Spaces:
Sleeping
Sleeping
Upload 35 files
Browse files- .gitattributes +2 -0
- Arborio.png +0 -0
- Basmati.png +0 -0
- CYMK Color Channels Arborio.png +0 -0
- CYMK Color Channels Basmati.png +0 -0
- CYMK Color Channels Ipsala.png +0 -0
- CYMK Color Channels Jasmine.png +0 -0
- CYMK Color Channels Karacadag.png +0 -0
- Color Channels Arborio.png +0 -0
- Color Channels Basmati.png +0 -0
- Color Channels Ipsala.png +0 -0
- Color Channels Jasmine.png +0 -0
- Color Channels Karacadag.png +0 -0
- Color Dominance Arborio.png +0 -0
- Color Dominance Basmati.png +0 -0
- Color Dominance Ipsala.png +0 -0
- Color Dominance Jasmine.png +0 -0
- Color Dominance Karacadag.png +0 -0
- Ipsala.png +0 -0
- Jasmine.png +0 -0
- Karacadag.png +0 -0
- Tepi Gambar Arborio.png +0 -0
- Tepi Gambar Basmati.png +0 -0
- Tepi Gambar Ipsala.png +0 -0
- Tepi Gambar Jasmine.png +0 -0
- Tepi Gambar Karacadag.png +0 -0
- __pycache__/eda.cpython-311.pyc +0 -0
- __pycache__/eda.cpython-39.pyc +0 -0
- __pycache__/prediction.cpython-311.pyc +0 -0
- __pycache__/prediction.cpython-39.pyc +0 -0
- app.py +10 -0
- cnn_model.keras +3 -0
- eda.py +136 -0
- prediction.py +43 -0
- requirements.txt +6 -0
- wallpaper.jpg +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cnn_model.keras filter=lfs diff=lfs merge=lfs -text
|
37 |
+
wallpaper.jpg filter=lfs diff=lfs merge=lfs -text
|
Arborio.png
ADDED
![]() |
Basmati.png
ADDED
![]() |
CYMK Color Channels Arborio.png
ADDED
![]() |
CYMK Color Channels Basmati.png
ADDED
![]() |
CYMK Color Channels Ipsala.png
ADDED
![]() |
CYMK Color Channels Jasmine.png
ADDED
![]() |
CYMK Color Channels Karacadag.png
ADDED
![]() |
Color Channels Arborio.png
ADDED
![]() |
Color Channels Basmati.png
ADDED
![]() |
Color Channels Ipsala.png
ADDED
![]() |
Color Channels Jasmine.png
ADDED
![]() |
Color Channels Karacadag.png
ADDED
![]() |
Color Dominance Arborio.png
ADDED
![]() |
Color Dominance Basmati.png
ADDED
![]() |
Color Dominance Ipsala.png
ADDED
![]() |
Color Dominance Jasmine.png
ADDED
![]() |
Color Dominance Karacadag.png
ADDED
![]() |
Ipsala.png
ADDED
![]() |
Jasmine.png
ADDED
![]() |
Karacadag.png
ADDED
![]() |
Tepi Gambar Arborio.png
ADDED
![]() |
Tepi Gambar Basmati.png
ADDED
![]() |
Tepi Gambar Ipsala.png
ADDED
![]() |
Tepi Gambar Jasmine.png
ADDED
![]() |
Tepi Gambar Karacadag.png
ADDED
![]() |
__pycache__/eda.cpython-311.pyc
ADDED
Binary file (4.65 kB). View file
|
|
__pycache__/eda.cpython-39.pyc
ADDED
Binary file (2.54 kB). View file
|
|
__pycache__/prediction.cpython-311.pyc
ADDED
Binary file (6.32 kB). View file
|
|
__pycache__/prediction.cpython-39.pyc
ADDED
Binary file (1.39 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import eda
|
3 |
+
import prediction
|
4 |
+
|
5 |
+
page = st.sidebar.selectbox('Pilih halaman ', ('EDA', 'Prediction'))
|
6 |
+
|
7 |
+
if page == 'EDA':
|
8 |
+
eda.run()
|
9 |
+
else:
|
10 |
+
prediction.run()
|
cnn_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62415b31f388fd90f974e7dbddc76aa0c2b53757a6005ec5750d97d570d9d2bb
|
3 |
+
size 492722299
|
eda.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import plotly.express as px
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
def run():
|
6 |
+
# Membuat judul
|
7 |
+
st.title('Rice Image Dataset')
|
8 |
+
|
9 |
+
# Membuat Sub Header
|
10 |
+
st.header('EDA Rice Image Dataset', divider='gray')
|
11 |
+
|
12 |
+
# Menambahkan Gambar
|
13 |
+
image = Image.open('wallpaper.jpg')
|
14 |
+
st.image(image, caption = 'Rice', channels='RGB')
|
15 |
+
|
16 |
+
# Menambahkan Divider
|
17 |
+
st.divider()
|
18 |
+
|
19 |
+
# Jenis - Jenis Beras
|
20 |
+
st.header('Jenis-Jenis Beras', divider='gray')
|
21 |
+
st.subheader('Arborio')
|
22 |
+
image = Image.open('Arborio.png')
|
23 |
+
st.image(image, channels='RGB')
|
24 |
+
|
25 |
+
st.subheader('Basmati')
|
26 |
+
image = Image.open('Basmati.png')
|
27 |
+
st.image(image, channels='RGB')
|
28 |
+
|
29 |
+
st.subheader('Ipsala')
|
30 |
+
image = Image.open('Ipsala.png')
|
31 |
+
st.image(image, channels='RGB')
|
32 |
+
|
33 |
+
st.subheader('Jasmine')
|
34 |
+
image = Image.open('Jasmine.png')
|
35 |
+
st.image(image, channels='RGB')
|
36 |
+
|
37 |
+
st.subheader('Karacadag')
|
38 |
+
image = Image.open('Karacadag.png')
|
39 |
+
st.image(image, channels='RGB')
|
40 |
+
st.divider()
|
41 |
+
|
42 |
+
# Tepi Gambar Beras
|
43 |
+
st.header('Tepi Gambar Beras', divider='gray')
|
44 |
+
st.subheader('Arborio')
|
45 |
+
image = Image.open('Tepi Gambar Arborio.png')
|
46 |
+
st.image(image, channels='RGB')
|
47 |
+
|
48 |
+
st.subheader('Basmati')
|
49 |
+
image = Image.open('Tepi Gambar Basmati.png')
|
50 |
+
st.image(image, channels='RGB')
|
51 |
+
|
52 |
+
st.subheader('Ipsala')
|
53 |
+
image = Image.open('Tepi Gambar Ipsala.png')
|
54 |
+
st.image(image, channels='RