEKCgqyTnNyclJQUJDWr19vd5n169fbtJek4ODgNNsDAAA8LlwcufHTp08rKSlJPj4+NtN9fHy0a9cuu8ucOHHCbvsTJ07YbX/9+nVdv37dOn7hwgVJ0sWLF+22T7p+Nd31P4rS2u+74bjYx3Gxj+Nin5mPC8fEvqx+XCw3E3Xz5k2b7RpJSQ98u1n9uDhKWsclZbphGHdfieFAR48eNSQZMTExNtMHDBhgVK9e3e4y2bJlM2bNmmUzLTIy0ihQoIDd9hEREYYkBgYGBgYGBoZHejhy5Mhds5VDe+zy5csnZ2dnxcfH20yPj4+Xr6+v3WV8fX0z1H7QoEEKDw+3jicnJ+vs2bPKmzevLBbLfe7B/bl48aKKFCmiI0eOKGfOnA6tJSvhuNjHcbGP42IfxyU1jol9HBf7stJxMQxDly5dkp+f313bOjTYubq6KjAwUNHR0WrZsqWkW8ErOjpaYWFhdpepWbOmoqOj1bdvX+u0ZcuWqWbNmnbbu7m5yc3NzWZarly5MqP8TJMzZ06Hv2iyIo6LfRwX+zgu9nFcUuOY2MdxsS+rHBdvb+90tXNosJOk8PBwhYSEqFq1aqpevbrGjx+vhIQEhYaGSpK6dOmiQoUKafTo0ZKkPn36qG7duho7dqyaNGmi2bNn648//tDkyZMduRsAAAAO5/Bg1759e506dUpDhw7ViRMnVLlyZS1ZssR6g8Thw4fl5PTvzbu1atXSrFmz9N577+ndd99VyZIl9dNPP6l8+fKO2gUAAIAsweHBTpLCwsLSPPW6atWqVNPatm2rtm3bPuCqHjw3NzdFRESkOlX8uOO42MdxsY/jYh/HJTWOiX0cF/se1eNiMYz03DsLAACArM7h3zwBAACAzEGwAwAAMAmCHQAAgEkQ7Bzkxo0bGjhwoCpUqCAPDw/5+fmpS5cuOnbsmKNLc7i5c+fq+eeftz5EOi4uztElOVxkZKQCAgLk7u6uGjVqaOPGjY4uyaFGjx6tp556Sl5eXipQoIBatmyp3bt3O7osh5s4caIqVqxofe5WzZo1tXjxYkeXleV8+OGHslgsNs9DfVwdPXpUnTt3Vt68eZU9e3ZVqFBBf/zxh6PLcqiAgABZLJZUQ69evRxdWroQ7BzkypUr2rx5s4YMGaLNmzdr7ty52r17t5o3b+7o0hwuISFBzzzzjD766CNHl5IlzJkzR+Hh4YqIiNDmzZtVqVIlBQcH6+TJk44uzWF+++039erVSxs2bNCyZct048YNPf/880pISHB0aQ5VuHBhffjhh4qNjdUff/yh+vXrq0WLFvrrr78cXVqWsWnTJv3f//2fKlas6OhSHO7cuXOqXbu2smXLpsWLF2vHjh0aO3ascufO7ejSHGrTpk06fvy4dVi2bJkkPTpP40jPd7ri4di4caMhyTh06JCjS8kSDhw4YEgytmzZ4uhSHKp69epGr169rONJSUmGn5+fMXr0aAdWlbWcPHnSkGT89ttvji4ly8mdO7cxdepUR5eRJVy6dMkoWbKksWzZMqNu3bpGnz59HF2SQw0cONB45plnHF1GltenTx+jePHiRnJysqNLSRd67LKQCxcuyGKxZLmvPIPjJCYmKjY2VkFBQdZpTk5OCgoK0vr16x1YWdZy4cIFSVKePHkcXEnWkZSUpNmzZyshISHNr1x83PTq1UtNmjSxeT89zhYsWKBq1aqpbdu2KlCggKpUqaIpU6Y4uqwsJTExUd988426devm8O+XT68s8YBiSNeuXdPAgQPVsWPHLPGddMgaTp8+raSkJOs3saTw8fHRrl27HFRV1pKcnKy+ffuqdu3afAONpG3btqlmzZq6du2aPD09NW/ePJUrV87RZTnc7NmztXnzZm3atMnRpWQZ+/fv18SJExUeHq53331XmzZt0ptvvilXV1eFhIQ4urws4aefftL58+fVtWtXR5eSbvTYPSQzZ86Up6endVizZo113o0bN9SuXTsZhqGJEyc6sMqH707HBUiPXr16afv27Zo9e7ajS8kSSpcurbi4OP3+++/q2bOnQkJCtGPHDkeX5VBHjhxRnz59NHPmTLm7uzu6nCwjOTlZVatW1ahRo1SlShX16NFD3bt316RJkxxdWpYxbdo0NWrUSH5+fo4uJd3osXtImjdvrho1aljHCxUqJOnfUHfo0CGtWLHiseutS+u44JZ8+fLJ2dlZ8fHxNtPj4+Pl6+vroKqyjrCwMP38889avXq1Chcu7OhysgRXV1eVKFFCkhQYGKhNmzbps88+0//93/85uDLHiY2N1cmTJ1W1alXrtKSkJK1evVoTJkzQ9evX5ezs7MAKHaNgwYKpenPLli2rH3/80UEVZS2HDh3S8uXLNXfuXEeXkiEEu4fEy8tLXl5eNtNSQt3ff/+tlStXKm/evA6qznHsHRf8y9XVVYGBgYqOjlbLli0l3fovOzo6Os3vV34cGIah3r17a968eVq1apWKFi3q6JKyrOTkZF2/ft3RZThUgwYNtG3bNptpoaGhKlOmjAYOHPhYhjpJql27dqrHBO3Zs0f+/v4OqihriYqKUoECBdSkSRNHl5IhBDsHuXHjhtq0aaPNmzfr559/VlJSkk6cOCHp1gXgrq6uDq7Qcc6ePavDhw9bn+mX8sHj6+v7WPZShYeHKyQkRNWqVVP16tU1fvx4JSQkKDQ01NGlOUyvXr00a9YszZ8/X15eXtb3jre3t7Jnz+7g6hxn0KBBatSokZ544gldunRJs2bN0qpVq7R06VJHl+ZQXl5eqa6/9PDwUN68eR/r6zL79eunWrVqadSoUWrXrp02btyoyZMna/LkyY4uzeGSk5MVFRWlkJAQubg8YlHJ0bflPq5SHuVhb1i5cqWjy3OoqKgou8clIiLC0aU5zOeff2488cQThqurq1G9enVjw4YNji7JodJ670RFRTm6NIfq1q2b4e/vb7i6uhr58+c3GjRoYPz666+OLitL4nEntyxcuNAoX7684ebmZpQpU8aYPHmyo0vKEpYuXWpIMnbv3u3oUjLMYhiG8bDDJAAAADIfd8UCAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBgKR69eqpb9++ji7jodm9e7d8fX116dKlh7K9VatWyWKx6Pz585Kk6dOnK1euXNb5kyZNUrNmzR5KLYCZEewA6NSpU+rZs6eeeOIJubm5ydfXV8HBwVq3bp21jcVi0U8//ZThdQcEBGj8+PGZV2waLBaLdfD29lbt2rW1YsWKB77dR9WgQYPUu3dveXl5pZpXpkwZubm5Wb+DNzPUqlVLx48fl7e3t9353bp10+bNm7VmzZpM2ybwOCLYAVDr1q21ZcsWffXVV9qzZ48WLFigevXq6cyZM44uLUOioqJ0/PhxrVu3Tvny5VPTpk21f/9+R5eV5Rw+fFg///yzunbtmmre2rVrdfXqVbVp00ZfffVVpmzvxo0bcnV1la+vrywWi902rq6u6tSpk/73v/9lyjaBxxXBDnjMnT9/XmvWrNFHH32k5557Tv7+/qpevboGDRqk5s2bS7rV6yZJrVq1ksVisY7v27dPLVq0kI+Pjzw9PfXUU09p+fLl1nXXq1dPhw4dUr9+/ay9aZI0bNgwVa5c2aaO8ePHW9cr3Tp1V716dXl4eChXrlyqXbu2Dh06dMd9yZUrl3x9fVW+fHlNnDhRV69e1bJlyyRJ27dvV6NGjeTp6SkfHx+9/PLLOn36dJrrstdDmStXLk2fPl2SdPDgQVksFs2dO1fPPfeccuTIoUqVKmn9+vXW9mfOnFHHjh1VqFAh5ciRQxUqVNC3335rs84ffvhBFSpUUPbs2ZU3b14FBQUpISFBkrRp0yY1bNhQ+fLlk7e3t+rWravNmzenqnPq1Klq1aqVcuTIoZIlS2rBggV3PE7fffedKlWqpEKFCqWaN23aNHXq1Ekvv/yyvvzyy1TzAwICNHLkSHXs2FEeHh4qVKiQIiMjU9U0ceJENW/eXB4eHvrggw9SnYq1p1mzZlqwYIGuXr16x/oBpI1gBzzmPD095enpqZ9++knXr1+322bTpk2S/u0RSxm/fPmyGjdurOjoaG3ZskUvvPCCmjVrpsOHD0uS5s6dq8KFC2vEiBE6fvy4jh8/nq6abt68qZYtW6pu3br6888/tX79evXo0SPN3h57smfPLklKTEzU+fPnVb9+fVWpUkV//PGHlixZovj4eLVr1y7d60vL4MGD1b9/f8XFxalUqVLq2LGjbt68KUm6du2aAgMDtWjRIm3fvl09evTQyy+/rI0bN0qSjh8/ro4dO6pbt27auXOnVq1apRdffFGGYUiSLl26pJCQEK1du1YbNmxQyZIl1bhx41TXxQ0fPlzt2rXTn3/+qcaNG+ull17S2bNn06x5zZo1qlatWqrply5d0vfff6/OnTurYcOGunDhgt1Tox9//LEqVaqkLVu26J133lGfPn2sATrFsGHD1KpVK23btk3dunVL17GsVq2abt68qd9//z1d7QHYYQB47P3www9G7ty5DXd3d6NWrVrGoEGDjK1bt9q0kWTMmzfvrut68sknjc8//9w67u/vb3z66ac2bSIiIoxKlSrZTPv0008Nf39/wzAM48yZM4YkY9WqVeneh9vrS0hIMN544w3D2dnZ2Lp1qzFy5Ejj+eeft2l/5MgRQ5Kxe/duwzAMo27dukafPn3sri+Ft7e3ERUVZRiGYRw4cMCQZEydOtU6/6+//jIkGTt37kyzziZNmhhvvfWWYRiGERsba0gyDh48mK59TEpKMry8vIyFCxfa1Pnee+9Zxy9fvmxIMhYvXpzmeipVqmSMGDEi1fTJkycblStXto736dPHCAkJsWnj7+9vvPDCCzbT2rdvbzRq1Mimpr59+9q0WblypSHJOHfunGEYhhEVFWV4e3unqiF37tzG9OnT06wdwJ3RYwdArVu31rFjx7RgwQK98MILWrVqlapWrWo97ZiWy5cvq3///ipbtqxy5colT09P7dy509pjd6/y5Mmjrl27Kjg4WM2aNdNnn32Wrt6+jh07ytPTU15eXvrxxx81bdo0VaxYUVu3btXKlSutvZOenp4qU6aMpFunk+9HxYoVrT8XLFhQknTy5ElJUlJSkkaOHKkKFSooT5488vT01NKlS63Hp1KlSmrQoIEqVKigtm3basqUKTp37px1ffHx8erevbtKliwpb29v5cyZU5cvX051fG+vwcPDQzlz5rTWYM/Vq1fl7u6eavqXX36pzp07W8c7d+6s77//PlUPYc2aNVON79y502aavR7B9MiePbuuXLlyT8sC4FQsgP/P3d1dDRs21JAhQxQTE6OuXbsqIiLijsv0799f8+bN06hRo7RmzRrFxcWpQoUKSkxMvONyTk5O1tONKW7cuGEzHhUVpfXr16tWrVqaM2eOSpUqpQ0bNtxxvZ9++qni4uJ04sQJnThxQiEhIZJuBdBmzZopLi7OZvj777/17LPP2l2XxWK5a42SlC1bNptlJCk5OVnSrVOWn332mQYOHKiVK1cqLi5OwcHB1uPj7OysZcuWafHixSpXrpw+//xzlS5dWgcOHJAkhYSEKC4uTp999pliYmIUFxenvHnzpjq+t9eQUkdKDfbky5fPJkBK0o4dO7Rhwwa9/fbbcnFxkYuLi55++mlduXJFs2fPTnNdafHw8MjwMpJ09uxZ5c+f/56WBUCwA5CGcuXKWS/il26Fh6SkJJs269atU9euXdWqVStVqFBBvr6+OnjwoE0bV1fXVMvlz59fJ06csAlOcXFxqWqoUqWKBg0apJiYGJUvX16zZs26Y82+vr4qUaJEqmBQtWpV/fXXXwoICFCJEiVshrQCSP78+W16Cf/+++8M9yStW7dOLVq0UOfOnVWpUiUVK1ZMe/bssWljsVhUu3ZtDR8+XFu2bJGrq6vmzZtnXf7NN99U48aN9eSTT8rNze2ON3ykV5UqVbRjxw6badOmTdOzzz6rrVu32oTf8PBwTZs2zabtfwP2hg0bVLZs2fuua9++fbp27ZqqVKly3+sCHlcEO+Axd+bMGdWvX1/ffPON/vzzTx04cEDff/+9xowZoxYtWljbBQQEKDo6WidOnLD29pQsWVJz585VXFyctm7dqk6dOqXqKQoICNDq1at19OhRayipV6+eTp06pTFjxmjfvn2KjIzU4sWLrcscOHBAgwYN0vr163Xo0CH9+uuv+vvvv+85PPTq1Utnz55Vx44dtWnTJu3bt09Lly5VaGhoqtCZon79+powYYK2bNmiP/74Q6+//nqqnrG7KVmypJYtW6aYmBjt3LlTr732muLj463zf//9d40aNUp//PGHDh8+rLlz5+rUqVPW/SxZsqS+/vpr7dy5U7///rteeukl600h9yM4OFjr16+37vuNGzf09ddfq2PHjipfvrzN8Oqrr+r333/XX3/9ZV1+3bp1GjNmjPbs2aPIyEh9//336tOnz33XtWbNGhUrVkzFixe/73UBjyuCHfCY8/T0VI0aNfTpp5/q2WefVfny5TVkyBB1795dEyZMsLYbO3asli1bpiJFilh7VMaNG6fcuXOrVq1aatasmYKDg1W1alWb9Y8YMUIHDx5U8eLFrT1pZcuW1RdffKHIyEhVqlRJGzduVP/+/a3L5MiRQ7t27VLr1q1VqlQp9ejRQ7169dJrr712T/vo5+endevWKSkpSc8//7wqVKigvn37KleuXHJysv8xOHbsWBUpUkR16tRRp06d1L9/f+XIkSND233vvfdUtWpVBQcHq169evL19VXLli2t83PmzKnVq1ercePGKlWqlN577z2NHTtWjRo1knSrF+3cuXOqWrWqXn75Zb355psqUKDAPR2D2zVq1EguLi7WR9MsWLBAZ86cUatWrVK1LVu2rMqWLWvTa/fWW2/pjz/+UJUqVfT+++9r3LhxCg4Ovu+6vv32W3Xv3v2+1wM8zizGfy8iAQCYXmRkpBYsWKClS5dmaLmAgAD17ds3079+7a+//lL9+vW1Z8+eNL+dAsDduTi6AADAw/faa6/p/PnzunTpkt2vFXvYjh8/rhkzZhDqgPtEsAOAx5CLi4sGDx7s6DKsgoKCHF0CYAqcigUAADAJbp4AAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwif8H1kzpUlFJh8QAAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Melihat Status Pernikahan dengan Gagal Bayar\n",
"sns.barplot(x='pay_6', y='default_payment_next_month', data=df)\n",
"\n",
"# Menambah Title dan Label\n",
"plt.title('Hubungan Status Pelunasan (April) dengan Gagal Bayar')\n",
"plt.xlabel('Status Pelunasan (April)')\n",
"plt.ylabel('Gagal Bayar')\n",
"\n",
"# Menampilkan Plot\n",
"plt.tight_layout()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Status pelunasan yang mengalami keterlambatan bayar selama 4 bulan ditemukan sebagai data tertinggi untuk bulan April\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### **Cek Statistika Deskriptif**\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Membuat Fungsi Boxplot\n",
"def boxplot_for_all_columns(df):\n",
"\n",
" # Filter hanya kolom numerik\n",
" numeric_columns = df.select_dtypes(include=['int', 'float']).columns\n",
" \n",
" # Mengatur ukuran plot\n",
" plt.figure(figsize=(20, 15))\n",
"\n",
" # Loop melalui setiap kolom numerik dan membuat box plot\n",
" for i, column in enumerate(numeric_columns, 1):\n",
" plt.subplot(7, 8, i)\n",
" sns.boxplot(y=df[column])\n",
" plt.title(column)\n",
"\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"# Contoh pemanggilan fungsi\n",
"boxplot_for_all_columns(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Bedasarkan analisa statistika deskriptif yang dicari sebelumnya untuk melihat data mean dan data median untuk melihat *skewness*, dilakukan pemodelan dalam bentuk gambar untuk membuktikan adanya outlier. Dari boxplot, ditemukan ternyata semua kolom memiliki outlier kecuali kolom `sex` dan `marital status`. Adapun alasan ditemukanya data outlier karena untuk setiap nasabah memiliki banyak latar belakang dan kesanggupan pembayaran untuk pelunasan yang berbeda-beda\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### **Melihat Status Pembayaran** \n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHHCAYAAABeLEexAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABC/UlEQVR4nO3deXgNd///8ddJZCOSCJFIRexqp6FEa19iKdXqYk9QuqCWUre79t53qaWo6qKLcJdWi2pL0QhKiVIaW3WhVIsEiSRoJSTz+8Mv83UkNInECfN8XNe5LjPzmZn3zDkzXpn5zDk2wzAMAQAAWJiTowsAAABwNAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIRAACwPAIR8s2kSZNks9l09uzZm7aLiIhQ+fLlb09Rd7HNmzfLZrNp+fLl+bbMiIgIeXp65tvy7jY2m02TJk2y3LoLO84pVxXEOcFKCES3IDIyUjabTd9//73d+OTkZN1///1yd3fXunXrHFQdbkVERIRsNpvq1Kmj7H7dxmazaciQIQ6orHBr0aKFbDabqlSpku30qKgo2Ww2TtoF5NixY7LZbJo5c6bdeMMw9PTTTxOq8lnm/s58OTs7q1y5cnrkkUcUGxvr6PKQS0UcXcDdJiUlRe3atdO+ffv02WefqX379o4uqdB59913lZGR4egycmT//v1auXKlunXr5uhS7hju7u46fPiwdu7cqfvvv99u2pIlS+Tu7q5Lly45qLo7199//60iRXJ/yjYMQ88995wWLFig8ePHE4gKQI8ePdSxY0elp6fr0KFDeuutt7R27Vrt2LFD9erVc3R5yCGuEOWj8+fPKywsTLGxsVqxYoU6dOjg6JIKJRcXF7m5uTm6jH/k4eGhqlWrasqUKdleJUL2KlWqpGrVqumjjz6yG3/p0iV99tln6tSpk4Mqu7O5u7vnKRANHTpUb7/9tl566SVNmTKlACrDfffdp969eys8PFzTpk3Thx9+qNTUVL311luOLu2OcPHiRUeXIIlAlG8uXLig9u3ba8+ePVqxYkWWk/6JEyfUv39/+fv7y83NTTVr1tQHH3xg1ybz/u8nn3yiyZMn65577lHx4sX12GOPKTk5WampqRo+fLhKly4tT09P9evXT6mpqeb8mZdvIyMjs9R3/aXyzP4+hw8fVkREhHx8fOTt7a1+/frpr7/+spv377//1vPPP69SpUqpePHi6tKli06cOJGjy++///67KleurFq1aik+Pl5S1vv9117mX7BggSpVqiQ3Nzc1bNhQu3btslvevn37FBERoYoVK8rd3V0BAQHq37+/EhIS7NrlZvtuxMnJSePGjTOv9t1MWlqaJkyYoJCQEHl7e6tYsWJq2rSpNm3alKXtxx9/rJCQEBUvXlxeXl6qXbu25s6da05PTEzUqFGjVLt2bXl6esrLy0sdOnTQ3r17s113enq6/v3vfysgIEDFihVTly5d9Mcff9i12bp1qx5//HGVK1dObm5uCgoK0ogRI/T3339nu8wTJ06oa9eu8vT0lJ+fn0aNGqX09PR/2mWmHj16aNmyZXZXAr/88kv99ddfeuKJJ264ztwcI//9739VtmxZubu7q3Xr1jp8+HCWZc6fP18VK1aUh4eH7r//fm3dulUtWrRQixYtzDa5ee+u9/vvv+u5555TtWrV5OHhoZIlS+rxxx/XsWPH7Npl3l7/9ttv9fzzz8vPz08+Pj56+umnlZaWpqSkJPXt21clSpRQiRIl9OKLL2YJ4Xm53TVs2DDNnz9fY8eO1X/+8x+7aampqZo4caIqV65sfiZefPFFu3OKlPPjP6f7Qrp6HDdv3lweHh4qW7as/vOf/2jhwoWy2Wx27T///HN16tRJgYGBcnNzU6VKlfTyyy/n6LM4c+ZMNWnSRCVLlpSHh4dCQkKyvU2beft71apVqlWrlvnZu5XuDq1atZIkHT161Bz33XffqX379vL29lbRokXVvHlzbdu2zW6+zPPWL7/8ot69e8vb21t+fn4aP368DMPQH3/8oYcfflheXl4KCAjQrFmzsl1/fp0TMt+TH374Ics6XnnlFTk7O+vEiRM5Xp70f/0Ujxw5oo4dO6p48eLq1atXnpZxq+ep63HLLB9cvHhRHTp00K5du7R8+XI99NBDdtPj4+PVuHFj88Dz8/PT2rVrNWDAAKWkpGj48OF27adOnSoPDw/961//0uHDhzVv3jy5uLjIyclJ586d06RJk7Rjxw5FRkaqQoUKmjBhQp5rf+KJJ1ShQgVNnTpVe/bs0XvvvafSpUvr1VdfNdtERETok08+UZ8+fdS4cWN98803Ofor/8iRI2rVqpV8fX0VFRWlUqVK3bT90qVLdf78ebOvw/Tp0/Xoo4/qt99+k4uLi6SrfVB+++039evXTwEBATp48KAWLFiggwcPaseOHbLZbLnevpvp2bOnXn75ZU2ZMkWPPPJIluVnSklJ0XvvvacePXpo4MCBOn/+vN5//32FhYVp586d5mXzqKgo9ejRQ61btzZrOHTokLZt26Zhw4ZJkn777TetWrVKjz/+uCpUqKD4+Hi98847at68uX788UcFBgbarfu///2vbDabxowZo9OnT2vOnDlq06aNYmNj5eHhIUn69NNP9ddff+nZZ59VyZIltXPnTs2bN09//vmnPv30U7vlpaenKywsTI0aNdLMmTO1YcMGzZo1S5UqVdKzzz6b4/02adIkbd682fzPYenSpWrdurVKly6dpX1uj5Fp06bJyclJo0aNUnJysqZPn65evXrpu+++M9u89dZbGjJkiJo2baoRI0bo2LFj6tq1q0qUKKGyZcvm+r3Lzq5du7R9+3Z1795dZcuW1bFjx/TWW2+pRYsW+vHHH1W0aFG79kOHDlVAQIAmT56sHTt2aMGCBfLx8dH27dtVrlw5vfLKK/rqq680Y8YM1apVS3379s3R/s7OiBEj9Prrr2vMmDF65ZVX7KZlZGSoS5cu+vbbbzVo0CBVr15d+/fv1+zZs/XLL79o1apVZtucHv853RcnTpxQy5YtZbPZNHbsWBUrVkzvvfdetleNIyMj5enpqZEjR8rT01MbN27UhAkTlJKSohkzZtx0++fOnasuXbqoV69eSktL08cff6zHH39cq1evzlL/t99+q5UrV+q5555T8eLF9frrr6tbt246fvy4SpYsmdNdbjpy5IgkmfNu3LhRHTp0UEhIiCZOnCgnJyctXLhQrVq10tatW7PcWn7yySdVvXp1TZs2TWvWrNF//vMf+fr66p133lGrVq306quvasmSJRo1apQaNmyoZs2a2c2fX+eExx57TIMHD9aSJUtUv359u3UsWbJELVq00D333JPj5WW6cuWKwsLC9OCDD2rmzJnmZ+N2n6eyMJBnCxcuNCQZwcHBhouLi7Fq1aps2w0YMMAoU6aMcfbsWbvx3bt3N7y9vY2//vrLMAzD2LRpkyHJqFWrlpGWlma269Gjh2Gz2YwOHTrYzR8aGmoEBwebw0ePHjUkGQsXLsxSgyRj4sSJ5vDEiRMNSUb//v3t2j3yyCNGyZIlzeHdu3cbkozhw4fbtYuIiLjhMs+cOWMcOnTICAwMNBo2bGgkJibazRseHp5t3SVLlrRr+/nnnxuSjC+//NIcl7mvrvXRRx8ZkowtW7bkevtuJDw83ChWrJhhGIaxaNEiQ5KxcuVKc7okY/DgwebwlStXjNTUVLtlnDt3zvD397erYdiwYYaXl5dx5cqVG6770qVLRnp6ut24o0ePGm5ubsaUKVPMcZmfl3vuucdISUkxx3/yySeGJGPu3LnmuOz229SpUw2bzWb8/vvvdtstyW49hmEY9evXN0JCQm5Yc6bmzZsbNWvWNAzDMBo0aGAMGDDAMIyr+8LV1dVYtGiRWfenn35qzpfbY6R69ep2+3vu3LmGJGP//v2GYRhGamqqUbJkSaNhw4bG5cuXzXaRkZGGJKN58+bmuJy+d4aR9TjKbr/GxMQYkozFixeb4zLPFWFhYUZGRoY5PjQ01LDZbMYzzzxjV0/ZsmXtasxu3dnJPJaCg4MNScbo0aOzbfe///3PcHJyMrZu3Wo3/u233zYkGdu2bTMMI3fHf073xdChQw2bzWb88MMP5riEhATD19fXkGQcPXr0pst8+umnjaJFixqXLl0yx11/Tslu3rS0NKNWrVpGq1at7MZLMlxdXY3Dhw+b4/bu3WtIMubNm5dl/dfK3N+TJ082zpw5Y8TFxRmbN2826tevb0gyVqxYYWRkZBhVqlTJ8t7/9ddfRoUKFYy2bdua4zLPW4MGDTLHZX4ebDabMW3aNHP8uXPnDA8PDyM8PNwcVxDnhB49ehiBgYF256Q9e/Zk+b8mt+eYf/3rX1na367z1I1wyywfxMfHy93dXUFBQVmmGYahFStWqHPnzjIMQ2fPnjVfYWFhSk5O1p49e+zm6du3r3lFRJIaNWokwzDUv39/u3aNGjXSH3/8oStXruS59meeecZuuGnTpkpISFBKSookmZeNn3vuObt2Q4cOveEyDxw4oObNm6t8+fLasGGDSpQokaNannzySbu2TZs2lXT1ikmmzL9upKt9Us6ePavGjRtLUpb9mJPty4levXqpSpUqN+1L5OzsLFdXV0lX//pOTEzUlStX1KBBA7u6fHx8dPHiRUVFRd1wfW5ubnJyunpopqenKyEhQZ6enqpWrVq229i3b18VL17cHH7sscdUpkwZffXVV+a4a/fbxYsXdfbsWTVp0kSGYWR7OTy7/Xbt+5ATPXv21MqVK5WWlqbly5fL2dlZjzzySJZ2eTlG+vXrZ+7vzPqk//usfP/990pISNDAgQPt+t306tUry+cxp+9ddq7dr5cvX1ZCQoIqV64sHx+fbOcdMGCA3VXGzGN7wIABdvU0aNAg1/v7Wpm3p6tWrZrt9E8//VTVq1fXvffea7e/M6/mZd4uzM3xn9N9sW7dOoWGhtpdefP19TVvm9xomefPn9fZs2fVtGlT/fXXX/rpp59uug+unffcuXNKTk5W06ZNs31f2rRpo0qVKpnDderUkZeXV47fg4kTJ8rPz08BAQFq0aKFjhw5oldffVWPPvqoYmNj9euvv6pnz55KSEgw9/XFixfVunVrbdmyJctDJk899ZT578zPw/WfEx8fH1WrVi3bGvPznNC3b1+dPHnS7hbykiVL5OHhYfewSW7PMdldxXHEeepaBKJ88M4778jV1VXt27fXzz//bDftzJkzSkpK0oIFC+Tn52f36tevnyTp9OnTdvOUK1fObtjb21uSsgQub29vZWRkKDk5Oc+1X7+uzP8szp07J+lqvwAnJydVqFDBrl3lypVvuMzOnTurePHiWr9+vby8vPKtFulq/5phw4bJ399fHh4e8vPzM2vLbj/kZJn/xNnZWePGjVNsbKzdrYTrLVq0SHXq1JG7u7tKliwpPz8/rVmzxq6u5557TlWrVlWHDh1UtmxZ9e/fP0tfhYyMDM2ePVtVqlSRm5ubSpUqJT8/P+3bty/bbbz+EXebzabKlSvb9cU4fvy4IiIi5Ovra95vb968uaSs+83d3V1+fn5240qUKJGrfSZJ3bt3V3JystauXaslS5booYcesjtJZ8qPYyS7z62U9XNapEiRbL+vJifvXXb+/vtvTZgwQUFBQXbvVVJSUo4+jzc7tnO7v681ZswYNWzYUE8//XS2/WZ+/fVXHTx4MMv+zgxQmfs7N8d/TvdFZr/C62U37uDBg3rkkUfk7e0tLy8v+fn5qXfv3pKyP96vtXr1ajVu3Fju7u7y9fWVn5+f3nrrrRy9L1LuPvODBg1SVFSUoqOjtXv3bp0+fVovvviipKv7WpLCw8Oz7O/33ntPqampWWrK7nPi7u6epdvBjT4n+XlOaNu2rcqUKaMlS5ZIunp++uijj/Twww/bHc+5OccUKVLE7rZ1XpaRX+cpu7ryPCdMNWrU0FdffaXWrVurbdu22rZtm3mCy0z+mU8gZKdOnTp2w87Oztm2u9H4zKsWN+rfcrNOZv+0zLzo1q2bFi1apCVLlujpp5/O8Xw5qeWJJ57Q9u3bNXr0aNWrV0+enp7KyMhQ+/bts32UP7+2r1evXmZfoq5du2aZ/uGHHyoiIkJdu3bV6NGjVbp0aTk7O2vq1KlmfwJJKl26tGJjY7V+/XqtXbtWa9eu1cKFC9W3b18tWrRI0tXOiuPHj1f//v318ssvy9fXV05OTho+fHievq4gPT1dbdu2VWJiosaMGaN7771XxYoV04kTJxQREZFlmTfaZ7lVpkwZtWjRQrNmzdK2bdu0YsWKbNvl5zGSl89tTt+77AwdOlQLFy7U8OHDFRoaKm9vb9lsNnXv3j1Xn8fsxt/KMejp6am1a9eqWbNm6tWrl7y8vNSuXTtzekZGhmrXrq3XXnst2/mzu9r9T3K7L/5JUlKSmjdvLi8vL02ZMkWVKlWSu7u79uzZozFjxtx0mVu3blWXLl3UrFkzvfnmmypTpoxcXFy0cOFCLV26NEv7W/08ValSRW3atMl2WmadM2bMuGF/tOu/DDW7evLzM5+bc4Kzs7N69uypd999V2+++aa2bdumkydPmsE0t8uT7K+C53UZ+XWeuhaBKJ/cf//9WrVqlTp16qS2bdtq69at5l8BxYsXV3p6+g0PmPyS+VdyUlKS3fjMv5bzIjg4WBkZGTp69KjdXx3ZPdGTacaMGSpSpIjZQbFnz555Xv+1zp07p+joaE2ePNmuI3nmX2AFKfMqUUREhD7//PMs05cvX66KFStq5cqVdsF04sSJWdq6urqqc+fO6ty5szIyMvTcc8/pnXfe0fjx41W5cmUtX75cLVu21Pvvv283X1JSUrYd06/ffsMwdPjwYTNE7N+/X7/88osWLVpk10n3Zrft8kvPnj311FNPycfHRx07dsy2TUEcI8HBwZKufk5btmxpjr9y5YqOHTtmF7By895db/ny5QoPD7d72ufSpUtZjkFHKFmypL7++ms98MADevTRRxUVFaXQ0FBJV78aYe/evWrduvUN/5CScnf853RfBAcHZzv/9eM2b96shIQErVy50q7T8LVPbt3IihUr5O7urvXr19t11l64cOE/zpvfMm/FeXl5Ffj/AZny+5zQt29fzZo1S19++aXWrl0rPz8/hYWFmdPz4xzjyPNUJm6Z5aPWrVvro48+0uHDh9W+fXulpKTI2dlZ3bp104oVK3TgwIEs85w5cybf1u/l5aVSpUppy5YtduPffPPNPC8z80N//TLmzZt3w3lsNpsWLFigxx57TOHh4friiy/yvP5rZf5FcP1fRHPmzMmX5f+T3r17q3Llypo8eXKWadnV9t133ykmJsau3fVfD+Dk5GSepDIfd3Z2ds6yjZ9++qn5eOv1Fi9erPPnz5vDy5cv16lTp8zvwcquNsMw7B71LyiPPfaYJk6cqDfffNOuz8+1CuIYadCggUqWLKl3333Xro/dkiVLslxSz+l7d6Par3+v5s2bd0uP/uane+65R1FRUSpWrJg6deqk/fv3S7p6pfXEiRN69913s8zz999/m98Lk5vjP6f7IiwsTDExMXbf5JyYmGjekrl2eZL9+5KWlpaj85mzs7NsNpvduo8dO3bTW94FJSQkRJUqVdLMmTN14cKFLNPz8/+ATPl9TqhTp47q1Kmj9957TytWrFD37t3t+ublxznGkeepTFwhymePPPKI3n33XfXv319dunTRunXrNG3aNG3atEmNGjXSwIEDVaNGDSUmJmrPnj3asGGDEhMT8239Tz31lKZNm6annnpKDRo00JYtW/TLL7/keXkhISHq1q2b5syZo4SEBPOx28xl3uivSycnJ3344Yfq2rWrnnjiCX311Vdmh8288vLyUrNmzTR9+nRdvnxZ99xzj77++usc/cWYH5ydnfXSSy+Z/Vqu9dBDD2nlypV65JFH1KlTJx09elRvv/22atSoYXcSfOqpp5SYmKhWrVqpbNmy+v333zVv3jzVq1dP1atXN5c1ZcoU9evXT02aNNH+/fu1ZMkSVaxYMdu6fH199eCDD6pfv36Kj4/XnDlzVLlyZQ0cOFCSdO+996pSpUoaNWqUTpw4IS8vL61YseKW7rXnlLe3d46+Oye/jxFXV1dNmjRJQ4cOVatWrfTEE0/o2LFjioyMVKVKlew+tzl977Lz0EMP6X//+5+8vb1Vo0YNxcTEaMOGDXl6VLugVKlSRevXr1eLFi0UFhamb7/9Vn369NEnn3yiZ555Rps2bdIDDzyg9PR0/fTTT/rkk0+0fv16NWjQIFfHf073xYsvvqgPP/xQbdu21dChQ83H7suVK6fExERzmU2aNFGJEiUUHh6u559/XjabTf/73/9ydIuoU6dOeu2119S+fXv17NlTp0+f1vz581W5cmXt27cvH/fuP3NyctJ7772nDh06qGbNmurXr5/uuecenThxQps2bZKXl5e+/PLLfF1nQZwT+vbtq1GjRkmS3e2yvC7veo48T2XiClEB6Nevn2bOnKlvvvlGjz/+uPl9Cv369dPKlSs1ZMgQzZ07V4mJiTn+PpycmjBhggYMGKDly5frxRdfVHp6utauXXtLy1y8eLEGDx6sNWvWaMyYMUpLS9OyZcskXe3YdiMuLi5avny5GjdurIcfftjuO2LyaunSpQoLCzO/bM7FxeWWty83evfubfc0SqaIiAi98sor2rt3r55//nmtX79eH374oRo0aJBlfnd3d7355pt67rnntGjRIj355JNau3ateU/93//+t1544QWtX79ew4YN0549e7RmzZob9uv497//rU6dOmnq1KmaO3euWrdurejoaPO7PVxcXPTll1+qXr16mjp1qiZPnqwqVapo8eLF+bx38s7f3z/fj5EhQ4bo9ddf1/HjxzVq1Cht3bpVX3zxhXx8fOw+tzl977Izd+5c9e3bV0uWLNELL7ygU6dOacOGDYXuB3Lr1aun1atXKykpSW3atFFcXJxWrVqladOmaf/+/Ro1apQmT56sXbt2adiwYXZPp+X0+M/pvggKCtKmTZtUvXp1vfLKK5ozZ47Cw8PNp2gzl1myZEmtXr1aZcqU0bhx4zRz5ky1bdtW06dP/8ftbdWqld5//33FxcVp+PDh+uijj/Tqq69m+5Tj7dCiRQvFxMSoQYMGeuONNzR06FBFRkYqICBAI0aMyPf1FcQ5oVevXnJ2dlbVqlWzfG9SfpxjCsN5ymbcSs89WFZsbKzq16+vDz/8MNvHZYHCKCMjQ35+fnr00UezvV2EnCmI43/48OF65513dOHChQLpMItbc/bsWZUpU0YTJkzQ+PHjHV1OgeAKEf5Rdj/vMGfOHDk5OWX5hlSgsLh06VKW2yuLFy9WYmKi3U934OYK4vi/fpkJCQn63//+pwcffJAwVEhFRkYqPT1dffr0cXQpBYY+RPhH06dP1+7du9WyZUsVKVLEfFx80KBBeXo8F7gdduzYoREjRpi3rffs2aP3339ftWrV0uOPP+7o8u4YBXH8h4aGqkWLFqpevbri4+P1/vvvKyUl5a698nAn27hxo3788Uf997//VdeuXbP9Hq+7Rp6/4xqW8fXXXxsPPPCAUaJECcPFxcWoVKmSMWnSJLufRAAKm6NHjxqdO3c2/P39DRcXF8Pf39/o16+fER8f7+jS7igFcfyPHTvWqFKliuHh4WEULVrUePDBB42oqKh8rBr5pXnz5oaLi4vRokUL488//3R0OQWKPkQAAMDy6EMEAAAsj0AEAAAsj07VOZCRkaGTJ0+qePHiN/2aewAAUHgYhqHz588rMDAwy++nXY9AlAMnT57kaSoAAO5Qf/zxh8qWLXvTNgSiHChevLikqzvUy8vLwdUAAICcSElJUVBQkPn/+M0QiHIg8zaZl5cXgQgAgDtMTrq70KkaAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYHoEIAABYXhFHF4D/EzJ6saNLAAql3TP6OroEAHc5rhABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLIxABAADLc2ggmjp1qho2bKjixYurdOnS6tq1q37++We7NpcuXdLgwYNVsmRJeXp6qlu3boqPj7drc/z4cXXq1ElFixZV6dKlNXr0aF25csWuzebNm3XffffJzc1NlStXVmRkZEFvHgAAuEM4NBB98803Gjx4sHbs2KGoqChdvnxZ7dq108WLF802I0aM0JdffqlPP/1U33zzjU6ePKlHH33UnJ6enq5OnTopLS1N27dv16JFixQZGakJEyaYbY4ePapOnTqpZcuWio2N1fDhw/XUU09p/fr1t3V7AQBA4WQzDMNwdBGZzpw5o9KlS+ubb75Rs2bNlJycLD8/Py1dulSPPfaYJOmnn35S9erVFRMTo8aNG2vt2rV66KGHdPLkSfn7+0uS3n77bY0ZM0ZnzpyRq6urxowZozVr1ujAgQPmurp3766kpCStW7fuH+tKSUmRt7e3kpOT5eXlVTAbLylk9OICWzZwJ9s9o6+jSwBwB8rN/9+Fqg9RcnKyJMnX11eStHv3bl2+fFlt2rQx29x7770qV66cYmJiJEkxMTGqXbu2GYYkKSwsTCkpKTp48KDZ5tplZLbJXAYAALC2Io4uIFNGRoaGDx+uBx54QLVq1ZIkxcXFydXVVT4+PnZt/f39FRcXZ7a5NgxlTs+cdrM2KSkp+vvvv+Xh4WE3LTU1VampqeZwSkrKrW8gAAAotArNFaLBgwfrwIED+vjjjx1diqZOnSpvb2/zFRQU5OiSAABAASoUgWjIkCFavXq1Nm3apLJly5rjAwIClJaWpqSkJLv28fHxCggIMNtc/9RZ5vA/tfHy8spydUiSxo4dq+TkZPP1xx9/3PI2AgCAwsuhgcgwDA0ZMkSfffaZNm7cqAoVKthNDwkJkYuLi6Kjo81xP//8s44fP67Q0FBJUmhoqPbv36/Tp0+bbaKiouTl5aUaNWqYba5dRmabzGVcz83NTV5eXnYvAABw93JoH6LBgwdr6dKl+vzzz1W8eHGzz4+3t7c8PDzk7e2tAQMGaOTIkfL19ZWXl5eGDh2q0NBQNW7cWJLUrl071ahRQ3369NH06dMVFxencePGafDgwXJzc5MkPfPMM3rjjTf04osvqn///tq4caM++eQTrVmzxmHbDgAACg+HXiF66623lJycrBYtWqhMmTLma9myZWab2bNn66GHHlK3bt3UrFkzBQQEaOXKleZ0Z2dnrV69Ws7OzgoNDVXv3r3Vt29fTZkyxWxToUIFrVmzRlFRUapbt65mzZql9957T2FhYbd1ewEAQOFUqL6HqLDie4gAx+J7iADkxR37PUQAAACOQCACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACW59BAtGXLFnXu3FmBgYGy2WxatWqV3fSIiAjZbDa7V/v27e3aJCYmqlevXvLy8pKPj48GDBigCxcu2LXZt2+fmjZtKnd3dwUFBWn69OkFvWkAAOAO4tBAdPHiRdWtW1fz58+/YZv27dvr1KlT5uujjz6ym96rVy8dPHhQUVFRWr16tbZs2aJBgwaZ01NSUtSuXTsFBwdr9+7dmjFjhiZNmqQFCxYU2HYBAIA7SxFHrrxDhw7q0KHDTdu4ubkpICAg22mHDh3SunXrtGvXLjVo0ECSNG/ePHXs2FEzZ85UYGCglixZorS0NH3wwQdydXVVzZo1FRsbq9dee80uOAEAAOsq9H2INm/erNKlS6tatWp69tlnlZCQYE6LiYmRj4+PGYYkqU2bNnJyctJ3331ntmnWrJlcXV3NNmFhYfr555917ty5bNeZmpqqlJQUuxcAALh7FepA1L59ey1evFjR0dF69dVX9c0336hDhw5KT0+XJMXFxal06dJ28xQpUkS+vr6Ki4sz2/j7+9u1yRzObHO9qVOnytvb23wFBQXl96YBAIBCxKG3zP5J9+7dzX/Xrl1bderUUaVKlbR582a1bt26wNY7duxYjRw50hxOSUkhFAEAcBcr1FeIrlexYkWVKlVKhw8fliQFBATo9OnTdm2uXLmixMREs99RQECA4uPj7dpkDt+ob5Kbm5u8vLzsXgAA4O51RwWiP//8UwkJCSpTpowkKTQ0VElJSdq9e7fZZuPGjcrIyFCjRo3MNlu2bNHly5fNNlFRUapWrZpKlChxezcAAAAUSg4NRBcuXFBsbKxiY2MlSUePHlVsbKyOHz+uCxcuaPTo0dqxY4eOHTum6OhoPfzww6pcubLCwsIkSdWrV1f79u01cOBA7dy5U9u2bdOQIUPUvXt3BQYGSpJ69uwpV1dXDRgwQAcPHtSyZcs0d+5cu1tiAADA2hwaiL7//nvVr19f9evXlySNHDlS9evX14QJE+Ts7Kx9+/apS5cuqlq1qgYMGKCQkBBt3bpVbm5u5jKWLFmie++9V61bt1bHjh314IMP2n3HkLe3t77++msdPXpUISEheuGFFzRhwgQeuQcAACabYRiGo4so7FJSUuTt7a3k5OQC7U8UMnpxgS0buJPtntHX0SUAuAPl5v/vO6oPEQAAQEEgEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMsjEAEAAMvLUyCqWLGiEhISsoxPSkpSxYoVb7koAACA2ylPgejYsWNKT0/PMj41NVUnTpy45aIAAABupyK5afzFF1+Y/16/fr28vb3N4fT0dEVHR6t8+fL5VhwAAMDtkKtA1LVrV0mSzWZTeHi43TQXFxeVL19es2bNyrfiAAAAbodcBaKMjAxJUoUKFbRr1y6VKlWqQIoCAAC4nXIViDIdPXo0v+sAAABwmDwFIkmKjo5WdHS0Tp8+bV45yvTBBx/ccmEAAAC3S54C0eTJkzVlyhQ1aNBAZcqUkc1my++6AAAAbps8BaK3335bkZGR6tOnT37XAwAAcNvl6XuI0tLS1KRJk/yuBQAAwCHyFIieeuopLV26NL9rAQAAcIg83TK7dOmSFixYoA0bNqhOnTpycXGxm/7aa6/lS3EAAAC3Q54C0b59+1SvXj1J0oEDB+ym0cEaAADcafIUiDZt2pTfdQAAADhMnvoQAQAA3E3ydIWoZcuWN701tnHjxjwXBAAAcLvlKRBl9h/KdPnyZcXGxurAgQNZfvQVAACgsMtTIJo9e3a24ydNmqQLFy7cUkEAAAC3W772Ierduze/YwYAAO44+RqIYmJi5O7unp+LBAAAKHB5umX26KOP2g0bhqFTp07p+++/1/jx4/OlMAAAgNslT4HI29vbbtjJyUnVqlXTlClT1K5du3wpDAAA4HbJUyBauHBhftcBAADgMHkKRJl2796tQ4cOSZJq1qyp+vXr50tRAAAAt1OeAtHp06fVvXt3bd68WT4+PpKkpKQktWzZUh9//LH8/Pzys0YAAIAClaenzIYOHarz58/r4MGDSkxMVGJiog4cOKCUlBQ9//zz+V0jAABAgcrTFaJ169Zpw4YNql69ujmuRo0amj9/Pp2qAQDAHSdPV4gyMjLk4uKSZbyLi4syMjJuuSgAAIDbKU+BqFWrVho2bJhOnjxpjjtx4oRGjBih1q1b51txAAAAt0OeAtEbb7yhlJQUlS9fXpUqVVKlSpVUoUIFpaSkaN68efldIwAAQIHKUx+ioKAg7dmzRxs2bNBPP/0kSapevbratGmTr8UBAADcDrm6QrRx40bVqFFDKSkpstlsatu2rYYOHaqhQ4eqYcOGqlmzprZu3VpQtQIAABSIXAWiOXPmaODAgfLy8soyzdvbW08//bRee+21fCsOAADgdshVINq7d6/at29/w+nt2rXT7t27b7koAACA2ylXgSg+Pj7bx+0zFSlSRGfOnLnlogAAAG6nXAWie+65RwcOHLjh9H379qlMmTK3XBQAAMDtlKtA1LFjR40fP16XLl3KMu3vv//WxIkT9dBDD+VbcQAAALdDrh67HzdunFauXKmqVatqyJAhqlatmiTpp59+0vz585Wenq6XXnqpQAoFAAAoKLkKRP7+/tq+fbueffZZjR07VoZhSJJsNpvCwsI0f/58+fv7F0ihAAAABSXXX8wYHBysr776SufOndPhw4dlGIaqVKmiEiVKFER9AAAABS5P31QtSSVKlFDDhg3zsxYAAACHyNNvmQEAANxNCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyCEQAAMDyHBqItmzZos6dOyswMFA2m02rVq2ym24YhiZMmKAyZcrIw8NDbdq00a+//mrXJjExUb169ZKXl5d8fHw0YMAAXbhwwa7Nvn371LRpU7m7uysoKEjTp08v6E0DAAB3EIcGoosXL6pu3bqaP39+ttOnT5+u119/XW+//ba+++47FStWTGFhYXa/pdarVy8dPHhQUVFRWr16tbZs2aJBgwaZ01NSUtSuXTsFBwdr9+7dmjFjhiZNmqQFCxYU+PYBAIA7Q56/mDE/dOjQQR06dMh2mmEYmjNnjsaNG6eHH35YkrR48WL5+/tr1apV6t69uw4dOqR169Zp165datCggSRp3rx56tixo2bOnKnAwEAtWbJEaWlp+uCDD+Tq6qqaNWsqNjZWr732ml1wAgAA1lVo+xAdPXpUcXFxatOmjTnO29tbjRo1UkxMjCQpJiZGPj4+ZhiSpDZt2sjJyUnfffed2aZZs2ZydXU124SFhennn3/WuXPnbtPWAACAwsyhV4huJi4uTpKy/Fisv7+/OS0uLk6lS5e2m16kSBH5+vratalQoUKWZWROy+432FJTU5WammoOp6Sk3OLWAACAwqzQXiFypKlTp8rb29t8BQUFObokAABQgAptIAoICJAkxcfH242Pj483pwUEBOj06dN2069cuaLExES7Ntkt49p1XG/s2LFKTk42X3/88cetbxAAACi0Cm0gqlChggICAhQdHW2OS0lJ0XfffafQ0FBJUmhoqJKSkrR7926zzcaNG5WRkaFGjRqZbbZs2aLLly+bbaKiolStWrVsb5dJkpubm7y8vOxeAADg7uXQQHThwgXFxsYqNjZW0tWO1LGxsTp+/LhsNpuGDx+u//znP/riiy+0f/9+9e3bV4GBgerataskqXr16mrfvr0GDhyonTt3atu2bRoyZIi6d++uwMBASVLPnj3l6uqqAQMG6ODBg1q2bJnmzp2rkSNHOmirAQBAYePQTtXff/+9WrZsaQ5nhpTw8HBFRkbqxRdf1MWLFzVo0CAlJSXpwQcf1Lp16+Tu7m7Os2TJEg0ZMkStW7eWk5OTunXrptdff92c7u3tra+//lqDBw9WSEiISpUqpQkTJvDIPQAAMNkMwzAcXURhl5KSIm9vbyUnJxfo7bOQ0YsLbNnAnWz3jL6OLgHAHSg3/38X2j5EAAAAtwuBCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB6BCAAAWF4RRxcAAFYQMnqxo0sACqXdM/o6ugRJXCECAAAgEAEAABCIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RXqQDRp0iTZbDa717333mtOv3TpkgYPHqySJUvK09NT3bp1U3x8vN0yjh8/rk6dOqlo0aIqXbq0Ro8erStXrtzuTQEAAIVYEUcX8E9q1qypDRs2mMNFivxfySNGjNCaNWv06aefytvbW0OGDNGjjz6qbdu2SZLS09PVqVMnBQQEaPv27Tp16pT69u0rFxcXvfLKK7d9WwAAQOFU6ANRkSJFFBAQkGV8cnKy3n//fS1dulStWrWSJC1cuFDVq1fXjh071LhxY3399df68ccftWHDBvn7+6tevXp6+eWXNWbMGE2aNEmurq63e3MAAEAhVKhvmUnSr7/+qsDAQFWsWFG9evXS8ePHJUm7d+/W5cuX1aZNG7Ptvffeq3LlyikmJkaSFBMTo9q1a8vf399sExYWppSUFB08ePCG60xNTVVKSordCwAA3L0KdSBq1KiRIiMjtW7dOr311ls6evSomjZtqvPnzysuLk6urq7y8fGxm8ff319xcXGSpLi4OLswlDk9c9qNTJ06Vd7e3uYrKCgofzcMAAAUKoX6llmHDh3Mf9epU0eNGjVScHCwPvnkE3l4eBTYeseOHauRI0eawykpKYQiAADuYoX6CtH1fHx8VLVqVR0+fFgBAQFKS0tTUlKSXZv4+Hizz1FAQECWp84yh7Prl5TJzc1NXl5edi8AAHD3uqMC0YULF3TkyBGVKVNGISEhcnFxUXR0tDn9559/1vHjxxUaGipJCg0N1f79+3X69GmzTVRUlLy8vFSjRo3bXj8AACicCvUts1GjRqlz584KDg7WyZMnNXHiRDk7O6tHjx7y9vbWgAEDNHLkSPn6+srLy0tDhw5VaGioGjduLElq166datSooT59+mj69OmKi4vTuHHjNHjwYLm5uTl46wAAQGFRqAPRn3/+qR49eighIUF+fn568MEHtWPHDvn5+UmSZs+eLScnJ3Xr1k2pqakKCwvTm2++ac7v7Oys1atX69lnn1VoaKiKFSum8PBwTZkyxVGbBAAACqFCHYg+/vjjm053d3fX/PnzNX/+/Bu2CQ4O1ldffZXfpQEAgLvIHdWHCAAAoCAQiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOURiAAAgOVZKhDNnz9f5cuXl7u7uxo1aqSdO3c6uiQAAFAIWCYQLVu2TCNHjtTEiRO1Z88e1a1bV2FhYTp9+rSjSwMAAA5mmUD02muvaeDAgerXr59q1Kiht99+W0WLFtUHH3zg6NIAAICDWSIQpaWlaffu3WrTpo05zsnJSW3atFFMTIwDKwMAAIVBEUcXcDucPXtW6enp8vf3txvv7++vn376KUv71NRUpaammsPJycmSpJSUlAKtMz317wJdPnCnKuhj73bg+AayV5DHd+ayDcP4x7aWCES5NXXqVE2ePDnL+KCgIAdUA8B73jOOLgFAAbkdx/f58+fl7e190zaWCESlSpWSs7Oz4uPj7cbHx8crICAgS/uxY8dq5MiR5nBGRoYSExNVsmRJ2Wy2Aq8XjpWSkqKgoCD98ccf8vLycnQ5APIRx7e1GIah8+fPKzAw8B/bWiIQubq6KiQkRNHR0erataukqyEnOjpaQ4YMydLezc1Nbm5uduN8fHxuQ6UoTLy8vDhhAncpjm/r+KcrQ5ksEYgkaeTIkQoPD1eDBg10//33a86cObp48aL69evn6NIAAICDWSYQPfnkkzpz5owmTJiguLg41atXT+vWrcvS0RoAAFiPZQKRJA0ZMiTbW2TAtdzc3DRx4sQst00B3Pk4vnEjNiMnz6IBAADcxSzxxYwAAAA3QyACAACWRyACAACWRyACAACWRyACrjN//nyVL19e7u7uatSokXbu3OnokgDkgy1btqhz584KDAyUzWbTqlWrHF0SChECEXCNZcuWaeTIkZo4caL27NmjunXrKiwsTKdPn3Z0aQBu0cWLF1W3bl3Nnz/f0aWgEOKxe+AajRo1UsOGDfXGG29IuvoTL0FBQRo6dKj+9a9/Obg6APnFZrPps88+M3/OCeAKEfD/paWlaffu3WrTpo05zsnJSW3atFFMTIwDKwMAFDQCEfD/nT17Vunp6Vl+zsXf319xcXEOqgoAcDsQiAAAgOURiID/r1SpUnJ2dlZ8fLzd+Pj4eAUEBDioKgDA7UAgAv4/V1dXhYSEKDo62hyXkZGh6OhohYaGOrAyAEBBs9Sv3QP/ZOTIkQoPD1eDBg10//33a86cObp48aL69evn6NIA3KILFy7o8OHD5vDRo0cVGxsrX19flStXzoGVoTDgsXvgOm+88YZmzJihuLg41atXT6+//roaNWrk6LIA3KLNmzerZcuWWcaHh4crMjLy9heEQoVABAAALI8+RAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRACQC5s3b5bNZlNSUpKjSwGQjwhEgEWdOXNGzz77rMqVKyc3NzcFBAQoLCxM27ZtM9vYbDatWrUq18suX7685syZk3/F3oDNZjNf3t7eeuCBB7Rx48YCXy+Auw+BCLCobt266YcfftCiRYv0yy+/6IsvvlCLFi2UkJDg6NJyZeHChTp16pS2bdumUqVK6aGHHtJvv/3m6LIcIi0tzdElAHcuA4DlnDt3zpBkbN68+YZtgoODDUnmKzg42DAMwzh8+LDRpUsXo3Tp0kaxYsWMBg0aGFFRUeZ8zZs3t5sv8zQzceJEo27dunbrmD17trlcwzCMTZs2GQ0bNjSKFi1qeHt7G02aNDGOHTt2wxolGZ999pk5fOLECUOS8fbbbxuGYRj79+832rdvbxQrVswoXbq00bt3b+PMmTN2tQ4ZMsQYNmyY4ePjY5QuXdpYsGCBceHCBSMiIsLw9PQ0KlWqZHz11Vd2NUoyVq9ebdSuXdtwc3MzGjVqZOzfv99sc/bsWaN79+5GYGCg4eHhYdSqVctYunSpOX3RokWGr6+vcenSJbvtefjhh43evXvnaD9nvkdTpkwx+vTpYxQvXtwIDw83DMMwXnzxRaNKlSqGh4eHUaFCBWPcuHFGWlqaOV/me7F48WIjODjY8PLyMp588kkjJSXlhvsauNtxhQiwIE9PT3l6emrVqlVKTU3Nts2uXbsk/d8VmMzhCxcuqGPHjoqOjtYPP/yg9u3bq3Pnzjp+/LgkaeXKlSpbtqymTJmiU6dO6dSpUzmq6cqVK+ratauaN2+uffv2KSYmRoMGDZLNZsvxdnl4eEi6eqUkKSlJrVq1Uv369fX9999r3bp1io+P1xNPPGE3z6JFi1SqVCnt3LlTQ4cO1bPPPqvHH39cTZo00Z49e9SuXTv16dNHf/31l918o0eP1qxZs7Rr1y75+fmpc+fOunz5siTp0qVLCgkJ0Zo1a3TgwAENGjRIffr00c6dOyVJjz/+uNLT0/XFF1+Yyzt9+rTWrFmj/v3752g/Z5o5c6bq1q2rH374QePHj5ckFS9eXJGRkfrxxx81d+5cvfvuu5o9e7bdfEeOHNGqVau0evVqrV69Wt98842mTZuW430N3HUcncgAOMby5cuNEiVKGO7u7kaTJk2MsWPHGnv37rVro+uuwNxIzZo1jXnz5pnDwcHBxuzZs+3a/NMVooSEhH+8anW9a+u7ePGi8dxzzxnOzs7G3r17jZdfftlo166dXfs//vjDkGT8/PPPhmFcvUL04IMPmtOvXLliFCtWzOjTp4857tSpU4YkIyYmxjCM/7tC9PHHH5ttEhISDA8PD2PZsmU3rLVTp07GCy+8YA4/++yzRocOHczhWbNmGRUrVjQyMjJuuIzs9nPXrl1v2D7TjBkzjJCQEHN44sSJRtGiRe2uCI0ePdpo1KjRPy4LuFtxhQiwqG7duunkyZP64osv1L59e23evFn33XefIiMjbzrfhQsXNGrUKFWvXl0+Pj7y9PTUoUOHsly5yC1fX19FREQoLCxMnTt31ty5c3N0dalHjx7y9PRU8eLFtWLFCr3//vuqU6eO9u7dq02bNplXwzw9PXXvvfdKunp1JFOdOnXMfzs7O6tkyZKqXbu2Oc7f31/S1Ss41woNDbWrvVq1ajp06JAkKT09XS+//LJq164tX19feXp6av369Xb7aODAgfr666914sQJSVJkZKQiIiLMK2I53c8NGjTIsk+WLVumBx54QAEBAfL09NS4ceOyzFe+fHkVL17cHC5TpkyWbQSshEAEWJi7u7vatm2r8ePHa/v27YqIiNDEiRNvOs+oUaP02Wef6ZVXXtHWrVsVGxur2rVr/2OHXicnJxmGYTcu8xZTpoULFyomJkZNmjTRsmXLVLVqVe3YseOmy509e7ZiY2MVFxenuLg4hYeHS7oaKDp37qzY2Fi716+//qpmzZqZ87u4uNgtz2az2Y3LDCgZGRk3reNaM2bM0Ny5czVmzBht2rRJsbGxCgsLs9tH9evXV926dbV48WLt3r1bBw8eVEREhDk9p/u5WLFidsMxMTHq1auXOnbsqNWrV+uHH37QSy+9lGW+7LY7N9sI3G2KOLoAAIVHjRo17B6zd3FxUXp6ul2bbdu2KSIiQo888oikq8Hj2LFjdm1cXV2zzOfn56e4uDgZhmGGjNjY2Cw11K9fX/Xr19fYsWMVGhqqpUuXqnHjxjesOSAgQJUrV84y/r777tOKFStUvnx5FSmS/6e6HTt2qFy5cpKkc+fO6ZdfflH16tUlXd1HDz/8sHr37i3papj65ZdfVKNGDbtlPPXUU5ozZ45OnDihNm3aKCgoyJyWk/2cne3btys4OFgvvfSSOe7333+/pW0FrIArRIAFJSQkqFWrVvrwww+1b98+HT16VJ9++qmmT5+uhx9+2GxXvnx5RUdHKy4uTufOnZMkValSRStXrlRsbKz27t2rnj17ZrmyUL58eW3ZskUnTpzQ2bNnJUktWrTQmTNnNH36dB05ckTz58/X2rVrzXmOHj2qsWPHKiYmRr///ru+/vpr/frrr2bIyK3BgwcrMTFRPXr00K5du3TkyBGtX79e/fr1yxLW8mLKlCmKjo7WgQMHFBERoVKlSqlr166Sru6jqKgobd++XYcOHdLTTz+t+Pj4LMvo2bOn/vzzT7377rtmZ+pMOdnP2alSpYqOHz+ujz/+WEeOHNHrr7+uzz777Ja3F7jbEYgAC/L09FSjRo00e/ZsNWvWTLVq1dL48eM1cOBAvfHGG2a7WbNmKSoqSkFBQapfv74k6bXXXlOJEiXUpEkTde7cWWFhYbrvvvvslj9lyhQdO3ZMlSpVkp+fnySpevXqevPNNzV//nzVrVtXO3fu1KhRo8x5ihYtqp9++kndunVT1apVNWjQIA0ePFhPP/10nrYxMDBQ27ZtU3p6utq1a6fatWtr+PDh8vHxkZPTrZ/6pk2bpmHDhikkJERxcXH68ssv5erqKkkaN26c7rvvPoWFhalFixYKCAgww9K1vL291a1bN3l6emaZnpP9nJ0uXbpoxIgRGjJkiOrVq6ft27ebT58BuDGbcf1NfQDAbdO6dWvVrFlTr7/+uqNLASyNQAQADnDu3Dlt3rxZjz32mH788UdVq1bN0SUBlkanagBwgPr16+vcuXN69dVXCUNAIcAVIgAAYHl0qgYAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJb3/wBLM9nqpmSuPAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Menampilkan diagram batang\n",
"sns.countplot(x='default_payment_next_month', data=df)\n",
"\n",
"# Menambahkan label sumbu dan judul\n",
"plt.xlabel('Status Pembayaran')\n",
"plt.ylabel('Count')\n",
"plt.title('Kemungkinan Nasabah Mengalami Kegagalan Pembayaran')\n",
"\n",
"# Menampilkan plot\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Setelah dilakukan visualisasi pada kolom status pembayaran, ditemukan lebih banyak nasabah yang memiliki kemungkinan untuk gagal membayar dibandingkan berhasil membayar tagihan. Data ini akan menjadi pertimbangan untuk pemodelan nantinya \n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ***Feature Engineering***\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### **Memisahkan nilai X dan y** \n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
"
],
"text/plain": [
"GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('scaler', RobustScaler()),\n",
" ('logistic_classification',\n",
" LogisticRegression(max_iter=1000,\n",
" solver='liblinear'))]),\n",
" param_grid={'logistic_classification__C': [0.001, 0.01, 0.1, 1, 10,\n",
" 100],\n",
" 'logistic_classification__penalty': ['l1', 'l2']})"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Fit pada Logistic Regression\n",
"grid_logisctic_regression.fit(X_train_new, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best Parameters: {'logistic_classification__C': 0.1, 'logistic_classification__penalty': 'l1'}\n",
"Best Score: 0.81826703107602\n",
"Test Accuracy: 0.8342318059299192\n"
]
}
],
"source": [
"# Mendapatakan Parameter Terbaik dan Score Terbaik\n",
"best_params = grid_logisctic_regression.best_params_\n",
"best_score = grid_logisctic_regression.best_score_\n",
"print(\"Best Parameters:\", best_params)\n",
"print(\"Best Score:\", best_score)\n",
"\n",
"# Evaluasi Model dengan Paramter Terbaik \n",
"best_model = grid_logisctic_regression.best_estimator_\n",
"y_pred = best_model.predict(X_test_new)\n",
"accuracy = accuracy_score(y_test, y_pred)\n",
"print(\"Test Accuracy:\", accuracy)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Coefficient : [[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 -3.52617975e-03\n",
" 7.53910056e-02 6.55105102e-01 0.00000000e+00 6.20468567e-02\n",
" 2.56343587e-01 0.00000000e+00 8.55477698e-02 -2.36895260e-04\n",
" 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
" 0.00000000e+00 -4.69822441e-02 -2.07389407e-01 0.00000000e+00\n",
" -3.97777192e-02 -1.00373238e-01 -1.02178376e-01]]\n",
"Intercept : [-1.14911363]\n"
]
}
],
"source": [
"# Akses Model dengan Grid Search\n",
"best_logistic_regression_model = grid_logisctic_regression.best_estimator_.named_steps['logistic_classification']\n",
"\n",
"# Mendapatkan Parameter Terbaik\n",
"print('Coefficient : ', best_logistic_regression_model.coef_)\n",
"print('Intercept : ', best_logistic_regression_model.intercept_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"1. Data pelatihan yang baik diperoleh angka 81,82 % sedangkan untuk akurasi model dengan data uji diperoleh 83,42 %. Nilai pada data ini tidak terlalu jauh berbeda dan bisa dikatakan ini adalah pemodelan yang baik\n",
"\n",
"2. Untuk koefisien sendiri bisa didapatkan *justifikasi*:\n",
" \n",
" - Koefisien memiliki nilai non pada beberapa fitur, menunjukkan bahwa fitur-fitur ini mempengaruhi prediksi kelas target.\n",
"\n",
" - Koefisien yang memiliki nilai positif yang berarti menunjukkan kontribusi positif terhadap kelas target\n",
"\n",
" - Koefisien yang memiliki nilai negatif yang berarti menunjukkan kontribusi negatif terhadap kelas target\n",
"\n",
" - Nilai-nilai koefisien yang mendekati nol menunjukkan bahwa fitur-fitur ini memiliki kontribusi yang sangat kecil terhadap prediksi kelas target.\n",
"\n",
" - Intersep memiliki nilai -1.14917358, menunjukkan nilai prediksi yang diharapkan ketika semua fitur memiliki nilai nol.\n",
"\n",
"3. *Hyperparameter yang terbaik adalah dengan menggunakan nilai C sebesar 0.1 dan Lasso Regression (L1)\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ***K-Nearest Neighbors (KNN)***\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Menampilkan Nilai F1 Score dari k = 1 to k = 100\n",
"max_k = 100\n",
"\n",
"train_acc = []\n",
"test_acc = []\n",
"\n",
"for loop in range (1, max_k+1):\n",
" knn = KNeighborsClassifier(n_neighbors = loop)\n",
" knn.fit(X_train_new, y_train)\n",
"\n",
" y_pred_train_knn = knn.predict(X_train_new)\n",
" y_pred_test_knn = knn.predict(X_test_new)\n",
"\n",
" train_acc.append(f1_score(y_train, y_pred_train_knn, average='weighted'))\n",
" test_acc.append(f1_score(y_test, y_pred_test_knn, average='weighted'))\n",
"\n",
"# Visualisasi Akurasi Nilai K\n",
"plt.figure(figsize=(20,5))\n",
"plt.title('Effect of Value k on Accuracy - Euclidean Distance')\n",
"plt.plot(range(1, max_k+1), train_acc, label='Train Accuracy')\n",
"plt.plot(range(1, max_k+1), test_acc, label='Test accuracy')\n",
"\n",
"plt.legend()\n",
"plt.xlabel('Number of k')\n",
"plt.ylabel('F1 Score')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"1. Pada data *training* dapat dilihat seberapa baik model memiliki precision yang baik untuk kelas 0 (tidak gagal membayar), namun recall yang rendah untuk kelas 1 (gagal membayar), yang berarti model mungkin perlu ditingkatkan kemampuannya dalam menangkap kasus-kasus gagal membayar yang sebenarnya.\n",
"\n",
"2. Diperoleh nilai Std - Cross Validation: 0.038. Sehingga dapat dikatakan model ini memiki performa stabil\n",
"\n",
"3. Dari laporoan pada data *test*, dapat dilihat bahwa model memiliki precision yang baik untuk kelas 0 (tidak gagal membayar), namun recall yang rendah untuk kelas 1 (gagal membayar), yang berarti model mungkin perlu ditingkatkan kemampuannya dalam menangkap kasus-kasus gagal membayar yang sebenarnya.\n",
"\n",
"4. Dilakukan uji coba pemodelan untuk mencari nilai *Hyperparameter* untuk nilai K. Adapun nilai K yang dicari titik optimalnya akan dilakukan uji coba dari nilai 1 hingga 100 sehingg ditemukan angka 9 seperti yang ditemukan sebelumnya\n",
"\n",
"5. Pemodelan dengan menggunakan metode *K-Nearest Neighbors* (KNN) bisa dikatakan baik walau perlu ditingkatkan lagi performa pemodelnnya\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### ***Support Vector Machine (SVM)***\n",
"\n",
"---\n"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"# Memeriksa Kinerja Model\n",
"y_pred_train3 = grid_SVC.predict(X_train_new)\n",
"y_pred_test3 = grid_SVC.predict(X_test_new)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train\n",
" precision recall f1-score support\n",
"\n",
" 0 0.85 0.97 0.91 1740\n",
" 1 0.76 0.39 0.52 483\n",
"\n",
" accuracy 0.84 2223\n",
" macro avg 0.81 0.68 0.71 2223\n",
"weighted avg 0.83 0.84 0.82 2223\n",
"\n",
"\n",
"Confusion Matrix : \n",
" \n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGwCAYAAADWsX1oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABB5ElEQVR4nO3de1xUdf4/8NcZcLjJDKLCOAmImQqGaJhIqenKipfMC10oMjLSzcBU0tTfN/GWUlheMJO0FC1c7aabtJmkJZpkgqFmiJcsUBywEEYwrjO/P4zTTurEMDOMzHk993Ee63zO55x5n1nXec/78/mcI+j1ej2IiIhI0mS2DoCIiIhsjwkBERERMSEgIiIiJgREREQEJgREREQEJgREREQEJgREREQEwNHWAZhDp9OhuLgY7u7uEATB1uEQEZGJ9Ho9rl69CrVaDZnMer9Rq6urUVtba/Z55HI5nJ2dLRDR7adVJwTFxcXw8fGxdRhERGSmoqIidO7c2Srnrq6uRnsXV1yD+ffhU6lUOH/+vF0mBa06IXB3dwcARMMVcrBCQPZp1aV8W4dAZDXaq1fh072X+O+5NdTW1uIa9IiGm1nfFbXQI12jQW1tLROC203jMIEcAhMCslsKhcLWIRBZXUsM+zqb+V1h75PuWnVCQERE1FQyCJCZkXjI7PzJP0wIiIhIEmQw71e+vVcI7P36iIiIqAlYISAiIkkQBEBmxlQFAYAFFirctpgQEBGRJHDIwDh7vz4iIiJqAlYIiIhIEmSCmasMAA4ZEBERtXYcMjDO3q+PiIiImoAVAiIikgSZmasM7P0XNBMCIiKSBA4ZGGfv10dERGQTWVlZGDNmDNRqNQRBwM6dO2/ok5+fj4ceeghKpRJubm649957UVhYKO6vrq5GXFwc2rdvj7Zt2yIyMhIlJSUG5ygsLMTo0aPh6uoKLy8vzJ49G/X19SbHy4SAiIgkQRAEszdTVFVVITg4GGvXrr3p/nPnzmHgwIHo2bMnvv76axw/fhzz5883eJLizJkzsWvXLnz44YfYv38/iouLMWHCBHF/Q0MDRo8ejdraWhw6dAibN29GWloaEhMTTf989Hp9q11EodVqoVQqMcnMR1oS3c5Sqy7YOgQiq9FqtVB28kVFRYXVnuzZ+F0x21EJJzOWHdbo9VheX9GsWAVBwI4dOzBu3DixLSoqCm3atMF7771302MqKirQsWNHbN26FQ8//DAA4NSpUwgICEB2djYGDBiAzz//HA8++CCKi4vh7e0NAEhNTcWcOXNw+fJlyOXyJsfICgEREUlC46RCczbgeoLxv1tNTY3Jseh0Onz22Wfo3r07IiIi4OXlhdDQUINhhdzcXNTV1SE8PFxs69mzJ3x9fZGdnQ0AyM7ORlBQkJgMAEBERAS0Wi1Onjxp2udj8lUQERFJmI+PD5RKpbglJSWZfI7S0lJUVlbi1VdfxYgRI7Bnzx6MHz8eEyZMwP79+wEAGo0GcrkcHh4eBsd6e3tDo9GIff43GWjc37jPFFxlQEREkiDAvF/BjYMNRUVFBkMGTk5OJp9Lp9MBAMaOHYuZM2cCAPr06YNDhw4hNTUVDzzwgBmRNg8rBEREJAmNty42ZwMAhUJhsDUnIejQoQMcHR0RGBho0B4QECCuMlCpVKitrUV5eblBn5KSEqhUKrHPX1cdNL5u7NNUTAiIiIhamFwux7333ouCggKD9tOnT8PPzw8AEBISgjZt2mDv3r3i/oKCAhQWFiIsLAwAEBYWhhMnTqC0tFTsk5mZCYVCcUOy8Xc4ZEBERJLQ0jcmqqysxNmzZ8XX58+fR15eHjw9PeHr64vZs2fjsccew+DBgzF06FDs3r0bu3btwtdffw0AUCqViI2NRUJCAjw9PaFQKDBt2jSEhYVhwIABAIDhw4cjMDAQEydORHJyMjQaDV5++WXExcWZXLlgQkBERJLQ0rcuzsnJwdChQ8XXCQkJAICYmBikpaVh/PjxSE1NRVJSEl544QX06NEDH3/8MQYOHCges3LlSshkMkRGRqKmpgYRERF46623xP0ODg7IyMjA1KlTERYWBjc3N8TExGDx4sUmXx/vQ0B0m+N9CMieteR9CBKdPOBsxn0IqvV6LK4pt2qstsQKARERSQKfZWAcEwIiIpIEGQTIzKgm23tCYO/XR0RERE3ACgEREUlCS08qbG2YEBARkSRwDoFxTAiIiEgSWCEwzt6vj4iIiJqAFQIiIpKE6w83an6JQECrvW1PkzAhICIiSeCQgXH2fn1ERETUBKwQEBGRJHCVgXFMCIiISBI4ZGCcvV8fERERNQErBEREJAnmP8vAvp+qy4SAiIgkgUMGxtn79REREVETsEJARESSIPyxmXO8PWNCQEREksAhA+OYEBARkSRwUqFx9p7wEBERUROwQkBERJLAIQPjmBAQEZEkXH/aoXnH2zN7T3iIiIioCVghICIiSeCyQ+OYEBARkSTIBAEygasMboVDBkRERMQKARERSQOHDIxjQkBERJLAhMA4DhkQERERKwRERCQNrBAYx4SAiIgkQRAECGasMhDsPCVgQkBERJLACoFxnENARERErBAQEZE0yGDer2B7/wXNhICIiCRBEK5vzT7ecqHcluw94SEiIrKJrKwsjBkzBmq1GoIgYOfOnbfs+9xzz0EQBKxatcqgvaysDNHR0VAoFPDw8EBsbCwqKysN+hw/fhyDBg2Cs7MzfHx8kJyc3Kx4mRAQEZEkCBb4jymqqqoQHByMtWvXGu23Y8cOfPvtt1Cr1Tfsi46OxsmTJ5GZmYmMjAxkZWVhypQp4n6tVovhw4fDz88Pubm5WL58ORYuXIj169ebFCvAIQMiIpKIll5lMHLkSIwcOdJon4sXL2LatGn44osvMHr0aIN9+fn52L17N44cOYJ+/foBANasWYNRo0bh9ddfh1qtRnp6Ompra7Fx40bI5XL06tULeXl5WLFihUHi0BSsEBAREZlAq9UabDU1Nc06j06nw8SJEzF79mz06tXrhv3Z2dnw8PAQkwEACA8Ph0wmw+HDh8U+gwcPhlwuF/tERESgoKAAV65cMSkeJgRERCQJggU2APDx8YFSqRS3pKSkZsXz2muvwdHRES+88MJN92s0Gnh5eRm0OTo6wtPTExqNRuzj7e1t0KfxdWOfpuKQARERSYIMgMyMMQOZ/vp/FxUVQaFQiO1OTk4mnys3NxerV6/G0aNHzbp7oiWxQkBERGQChUJhsDUnIThw4ABKS0vh6+sLR0dHODo64pdffsGLL76ILl26AABUKhVKS0sNjquvr0dZWRlUKpXYp6SkxKBP4+vGPk3FhICIiCShpVcZGDNx4kQcP34ceXl54qZWqzF79mx88cUXAICwsDCUl5cjNzdXPG7fvn3Q6XQIDQ0V+2RlZaGurk7sk5mZiR49eqBdu3YmxcQhAyIikoyWLM5XVlbi7Nmz4uvz588jLy8Pnp6e8PX1Rfv27Q36t2nTBiqVCj169AAABAQEYMSIEZg8eTJSU1NRV1eH+Ph4REVFiUsUn3jiCSxatAixsbGYM2cOfvjhB6xevRorV640OV4mBEREJAlm36nQxGNzcnIwdOhQ8XVCQgIAICYmBmlpaU06R3p6OuLj4zFs2DDIZDJERkYiJSVF3K9UKrFnzx7ExcUhJCQEHTp0QGJioslLDgEmBERERFYxZMgQ6PX6Jvf/+eefb2jz9PTE1q1bjR7Xu3dvHDhwwNTwbsCEgIiIJIGPPzaOCQEREUmCDAJkZnytm3Nsa8BVBkRERMQKARERSQOHDIxjQkBERJLQ0qsMWhsOGRARERErBEREJA0cMjCOCQEREUmCubcftuSti29HHDIgIiIiVgiIiEgaZIKZjz+27wIBEwIiIpIGziEwjgkBERFJAhMC4ziHgIiIiFghICIiaeAqA+OYEBARkSTwToXGcciAiIiIWCGQmm73h2L4jOfg2zcIHp1UWPdYLI5lfGHQR9WjG8Yv+X/oPnAAZI6OuHTqNN5+YgquXChGe9/OWJr/7U3Pvf7Jf+Hojs8Q9uQjiHl75U37zO4SjKuXf7P4dRGZ6krxJex4OQknM79C7bXf0bFrF8S8/Qb87gkGAOxaugI5H32KKxeK4SiXw7dPEMYufAn+9/a1ceTUXDKY9yvY3n9BMyGQGCc3V1w48SMObdmO57a9c8P+Dv5+mJW5A4e2bEPG0jfwu7YS6oDuqK+pAQCUXSjGS10N/0EcOCkaw2c8h5N7vgIA5Hy0CyczvzboE/P2SrRxcmIyQLeFqivlWD5sAnoMDkP8ji1w79AepWfPw9VDKfbx7uaPqDeWoIO/L+p+r8beN9/B6oeiseT4Abh3bG/D6Km5uMrAuNsiIVi7di2WL18OjUaD4OBgrFmzBv3797d1WHbp5J6vxC/umxm74CX8sGcfPnl5qdj26/lfxD/rdTpoSy4bHNPnoRHI/SQDNVXXAAB11dWoq64W97ft4IkeD9yH956fbanLIDLLnhXr4Nm5E2LeXiG2dejia9Cn/2PjDV4//Goivtm8DRd/yEfPoQNbJE6ilmTzCsj27duRkJCABQsW4OjRowgODkZERARKS0ttHZrkCIKAoBHDUHrmJ0z7z/tI/jkPc77eheAHI255jG+fIPgG341vNv/7ln0GPPEwaq/9jqM7PrNG2EQmO/bfTPj27Y31Tz6H2X59sDRsBA5s2nrL/vW1tTiwMR0uSgU6BwW2YKRkUYIAwYzN3mcV2jwhWLFiBSZPnoxJkyYhMDAQqampcHV1xcaNG20dmuS4e3WAs3tbRLwYhx8zv0bKQ08gb9du/OvfG3DXwAE3Peb+mChcyj+Nnw7n3vK89z8VhSMf7DSoGhDZ0q/nC5H1zvvwurMLpv3nfQyePBEfzEpE9vsfGvQ7/vmXmO7VA9M8u2Hvm+9g+q50tO3gaaOoyVyCBTZ7ZtMhg9raWuTm5mLevHlim0wmQ3h4OLKzs2/oX1NTg5o/xrIBQKvVtkicUiEI1/PDY5/twd43r88vuHD8R3QNDcHgZ5/EmYOGkwnbODvj3kfH4b+vrb7lOf3734NOAd2x6dnp1gucyER6nQ5+9/TGuEVzAQC+fe5G8Y8FyHr3fYQ9+YjYr8fg+/B/2btR+dsVHNy0FRsmPo85X38KhVcHW4VOZDU2rRD8+uuvaGhogLe3t0G7t7c3NBrNDf2TkpKgVCrFzcfHp6VClYTK38rQUFeHS/mnDdo1BWfh2fmOG/rfM3405K4u+HbrR7c858Cnn0DhsR9QmHfC4vESNZdS5YVOPe8yaFP16IayoosGbU5urvC60x9d+9+Dp9a9DpmjAw5t3taSoZIFsUJgnM2HDEwxb948VFRUiFtRUZGtQ7IrDXV1+Dn3GLy732nQ7t2tK377yz+UwPWhgOOfZaLy17Kbns/JzRUhEx7kP6B027lzQD+UnDln0FZy5ie09+1s9Di9Toe62lprhkZWZM78AXEegR2z6ZBBhw4d4ODggJKSEoP2kpISqFSqG/o7OTnBycmppcKzS05uruh4ZxfxdYcuPujcOxBVZeW4cqEYmatS8eyWt3D24GEUZB1Cr38OQdCocKwY8YjBeTp27YJuA0Px5oSnbvleIZEPQeboiMPbPrHW5RA1y7BpzyL5H+Px+fI1CJnwIH7OycPBTVsRveY1AEBN1TV8npyC3qOHQ6nyQuVvZdj/9maUF5cgZPxoG0dPzcXHHxtn04RALpcjJCQEe/fuxbhx4wAAOp0Oe/fuRXx8vC1Ds1t+9wQjYfefE6ceeW0hACD7/Q+w+V8JyNu1G1unz8OIF+Px6OuLUXLmHNY/MQXnso8YnOe+px5D+cVLyP9y/y3f6/6YKOR9+jl+r+BcD7q9dAnpg+e2bcDOxFfxWdJqdOjig0eSFyI06vpSQ5mDDJrT55CdPgVVv12Bm6cH/EKCMSvzI6gDe9g4eiLrEPR6vd6WAWzfvh0xMTF4++230b9/f6xatQoffPABTp06dcPcgr/SarVQKpWYBDfI7X50h6QqteqCrUMgshqtVgtlJ19UVFRAoVBY7z2UShxQ+6CtrPkj5ZU6HQYVF1k1Vluy+Y2JHnvsMVy+fBmJiYnQaDTo06cPdu/e/bfJABERkSn4cCPjbJ4QAEB8fDyHCIiIiGzotkgIiIiIrI0VAuOYEBARkSSYu3TQ3pcdtqr7EBAREZF1sEJARESSwCED45gQEBGRJHDIwDgOGRARERETAiIikobGIQNzNlNkZWVhzJgxUKvVEAQBO3fuFPfV1dVhzpw5CAoKgpubG9RqNZ566ikUFxcbnKOsrAzR0dFQKBTw8PBAbGwsKisrDfocP34cgwYNgrOzM3x8fJCcnNysz4cJARERSYJMEMzeTFFVVYXg4GCsXbv2hn3Xrl3D0aNHMX/+fBw9ehSffPIJCgoK8NBDDxn0i46OxsmTJ5GZmYmMjAxkZWVhypQp4n6tVovhw4fDz88Pubm5WL58ORYuXIj169eb/PlwDgEREUmCpSYVarWGz2e51YP3Ro4ciZEjR970XEqlEpmZmQZtb775Jvr374/CwkL4+voiPz8fu3fvxpEjR9CvXz8AwJo1azBq1Ci8/vrrUKvVSE9PR21tLTZu3Ai5XI5evXohLy8PK1asMEgcmoIVAiIiIhP4+PhAqVSKW1JSkkXOW1FRAUEQ4OHhAQDIzs6Gh4eHmAwAQHh4OGQyGQ4fPiz2GTx4MORyudgnIiICBQUFuHLliknvzwoBERFJggAzVxn88RC9oqIig4cb3aw6YKrq6mrMmTMHjz/+uHhujUYDLy8vg36Ojo7w9PSERqMR+/j7+xv0aXwWkEajQbt27ZocAxMCIiKSBEF2fWv28X88G1ihUFj0aYd1dXV49NFHodfrsW7dOoud11RMCIiIiGykMRn45ZdfsG/fPoNEQ6VSobS01KB/fX09ysrKoFKpxD4lJSUGfRpfN/ZpKs4hICIiafjjxkTN3Sx9q8LGZODMmTP48ssv0b59e4P9YWFhKC8vR25urti2b98+6HQ6hIaGin2ysrJQV1cn9snMzESPHj1MGi4AmBAQEZFEtPR9CCorK5GXl4e8vDwAwPnz55GXl4fCwkLU1dXh4YcfRk5ODtLT09HQ0ACNRgONRoPa2loAQEBAAEaMGIHJkyfju+++wzfffIP4+HhERUVBrVYDAJ544gnI5XLExsbi5MmT2L59O1avXo2EhASTPx8OGRAREVlBTk4Ohg4dKr5u/JKOiYnBwoUL8emnnwIA+vTpY3DcV199hSFDhgAA0tPTER8fj2HDhkEmkyEyMhIpKSliX6VSiT179iAuLg4hISHo0KEDEhMTTV5yCDAhICIiibj+K9+cZxmY1n/IkCHQ6/W33G9sXyNPT09s3brVaJ/evXvjwIEDpgV3E0wIiIhIEvi0Q+M4h4CIiIhYISAiImlozvMI/nq8PWNCQEREksAhA+OYEBARkSSI9xMw43h7xjkERERExAoBERFJA4cMjGNCQEREksCEwDgOGRARERErBEREJA2CTIAgM2NSod6+SwRMCIiISBI4ZGAchwyIiIiIFQIiIpIG3qnQOCYEREQkCRwyMI5DBkRERMQKARERSQNvXWwcEwIiIpIEAWYOGVgsktsTEwIiIpIEVgiM4xwCIiIiYoWAiIgkwsxVBvY+ZsCEgIiIJIFDBsZxyICIiIhYISAiImkQZNc3c463Z0wIiIhIEjhkYJyd5ztERETUFKwQEBGRNMiE65s5x9sxJgRERCQNfLqRUUwIiIhIEjiHwDjOISAiIiJWCIiISCI4h8AoJgRERCQNnENgFIcMiIiIiBUCIiKSBkEmQDCj7G/Osa0BEwIiIpIGDhkYxSEDIiIiYkJARETSIAiCOGzQrM3ECkFWVhbGjBkDtVoNQRCwc+dOg/16vR6JiYno1KkTXFxcEB4ejjNnzhj0KSsrQ3R0NBQKBTw8PBAbG4vKykqDPsePH8egQYPg7OwMHx8fJCcnN+vzYUJARETS0DhkYM5mgqqqKgQHB2Pt2rU33Z+cnIyUlBSkpqbi8OHDcHNzQ0REBKqrq8U+0dHROHnyJDIzM5GRkYGsrCxMmTJF3K/VajF8+HD4+fkhNzcXy5cvx8KFC7F+/XqTP54mzSH49NNPm3zChx56yOQgiIiIWgutVmvw2snJCU5OTjf0GzlyJEaOHHnTc+j1eqxatQovv/wyxo4dCwDYsmULvL29sXPnTkRFRSE/Px+7d+/GkSNH0K9fPwDAmjVrMGrUKLz++utQq9VIT09HbW0tNm7cCLlcjl69eiEvLw8rVqwwSByaokkJwbhx45p0MkEQ0NDQYFIARERELUIGM29MdP2/fHx8DJoXLFiAhQsXmnSq8+fPQ6PRIDw8XGxTKpUIDQ1FdnY2oqKikJ2dDQ8PDzEZAIDw8HDIZDIcPnwY48ePR3Z2NgYPHgy5XC72iYiIwGuvvYYrV66gXbt2TY6pSQmBTqdr8gmJiIhuR5Z6lkFRUREUCoXYfrPqwN/RaDQAAG9vb4N2b29vcZ9Go4GXl5fBfkdHR3h6ehr08ff3v+EcjfssnhDcSnV1NZydnc05BRERUcuw0K2LFQqFQUJgL0yeVNjQ0IAlS5bgjjvuQNu2bfHTTz8BAObPn493333X4gESERHZG5VKBQAoKSkxaC8pKRH3qVQqlJaWGuyvr69HWVmZQZ+bneN/36OpTE4Ili5dirS0NCQnJxuMWdx999145513TD0dERFRy2jhVQbG+Pv7Q6VSYe/evWKbVqvF4cOHERYWBgAICwtDeXk5cnNzxT779u2DTqdDaGio2CcrKwt1dXVin8zMTPTo0cOk4QKgGQnBli1bsH79ekRHR8PBwUFsDw4OxqlTp0w9HRERUYsQZOZvpqisrEReXh7y8vIAXJ9ImJeXh8LCQgiCgBkzZuCVV17Bp59+ihMnTuCpp56CWq0WJ/IHBARgxIgRmDx5Mr777jt88803iI+PR1RUFNRqNQDgiSeegFwuR2xsLE6ePInt27dj9erVSEhIMPnzMXkOwcWLF9GtW7cb2nU6nUGGQkREJGU5OTkYOnSo+LrxSzomJgZpaWl46aWXUFVVhSlTpqC8vBwDBw7E7t27DebmpaenIz4+HsOGDYNMJkNkZCRSUlLE/UqlEnv27EFcXBxCQkLQoUMHJCYmmrzkEGhGQhAYGIgDBw7Az8/PoP2jjz5C3759TQ6AiIioRbTwswyGDBkCvV5v5HQCFi9ejMWLF9+yj6enJ7Zu3Wr0fXr37o0DBw6YFNvNmJwQJCYmIiYmBhcvXoROp8Mnn3yCgoICbNmyBRkZGWYHREREZA182qFxJs8hGDt2LHbt2oUvv/wSbm5uSExMRH5+Pnbt2oV//vOf1oiRiIiIrKxZ9yEYNGgQMjMzLR0LERGR9fDxx0Y1+8ZEOTk5yM/PB3B9XkFISIjFgiIiIrI4C92YyF6ZnBBcuHABjz/+OL755ht4eHgAAMrLy3Hfffdh27Zt6Ny5s6VjJCIiIiszeQ7Bs88+i7q6OuTn56OsrAxlZWXIz8+HTqfDs88+a40YiYiIzNb4LANzNntmcoVg//79OHToEHr06CG29ejRA2vWrMGgQYMsGhwREZHFcMjAKJMTAh8fn5vegKihoUG8cxIREdHtx9zbD9t3QmDykMHy5csxbdo05OTkiG05OTmYPn06Xn/9dYsGR0RERC2jSRWCdu3aGYydVFVVITQ0FI6O1w+vr6+Ho6MjnnnmGfEezERERLcTc+cBcA4BgFWrVlk5DCIiIivjHAKjmpQQxMTEWDsOIiIisqFm35gIAKqrq1FbW2vQplAozAqIiIjIGjhkYJzJkwqrqqoQHx8PLy8vuLm5oV27dgYbERHRbalxyMCczY6ZnBC89NJL2LdvH9atWwcnJye88847WLRoEdRqNbZs2WKNGImIiMjKTB4y2LVrF7Zs2YIhQ4Zg0qRJGDRoELp16wY/Pz+kp6cjOjraGnESERGZhw83MsrkCkFZWRm6du0K4Pp8gbKyMgDAwIEDkZWVZdnoiIiILESQCWZv9szkhKBr1644f/48AKBnz5744IMPAFyvHDQ+7IiIiIhaF5MTgkmTJuHYsWMAgLlz52Lt2rVwdnbGzJkzMXv2bIsHSEREZBGNQwbmbHbM5DkEM2fOFP8cHh6OU6dOITc3F926dUPv3r0tGhwREZHFyGDmjYksFsltyaz7EACAn58f/Pz8LBELERGR1fA+BMY1KSFISUlp8glfeOGFZgdDREREttGkhGDlypVNOpkgCDZJCFYc+Q8Ubd1a/H2JWoK+qtzWIRBZjf7a1ZZ7Mz7LwKgmJQSNqwqIiIhaLd6HwCg7nyJBRERETWH2pEIiIqJWgRUCo5gQEBGRRJh7LwH7Tgg4ZEBERESsEBARkUTIZNc3c463Y826ugMHDuDJJ59EWFgYLl68CAB47733cPDgQYsGR0REZDG8dbFRJicEH3/8MSIiIuDi4oLvv/8eNTU1AICKigosW7bM4gESERGR9ZmcELzyyitITU3Fhg0b0KZNG7H9/vvvx9GjRy0aHBERkcWwQmCUyXMICgoKMHjw4BvalUolysvLLRETERGR5XHZoVEmVwhUKhXOnj17Q/vBgwfRtWtXiwRFRERkcY2TCs3Z7JjJVzd58mRMnz4dhw8fhiAIKC4uRnp6OmbNmoWpU6daI0YiIqJWp6GhAfPnz4e/vz9cXFxw5513YsmSJdDr9WIfvV6PxMREdOrUCS4uLggPD8eZM2cMzlNWVobo6GgoFAp4eHggNjYWlZWVFo/X5CGDuXPnQqfTYdiwYbh27RoGDx4MJycnzJo1C9OmTbN4gERERBbRwkMGr732GtatW4fNmzejV69eyMnJwaRJk6BUKsUHASYnJyMlJQWbN2+Gv78/5s+fj4iICPz4449wdnYGAERHR+PSpUvIzMxEXV0dJk2ahClTpmDr1q3Nv5abXZ7+f1MVE9TW1uLs2bOorKxEYGAg2rZta9HAmkKr1UKpVOLKkS/5tEOyW0L7TrYOgchqtFevwuPOIFRUVEChUFjnPf74rvhtxgQonNr8/QG3Ok9NHdqv+qTJsT744IPw9vbGu+++K7ZFRkbCxcUF77//PvR6PdRqNV588UXMmjULwPUVe97e3khLS0NUVBTy8/MRGBiII0eOoF+/fgCA3bt3Y9SoUbhw4QLUanWzr+evmj0gIpfLERgYiP79+9skGSAiIrIFrVZrsDUuv/+r++67D3v37sXp06cBAMeOHcPBgwcxcuRIANefJKzRaBAeHi4eo1QqERoaiuzsbABAdnY2PDw8xGQAAMLDwyGTyXD48GGLXpfJQwZDhw6FYKRssm/fPrMCIiIisgoLDRn4+PgYNC9YsAALFy68ofvcuXOh1WrRs2dPODg4oKGhAUuXLkV0dDQAQKPRAAC8vb0NjvP29hb3aTQaeHl5Gex3dHSEp6en2MdSTE4I+vTpY/C6rq4OeXl5+OGHHxATE2OpuIiIiCzLQrcuLioqMhgycHJyumn3Dz74AOnp6di6dSt69eqFvLw8zJgxA2q1+rb8vjQ5IVi5cuVN2xcuXGiVWY9ERES3E4VC0aQ5BLNnz8bcuXMRFRUFAAgKCsIvv/yCpKQkxMTEQKVSAQBKSkrQqdOfc4VKSkrEH98qlQqlpaUG562vr0dZWZl4vKVYbFHlk08+iY0bN1rqdERERJbVwncqvHbtGmR/qUg4ODhAp9MBAPz9/aFSqbB3715xv1arxeHDhxEWFgYACAsLQ3l5OXJzc8U++/btg06nQ2hoaHM/iZuy2NMOs7OzxSUSREREtx0BZs4hMK37mDFjsHTpUvj6+qJXr174/vvvsWLFCjzzzDPXTycImDFjBl555RXcdddd4rJDtVqNcePGAQACAgIwYsQITJ48Gampqairq0N8fDyioqIsusIAaEZCMGHCBIPXer0ely5dQk5ODubPn2+xwIiIiFqzNWvWYP78+Xj++edRWloKtVqNf/3rX0hMTBT7vPTSS6iqqsKUKVNQXl6OgQMHYvfu3QY/sNPT0xEfH49hw4ZBJpMhMjISKSkpFo/X5PsQTJo0yeC1TCZDx44d8Y9//APDhw+3aHB/h/chICngfQjInrXofQheegwKJ3nzz1NTi/bJ260aqy2ZVCFoaGjApEmTEBQUhHbt2lkrJiIiIosTZDIIZqwyMOfY1sCkq3NwcMDw4cP5VEMiImqFzJ1QyKcdGrj77rvx008/WSMWIiIishGTE4JXXnkFs2bNQkZGBi5dunTDLRyJiIhuSy287LC1afIcgsWLF+PFF1/EqFGjAAAPPfSQwS2M9Xo9BEFAQ0OD5aMkIiIyVws/7bC1aXJCsGjRIjz33HP46quvrBkPERER2UCTE4LG1YkPPPCA1YIhIiKyGgs9y8BembTs0NhTDomIiG5rHDIwyqSEoHv37n+bFJSVlZkVEBEREbU8kxKCRYsWQalUWisWIiIi62GFwCiTEoKoqCh4eXlZKxYiIiLrYUJgVJNnSHD+ABERkf0yeZUBERFRq8RVBkY1OSHQ6XTWjIOIiMi6OGRglElzCIiIiFotJgRG2Xf9g4iIiJqEFQIiIpIGziEwigkBERFJgwAzhwwsFsltyb7THSIiImoSVgiIiEgaOKnQKCYEREQkDUwIjOKQAREREbFCQEREEiGYucpAsO/f0EwIiIhIGjhkYJR9pztERETUJKwQEBGRNLBCYBQTAiIikgZBZt48AM4hICIisgMy4fpmzvF2zL7THSIiImoSVgiIiEgaOGRgFBMCIiKSBk4qNMq+0x0iIiJqElYIiIhIGmRm3qnQnGNbASYEREQkDRwyMMq+0x0iIiJqEiYEREQkDY2rDMzZTHTx4kU8+eSTaN++PVxcXBAUFIScnBxxv16vR2JiIjp16gQXFxeEh4fjzJkzBucoKytDdHQ0FAoFPDw8EBsbi8rKSrM/jr9iQkBERNIg4M9hg2Ztpr3dlStXcP/996NNmzb4/PPP8eOPP+KNN95Au3btxD7JyclISUlBamoqDh8+DDc3N0RERKC6ulrsEx0djZMnTyIzMxMZGRnIysrClClTLPSh/IlzCIiIiKzgtddeg4+PDzZt2iS2+fv7i3/W6/VYtWoVXn75ZYwdOxYAsGXLFnh7e2Pnzp2IiopCfn4+du/ejSNHjqBfv34AgDVr1mDUqFF4/fXXoVarLRYvKwRERCQNjasMzNkAaLVag62mpuamb/fpp5+iX79+eOSRR+Dl5YW+fftiw4YN4v7z589Do9EgPDxcbFMqlQgNDUV2djYAIDs7Gx4eHmIyAADh4eGQyWQ4fPiwZT8ei56NiIjodmXWcMGfKxR8fHygVCrFLSkp6aZv99NPP2HdunW466678MUXX2Dq1Kl44YUXsHnzZgCARqMBAHh7exsc5+3tLe7TaDTw8vIy2O/o6AhPT0+xj6VwyICIiKTBQrcuLioqgkKhEJudnJxu2l2n06Ffv35YtmwZAKBv37744YcfkJqaipiYmObHYSWsEBAREZlAoVAYbLdKCDp16oTAwECDtoCAABQWFgIAVCoVAKCkpMSgT0lJibhPpVKhtLTUYH99fT3KysrEPpbChICIiKRBEP58BHJzNhNvTHT//fejoKDAoO306dPw8/MDcH2CoUqlwt69e8X9Wq0Whw8fRlhYGAAgLCwM5eXlyM3NFfvs27cPOp0OoaGhzf0kbopDBkREJA0t/LTDmTNn4r777sOyZcvw6KOP4rvvvsP69euxfv3666cTBMyYMQOvvPIK7rrrLvj7+2P+/PlQq9UYN24cgOsVhREjRmDy5MlITU1FXV0d4uPjERUVZdEVBgATAiIiIqu49957sWPHDsybNw+LFy+Gv78/Vq1ahejoaLHPSy+9hKqqKkyZMgXl5eUYOHAgdu/eDWdnZ7FPeno64uPjMWzYMMhkMkRGRiIlJcXi8Qp6vV5v8bO2EK1WC6VSiStHvoSirZutwyGyCqF9J1uHQGQ12qtX4XFnECoqKgwm6ln0Pf74rih7ZxEUrs5/f8CtznOtGp7PLrBqrLbECgEREUlDCw8ZtDb2fXVERETUJKwQEBGRNDSuFjDneDvGhICIiKRBMH3p4A3H2zEOGRARERErBEREJBGcVGgUEwIiIpIGziEwigkBERFJgyCYWSGw74TAvusfRERE1CSsEBARkTRwlYFRTAiIiEgaOKnQKPu+OiIiImoSVgiIiEgauMrAKCYEREQkDRwyMMq+r46IiIiahBUCIiKSBq4yMIoJARERSYNMdn0z53g7Zt9XR0RERE3CCoHEZf17F7K2ZaDsYgkAoFM3P4x6Phq9BvcHABz84DMcyfgKRT+eRXXVNbx++BO4KtoanGPd84m4cOocrv5WDleFO3qG9cW4Wc/Cw6t9i18P0c2cyc5B5to0FB77ERUll/GvtFXoM2qYuH+qV9BNjxufmIDh8ZMAAFVXKrB93jKc2LMfgkyGvg+G45FX5sK5rWuLXANZgplDBuCQAdkxD1UHjEuIhZffHdDr9fj2P5lIjV+IeR+/BfVdXVD7ew0CB/VD4KB++M+KjTc9R/f+wRgx5XEoOnqivPRXfJK8ARumL8Hsf69q2YshuoWaa7/jjl7dcd/j4/H2pBk37H/1xFcGr0/uO4D3ZyxA3wfDxbaNU+dAW/IrXvhwPRrq6rFl+nykz1qI2NRka4dPlsJVBkbZNCHIysrC8uXLkZubi0uXLmHHjh0YN26cLUOSnN5Dwwxej50xCQe2ZeD8sXyo7+qCf8RMAACc/u7YLc8x7OlI8c/t7/BGxOTH8Hb8QjTU1cOhDXNOsr27hw3C3cMG3XK/0ruDwevjn3+F7gP7o2MXHwDApdM/4cd932Dunm3w69MLAPBY0jysffx5RC6cBQ+Vl/WCJ8vhpEKjbJruVFVVITg4GGvXrrVlGPQHXUMDcj77CrXXqtG1T2CzzlFVrsV3u/aha99AJgPUKmlLf8WJLw/gvifGi23nc47BRekuJgMA0HPwAAgyGX7OPWGLMIkszqb/Yo8cORIjR45scv+amhrU1NSIr7VarTXCkpyLp8/j9ceno66mFk6uLpiyZgE6dfMz6Rw7Xn8H+7f+B7W/18A/OABT1y2xUrRE1vXt9k/h3NYVfUf/OVxQUfor3DsYzolxcHSEazslKkp/bekQqbm4ysCoVnV1SUlJUCqV4ubj42PrkOyCd5fOmPfJOry0PQWDoh7ElnnLcensLyad45+xj2Dex+sw7Z0kyBxk2Dw3GXq93koRE1nPoX/vQP/I0Wjj7GTrUMjSGocMzNnsWKtKCObNm4eKigpxKyoqsnVIdsFR3gZefnfAt1d3jEuIxR09uuKr93aYdI627ZTw9u+MgPtD8Mwb/w8ns77D+bx8K0VMZB1nvs1FydmfcX90pEG70qsDrv76m0FbQ309rl2pgNLLcP4BUWvVqgZ5nZyc4OTErN3a9Hod6mvrmn+87nploL6u+ecgsoVD6Z/ANzgQne/uYdDu3y8Yv1dcxS/HTsIv+Po8goID30Gv06FLyM2XLNJtSBDMXGVg3xWCVpUQkOXtXPEueg26F55qL1RX/Y4jGftw5rvjiN+wDABQcbkM2l+v4PIvxQCA4tPn4eTmCs9OHeHmocD5Y/n45YfTuPOeu+GqaItfi4qxK2UzOvqq4d8nwJaXRiSqrryGy+cLxde/FV5E0YlTcGunhGfnTgCA369W4uiuTEQunHXD8Z26d0XgP+5HesIiPLF8Phrq6rF93jKEjB/BFQatCVcZGMWEQOKu/laOzXOXQ3u5DM7urrije1fEb1iGgPtDAAAHtmfgv2vfF/uvmPgiAGDislkIGz8cchdn5GUexGdrtqDm92ooO3oicOC9GDn1CbSRy21yTUR/VXjsJFaOf0Z8/VHicgDAgMceQsyapQCAnB2fQ6/X494JN5/o/My617Bt3lKsinxWvDHRo0vnWT94ohYi6G0486uyshJnz54FAPTt2xcrVqzA0KFD4enpCV9f3789XqvVQqlU4sqRL6Fo62btcIlsQmjfydYhEFmN9upVeNwZhIqKCigUCuu8xx/fFWUZ70Lh1vw7S2qrrsHzwVirxmpLNq0Q5OTkYOjQoeLrhIQEAEBMTAzS0tJsFBUREdklmXB9M+d4O2bThGDIkCFcmkZERHQb4BwCIiKSBj7LwCgmBEREJA1cZWAUEwIiIpIGVgiMsu+rIyIioiZhQkBERJIgCILZW3O9+uqrEAQBM2bMENuqq6sRFxeH9u3bo23btoiMjERJSYnBcYWFhRg9ejRcXV3h5eWF2bNno76+vtlxGMOEgIiIpKFxyMCcrRmOHDmCt99+G7179zZonzlzJnbt2oUPP/wQ+/fvR3FxMSZMmCDub2howOjRo1FbW4tDhw5h8+bNSEtLQ2Jiolkfw60wISAiIrKSyspKREdHY8OGDWjXrp3YXlFRgXfffRcrVqzAP/7xD4SEhGDTpk04dOgQvv32WwDAnj178OOPP+L9999Hnz59MHLkSCxZsgRr165FbW2txWNlQkBERNJgoQqBVqs12Gpqam75lnFxcRg9ejTCw8MN2nNzc1FXV2fQ3rNnT/j6+iI7OxsAkJ2djaCgIHh7e4t9IiIioNVqcfLkSUt+MgCYEBARkVQIwp93K2zO9sccAh8fHyiVSnFLSkq66dtt27YNR48evel+jUYDuVwODw8Pg3Zvb29oNBqxz/8mA437G/dZGpcdEhERmaCoqMjgWQZOTk437TN9+nRkZmbC2dm5JcNrNlYIiIhIGiw0ZKBQKAy2myUEubm5KC0txT333ANHR0c4Ojpi//79SElJgaOjI7y9vVFbW4vy8nKD40pKSqBSqQAAKpXqhlUHja8b+1gSEwIiIpKGxjsVmrM10bBhw3DixAnk5eWJW79+/RAdHS3+uU2bNti7d694TEFBAQoLCxEWFgYACAsLw4kTJ1BaWir2yczMhEKhQGBgoOU+lz9wyICIiMjC3N3dcffddxu0ubm5oX379mJ7bGwsEhIS4OnpCYVCgWnTpiEsLAwDBgwAAAwfPhyBgYGYOHEikpOTodFo8PLLLyMuLu6mVQlzMSEgIiJpEAQzb11s2WcZrFy5EjKZDJGRkaipqUFERATeeustcb+DgwMyMjIwdepUhIWFwc3NDTExMVi8eLFF42gk6Fvx84e1Wi2USiWuHPkSirZutg6HyCqE9p1sHQKR1WivXoXHnUGoqKgwmKhn0fdo/K7Y/4lZ3xXayiq0e2CCVWO1JVYIiIhIGvhwI6Ps++qIiIioSVghICIiaWi8wZA5x9sxJgRERCQNHDIwyr6vjoiIiJqEFQIiIpIGE28udNPj7RgTAiIikgYOGRhl31dHRERETcIKARERSQOHDIxiQkBERNLAIQOj7PvqiIiIqElYISAiImmQya5v5hxvx5gQEBGRJAiCAMGMeQDmHNsaMCEgIiJpuM0ef3y7se/6BxERETUJKwRERCQNXHZoFBMCIiKSCDOXHdp5Ud2+r46IiIiahBUCIiKSBg4ZGMWEgIiIpIH3ITDKvq+OiIiImoQVAiIikgYOGRjFhICIiKSBDzcyyr6vjoiIiJqEFQIiIpIGDhkYxYSAiIgkQvhjM+d4+8WEgIiIpIEVAqM4h4CIiIhYISAiIolghcAoJgRERCQRnENgDIcMiIiIiBUCIiKSCA4ZGMWEgIiIpIEjBkZxyICIiIhYISAiIqlgicAYVgiIiEgaGucQmLOZICkpCffeey/c3d3h5eWFcePGoaCgwKBPdXU14uLi0L59e7Rt2xaRkZEoKSkx6FNYWIjRo0fD1dUVXl5emD17Nurr683+OP6KCQEREZEV7N+/H3Fxcfj222+RmZmJuro6DB8+HFVVVWKfmTNnYteuXfjwww+xf/9+FBcXY8KECeL+hoYGjB49GrW1tTh06BA2b96MtLQ0JCYmWjxeQa/X6y1+1hai1WqhVCpx5ciXULR1s3U4RFYhtO9k6xCIrEZ79So87gxCRUUFFAqFdd7jj++K8tNHoXB3b/55rl6FR/d7UFRUZBCrk5MTnJyc/vb4y5cvw8vLC/v378fgwYNRUVGBjh07YuvWrXj44YcBAKdOnUJAQACys7MxYMAAfP7553jwwQdRXFwMb29vAEBqairmzJmDy5cvQy6XN/t6/ooVAiIikgjBAhvg4+MDpVIpbklJSU1694qKCgCAp6cnACA3Nxd1dXUIDw8X+/Ts2RO+vr7Izs4GAGRnZyMoKEhMBgAgIiICWq0WJ0+ebNancCucVEhERNJgofsQ3KxC8Hd0Oh1mzJiB+++/H3fffTcAQKPRQC6Xw8PDw6Cvt7c3NBqN2Od/k4HG/Y37LIkJARERkQkUCoXJwxtxcXH44YcfcPDgQStFZT4OGRARkURYZsjAVPHx8cjIyMBXX32Fzp07i+0qlQq1tbUoLy836F9SUgKVSiX2+euqg8bXjX0shQkBERFJQwsvO9Tr9YiPj8eOHTuwb98++Pv7G+wPCQlBmzZtsHfvXrGtoKAAhYWFCAsLAwCEhYXhxIkTKC0tFftkZmZCoVAgMDDQjA/jRhwyICIisoK4uDhs3boV//nPf+Du7i6O+SuVSri4uECpVCI2NhYJCQnw9PSEQqHAtGnTEBYWhgEDBgAAhg8fjsDAQEycOBHJycnQaDR4+eWXERcX16S5C6ZgQkBERNLQwg83WrduHQBgyJAhBu2bNm3C008/DQBYuXIlZDIZIiMjUVNTg4iICLz11ltiXwcHB2RkZGDq1KkICwuDm5sbYmJisHjx4uZfxy3wPgREtzneh4DsWYveh+DcD+bfh+DOu60aqy1xDgERERFxyICIiKRBEAQIZgwZmHNsa8CEgIiIpKGF5xC0NhwyICIiIlYIiIhIKpp/c6E/j7dfTAiIiEgizBwyYEJARERkBziHwCjOISAiIiJWCIiISCo4h8AYJgRERCQNHDIwikMGRERExAoBERFJBEcMjGJCQEREEsGMwBgOGRARERErBEREJBGcVGgUEwIiIpIGJgRGcciAiIiIWCEgIiKp4KRCY5gQEBGRNAgwc8jAYpHclpgQEBGRNHAOgVGcQ0BERESsEBARkVRwDoExTAiIiEgaOGRgVKtOCPR6PQBAW1ll40iIrEeQX7V1CERWo71aCeDPf8+t+17m/X/J3ONvd606Ibj6x/84fkPH2jgSIiIyx9WrV6FUKq1ybrlcDpVKBZ/uvcw+l0qlglwut0BUtx9B3xJpmZXodDoUFxfD3d0dgp2Xcm4XWq0WPj4+KCoqgkKhsHU4RBbFv98tT6/X4+rVq1Cr1ZDJrDfPvbq6GrW1tWafRy6Xw9nZ2QIR3X5adYVAJpOhc+fOtg5DkhQKBf/BJLvFv98ty1qVgf/l7Oxst1/klsJlh0RERMSEgIiIiJgQkImcnJywYMECODk52ToUIovj32+SslY9qZCIiIgsgxUCIiIiYkJARERETAiIiIgITAiIiIgITAjIBGvXrkWXLl3g7OyM0NBQfPfdd7YOicgisrKyMGbMGKjVagiCgJ07d9o6JKIWx4SAmmT79u1ISEjAggULcPToUQQHByMiIgKlpaW2Do3IbFVVVQgODsbatWttHQqRzXDZITVJaGgo7r33Xrz55psArj9HwsfHB9OmTcPcuXNtHB2R5QiCgB07dmDcuHG2DoWoRbFCQH+rtrYWubm5CA8PF9tkMhnCw8ORnZ1tw8iIiMhSmBDQ3/r111/R0NAAb29vg3Zvb29oNBobRUVERJbEhICIiIiYENDf69ChAxwcHFBSUmLQXlJSApVKZaOoiIjIkpgQ0N+Sy+UICQnB3r17xTadToe9e/ciLCzMhpEREZGlONo6AGodEhISEBMTg379+qF///5YtWoVqqqqMGnSJFuHRmS2yspKnD17Vnx9/vx55OXlwdPTE76+vjaMjKjlcNkhNdmbb76J5cuXQ6PRoE+fPkhJSUFoaKitwyIy29dff42hQ4fe0B4TE4O0tLSWD4jIBpgQEBEREecQEBERERMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIiIiAhMCIrM9/fTTGDdunPh6yJAhmDFjRovH8fXXX0MQBJSXl9+yjyAI2LlzZ5PPuXDhQvTp08esuH7++WcIgoC8vDyzzkNE1sWEgOzS008/DUEQIAgC5HI5unXrhsWLF6O+vt7q7/3JJ59gyZIlTerblC9xIqKWwIcbkd0aMWIENm3ahJqaGvz3v/9FXFwc2rRpg3nz5t3Qt7a2FnK53CLv6+npaZHzEBG1JFYIyG45OTlBpVLBz88PU6dORXh4OD799FMAf5b5ly5dCrVajR49egAAioqK8Oijj8LDwwOenp4YO3Ysfv75Z/GcDQ0NSEhIgIeHB9q3b4+XXnoJf30cyF+HDGpqajBnzhz4+PjAyckJ3bp1w7vvvouff/5ZfKBOu3btIAgCnn76aQDXHy+dlJQEf39/uLi4IDg4GB999JHB+/z3v/9F9+7d4eLigqFDhxrE2VRz5sxB9+7d4erqiq5du2L+/Pmoq6u7od/bb78NHx8fuLq64tFHH0VFRYXB/nfeeQcBAQFwdnZGz5498dZbb5kcCxHZFhMCkgwXFxfU1taKr/fu3YuCggJkZmYiIyMDdXV1iIiIgLu7Ow4cOIBvvvkGbdu2xYgRI8Tj3njjDaSlpWHjxo04ePAgysrKsGPHDqPv+9RTT+Hf//43UlJSkJ+fj7fffhtt27aFj48PPv74YwBAQUEBLl26hNWrVwMAkpKSsGXLFqSmpuLkyZOYOXMmnnzySezfvx/A9cRlwoQJGDNmDPLy8vDss89i7ty5Jn8m7u7uSEtLw48//ojVq1djw4YNWLlypUGfs2fP4oMPPsCuXbuwe/dufP/993j++efF/enp6UhMTMTSpUuRn5+PZcuWYf78+di8ebPJ8RCRDemJ7FBMTIx+7Nixer1er9fpdPrMzEy9k5OTftasWeJ+b29vfU1NjXjMe++9p+/Ro4dep9OJbTU1NXoXFxf9F198odfr9fpOnTrpk5OTxf11dXX6zp07i++l1+v1DzzwgH769Ol6vV6vLygo0APQZ2Zm3jTOr776Sg9Af+XKFbGturpa7+rqqj906JBB39jYWP3jjz+u1+v1+nnz5ukDAwMN9s+ZM+eGc/0VAP2OHTtuuX/58uX6kJAQ8fWCBQv0Dg4O+gsXLohtn3/+uV4mk+kvXbqk1+v1+jvvvFO/detWg/MsWbJEHxYWptfr9frz58/rAei///77W74vEdke5xCQ3crIyEDbtm1RV1cHnU6HJ554AgsXLhT3BwUFGcwbOHbsGM6ePQt3d3eD81RXV+PcuXOoqKjApUuXEBoaKu5zdHREv379bhg2aJSXlwcHBwc88MADTY777NmzuHbtGv75z38atNfW1qJv374AgPz8fIM4ACAsLKzJ79Fo+/btSElJwblz51BZWYn6+nooFAqDPr6+vrjjjjsM3ken06GgoADu7u44d+4cYmNjMXnyZLFPfX09lEqlyfEQke0wISC7NXToUKxbtw5yuRxqtRqOjoZ/3d3c3AxeV1ZWIiQkBOnp6Tecq2PHjs2KwcXFxeRjKisrAQCfffaZwRcxcH1ehKVkZ2cjOjoaixYtQkREBJRKJbZt24Y33njD5Fg3bNhwQ4Li4OBgsViJyPqYEJDdcnNzQ7du3Zrc/5577sH27dvh5eV1w6/kRp06dcLhw4cxePBgANd/Cefm5uKee+65af+goCDodDrs378f4eHhN+xvrFA0NDSIbYGBgXByckJhYeEtKwsBAQHiBMlG33777d9f5P84dOgQ/Pz88H//939i2y+//HJDv8LCQhQXF0OtVovvI5PJ0KNHD3h7e0OtVuOnn35CdHS0Se9PRLcXTiok+kN0dDQ6dOiAsWPH4sCBAzh//jy+/vprvPDCC7hw4QIAYPr06Xj11Vexc+dOnDp1Cs8//7zRewh06dIFMTExeOaZZ7Bz507xnB988AEAwM/PD4IgICMjA5cvX0ZlZSXc3d0xa9YszJw5E5s3b8a5c+dw9OhRrFmzRpyo99xzz+HMmTOYPXs2CgoKsHXrVqSlpZl0vXfddRcKCwuxbds2nDt3DikpKTedIOns7IyYmBgcO3YMBw4cwAsvvIBHH30UKpUKALBo0SIkJSUhJSUFp0+fxokTJ7Bp0yasWLHCpHiIyLaYEBD9wdXVFVlZWfD19cWECRMQEBCA2NhYVFdXixWDF198ERMnTkRMTAzCwsLg7u6O8ePHGz3vunXr8PDDD+P5559Hz549MXnyZFRVVQEA7rjjDixatAhz586Ft7c34uPjAQBLlizB/PnzkZSUhICAAIwYMQKfffYZ/P39AVwf1//444+xc+dOBAcHIzU1FcuWLTPpeh966CHMnDkT8fHx6NOnDw4dOoT58+ff0K9bt26YMGECRo0aheHDh6N3794GywqfffZZvPPOO9i0aROCgoLwwAMPIC0tTYyViFoHQX+r2VBEREQkGawQEBERERMCIiIiYkJAREREYEJAREREYEJAREREYEJAREREYEJAREREYEJAREREYEJAREREYEJAREREYEJAREREAP4/5Cv7nzhr6KEAAAAASUVORK5CYII=",
"text/plain": [
"
"
],
"text/plain": [
" SVC Hyperparameter\n",
"train - precision 0.763052\n",
"train - recall 0.393375\n",
"train - accuracy 0.841655\n",
"train - f1_score 0.519126\n",
"test - precision 0.659794\n",
"test - recall 0.421053\n",
"test - accuracy_score 0.836927\n",
"test - f1_score 0.514056"
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilkan Hasil Klasifikasi\n",
"\n",
"all_reports = {}\n",
"def performance_report(all_reports, y_train, y_pred_train3, y_test, y_pred_test3, name):\n",
" score_reports = {\n",
" 'train - precision' : precision_score(y_train, y_pred_train3),\n",
" 'train - recall' : recall_score(y_train, y_pred_train3),\n",
" 'train - accuracy' : accuracy_score(y_train, y_pred_train3),\n",
" 'train - f1_score' : f1_score(y_train, y_pred_train3),\n",
" 'test - precision' : precision_score(y_test, y_pred_test3),\n",
" 'test - recall' : recall_score(y_test, y_pred_test3),\n",
" 'test - accuracy_score' : accuracy_score(y_test, y_pred_test3),\n",
" 'test - f1_score' : f1_score(y_test, y_pred_test3),\n",
" }\n",
" all_reports[name] = score_reports\n",
" return all_reports\n",
"\n",
"all_reports = performance_report(all_reports, y_train, y_pred_train3, y_test, y_pred_test3, 'SVC Hyperparameter')\n",
"SVC_reports = pd.DataFrame(all_reports)\n",
"SVC_reports"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"1. Pada data *training* dapat dilihat seberapa baik model memiliki precision yang baik untuk kelas 0 (tidak gagal membayar), namun recall yang rendah untuk kelas 1 (gagal membayar), yang berarti model mungkin perlu ditingkatkan kemampuannya dalam menangkap kasus-kasus gagal membayar yang sebenarnya.\n",
"\n",
"2. Diperoleh nilai Std - Cross Validation: 0.020. Sehingga dapat dikatakan model ini memiki performa stabil\n",
"\n",
"3. Dari laporoan pada data *test*, dapat dilihat bahwa model memiliki precision yang baik untuk kelas 0 (tidak gagal membayar), namun recall yang rendah untuk kelas 1 (gagal membayar), yang berarti model mungkin perlu ditingkatkan kemampuannya dalam menangkap kasus-kasus gagal membayar yang sebenarnya.\n",
"\n",
"4. Pemodelan dengan menggunakan metode *Support Vector Machine* (SVM) bisa dikatakan baik walau perlu ditingkatkan lagi performa pemodelnnya\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### ***Model Comparison***\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
"# Melakukan Fit pada RobustScaler\n",
"scaler.fit(X_train_new)\n",
"\n",
"# Mendefenisikan Model dan Metric\n",
"models = {\n",
" 'Logistic Regression':grid_logisctic_regression,\n",
" 'K-Nearest Neighbors (KNN)': grid_KNN,\n",
" 'Support Vector Machine (SVM)': grid_SVC,\n",
"}\n",
"\n",
"metrics = {\n",
" 'Accuracy': accuracy_score,\n",
" 'F1-Score': f1_score,\n",
"}\n",
"\n",
"# Melakukan Fit Setiap Model Training Data\n",
"for model_name, model in models.items():\n",
" model.fit(X_train_new, y_train)\n",
"\n",
"# Membuat Dataframe Untuk Hasil\n",
"df_model = pd.DataFrame(columns=models.keys(), index=['Accuracy', 'F1-Score'])\n",
"\n",
"# Evaluasi Model Setiap Metriks\n",
"for metric in metrics.keys():\n",
" for model_name, model in models.items():\n",
" df_model.loc[metric, model_name] = metrics[metric](y_test, model.predict(X_test_new))\n"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Logistic Regression
\n",
"
K-Nearest Neighbors (KNN)
\n",
"
Support Vector Machine (SVM)
\n",
"
\n",
" \n",
" \n",
"
\n",
"
Accuracy
\n",
"
0.834232
\n",
"
0.830189
\n",
"
0.836927
\n",
"
\n",
"
\n",
"
F1-Score
\n",
"
0.476596
\n",
"
0.456897
\n",
"
0.514056
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Logistic Regression K-Nearest Neighbors (KNN) \\\n",
"Accuracy 0.834232 0.830189 \n",
"F1-Score 0.476596 0.456897 \n",
"\n",
" Support Vector Machine (SVM) \n",
"Accuracy 0.836927 \n",
"F1-Score 0.514056 "
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Menampilkan Hasil Perbandingan Tiap Model\n",
"df_model"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Logistic Regression\n",
"Accuracy: 0.8342318059299192\n",
"Precision: 0.6746987951807228\n",
"Recall: 0.3684210526315789\n",
"F1 Score: 0.4765957446808511\n",
"\n",
"Model: K-Nearest Neighbors\n",
"Accuracy: 0.8301886792452831\n",
"Precision: 0.6625\n",
"Recall: 0.34868421052631576\n",
"F1 Score: 0.45689655172413796\n",
"\n",
"Model: Support Vector Machine (SVM)\n",
"Accuracy: 0.8369272237196765\n",
"Precision: 0.6597938144329897\n",
"Recall: 0.42105263157894735\n",
"F1 Score: 0.5140562248995983\n",
"\n",
"The best model is: Support Vector Machine (SVM)\n",
"With performance metrics:\n",
"Accuracy: 0.8369272237196765\n",
"Precision: 0.6597938144329897\n",
"Recall: 0.42105263157894735\n",
"F1 Score: 0.5140562248995983\n",
"And parameters:\n",
"{'svc__C': 10, 'svc__gamma': 0.01}\n"
]
}
],
"source": [
"# Membuat List untuk Menyimpan Model\n",
"models_performance = []\n",
"\n",
"# Defenisi Metriks Evaluation\n",
"evaluation_metrics = {\n",
" 'Accuracy': accuracy_score,\n",
" 'Precision': precision_score,\n",
" 'Recall': recall_score,\n",
" 'F1 Score': f1_score\n",
"}\n",
"\n",
"# Evaluasi Model\n",
"models = {\n",
" 'Logistic Regression': grid_logisctic_regression,\n",
" 'K-Nearest Neighbors': grid_KNN,\n",
" 'Support Vector Machine (SVM)': grid_SVC\n",
"}\n",
"\n",
"# Iterate Tiap Model\n",
"for model_name, model in models.items():\n",
" # Fit model\n",
" model.fit(X_train_new, y_train) # Assuming X_train and y_train are your training data\n",
" \n",
" # Prediksi\n",
" y_pred = model.predict(X_test_new) # Assuming X_test is your test data\n",
" \n",
" # Kalkulasi Performa Metriks\n",
" performance = {}\n",
" for metric_name, metric_func in evaluation_metrics.items():\n",
" performance[metric_name] = metric_func(y_test, y_pred)\n",
" \n",
" # Mernambah Nama Model dan Performa ke dalam List\n",
" models_performance.append((model_name, performance))\n",
"\n",
"# Menampilkan Hasil Performa Metriks Setiap Model\n",
"for model_name, performance in models_performance:\n",
" print(f\"Model: {model_name}\")\n",
" for metric_name, metric_value in performance.items():\n",
" print(f\"{metric_name}: {metric_value}\")\n",
" print()\n",
"\n",
"# Memilih Model Terbaik Untuk Setiap Rata-Rata Performa Setiap Metriks \n",
"best_model = max(models_performance, key=lambda x: sum(x[1].values()))\n",
"\n",
"# Menyimpan Pipeline yang telah di Hyperparameter Tuning\n",
"best_pipe = models[best_model[0]]\n",
"\n",
"# Menampilkan Hasil Performa Model\n",
"print(f\"The best model is: {best_model[0]}\")\n",
"print(\"With performance metrics:\")\n",
"for metric_name, metric_value in best_model[1].items():\n",
" print(f\"{metric_name}: {metric_value}\")\n",
"print(\"And parameters:\")\n",
"print(models[best_model[0]].best_params_)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Pada sesi ini dilakukan perbandingan untuk setiap Accuracy, Precision, Recall, F1 Score untuk setiap Model dan diperoleh model dengan metode Support Vector Machine (SVM) adalah yang terbaik dengan *Hyperparameter* ('svc__C': 10, 'svc__gamma': 0.01)\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ***Model Saving***\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"# Menyimpan File\n",
"with open('best_pipe.pkl', 'wb') as file_1: # wb = write binary\n",
" pickle.dump(best_pipe, file_1)\n",
"with open('num_col.txt', 'w') as file_2: # wb = write binary\n",
" json.dump(num_columns,file_2)\n",
"with open('cat_col.txt', 'w') as file_3: # wb = write binary\n",
" json.dump(cat_columns,file_3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"\n",
"## ***Model Inference***\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### **Membuka File**\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"# Loading File\n",
"with open('best_pipe.pkl', 'rb') as file_1: # wb = write binary\n",
" best_pipe = pickle.load(file_1)\n",
"with open('num_col.txt', 'r') as file_2: # wb = write binary\n",
" num_col = json.load(file_2)\n",
"with open('cat_col.txt', 'r') as file_3: # wb = write binary\n",
" cat_col = json.load(file_3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"#### **Membuat & Memprediksi Data *Inference***\n",
"\n",
"---"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"# Membuat Data Inference\n",
"df_inf = {\n",
" 'limit_balance': [80000, 20000],\n",
" 'sex': [1, 0],\n",
" 'education_level': [2, 3],\n",
" 'marital_status': [1, 1],\n",
" 'age': [42, 53],\n",
" 'pay_1': [2, 3],\n",
" 'pay_2': [1, 3],\n",
" 'pay_3': [5, 4],\n",
" 'pay_4': [3, 3],\n",
" 'pay_5': [2, 2],\n",
" 'pay_6': [-1, 5],\n",
" 'bill_amt_1': [56133, 34444],\n",
" 'bill_amt_2': [44332, 53422],\n",
" 'bill_amt_3': [60434, 60333],\n",
" 'bill_amt_4': [29523, 34563],\n",
" 'bill_amt_5': [31145, 32355],\n",
" 'bill_amt_6': [41231, 35465],\n",
" 'pay_amt_1': [3323, 1231],\n",
" 'pay_amt_2': [4343, 4321],\n",
" 'pay_amt_3': [2300, 313],\n",
" 'pay_amt_4': [1313, 1231],\n",
" 'pay_amt_5': [1444, 5435], \n",
" 'pay_amt_6': [534, 435],\n",
"}\n",
"\n",
"df_inf = pd.DataFrame(df_inf)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" limit_balance sex education_level marital_status age pay_1 pay_2 \\\n",
"0 80000 1 2 1 42 2 1 \n",
"1 20000 0 3 1 53 3 3 \n",
"\n",
" pay_3 pay_4 pay_5 pay_6 bill_amt_1 bill_amt_2 bill_amt_3 bill_amt_4 \\\n",
"0 5 3 2 -1 56133 44332 60434 29523 \n",
"1 4 3 2 5 34444 53422 60333 34563 \n",
"\n",
" bill_amt_5 bill_amt_6 pay_amt_1 pay_amt_2 pay_amt_3 pay_amt_4 \\\n",
"0 31145 41231 3323 4343 2300 1313 \n",
"1 32355 35465 1231 4321 313 1231 \n",
"\n",
" pay_amt_5 pay_amt_6 \n",
"0 1444 534 \n",
"1 5435 435 "
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Memisahkan Kategori Kolom Kategori dan Numerical\n",
"df_inf_num = df_inf[num_columns]\n",
"df_inf_cat = df_inf[cat_columns]\n",
"df_inf_num"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Rating: [1 1]\n",
"Rating: 1\n"
]
}
],
"source": [
"# Memprediksikan Menggunakan Model Terbaik\n",
"y_pred_inf = best_pipe.predict(df_inf)\n",
"print('Rating:',y_pred_inf) #before\n",
"print('Rating:',round(y_pred_inf[0],3)) #after"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"***Insight:***\n",
"\n",
"Telah berhasil dilakukan *inference* pada suatu data random. Dari hasil data random ditemukan bahwa nasabah mengalami kegagalan dalam membayar \n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## **Kesimpulan**\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setelah dilakukan pemodelan pada kasus `credit card default`, diperoleh kesimpulan sebagai berikut:\n",
"\n",
"- Setiap *Coeficient* pada metode *logistic regression* mewakili bagaimana setiap fitur berkontribusi terhadap prediksi kelas target. Pada model ini bervariasi seperti memiliki nilai positif, negatif dan nilai 0. Nilai positif menunjukkan bahwa fitur tersebut berkontribusi positif terhadap kelas target, sementara nilai negatif menunjukkan kontribusi negatif. Sedangkan nilai 0 menunjukkan bahwa fitur-fitur ini memiliki kontribusi yang sangat kecil terhadap prediksi kelas target. Sehingga untuk optimasi model ini harus mengurangi nilai 0 semaksimal mungkin\n",
"\n",
"- Kernel digunakan dalam SVM untuk mentransformasi data masukan ke dalam ruang dimensi yang lebih tinggi sehingga data dapat dipisahkan secara linear di ruang yang lebih tinggi, bahkan jika data aslinya tidak dapat dipisahkan secara linear di ruang dimensi rendah. Pada pemodelan ini tidak dilakukan *Hyperparamter Tuning* pada metode Kernel dikarenakan alasan biaya komputasi yang tinggi\n",
"\n",
"- Pemilihan K yang optimal pada metode *K-Nearest Neighbor* (KNN) dianjurkan untuk meningkatkan akurasu dari pada prediksi data baru. Pada model ini dilakukan *Hyperparameter Tuning* untuk menemukan nilai K yang terbaik yaitu 9. Selain itu telah dilakukan plot terhadap nilai K dari 1 - 100 yang dimana hasilnya prediksi akan memburuk seiring meningkatnya jumlah K\n",
"\n",
"- Parameter `Accuracy`, `Precision`, `Recall`, `F1 Score` digunakan untuk melihat hasil klasifikasi untuk model.\n",
" \n",
" - Accuracy ketika data balance \n",
"\n",
" - Recall untuk kasus *false negatif* sekecil mungkin\n",
" \n",
" - Precision untuk kasus *false positif* sekecil mungkin\n",
" \n",
" - F1 score kalo sama pentingnya antara Recall dan Precision\n",
"\n",
" Untuk Pemodelan ini sendiri memiliki nilai `Accuracy` yang tinggi namun `F1 Score` rendah. Oleh karena itu, perlu dilakukan analisa kembali untuk meningkatkan keakuratan pemodelan "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}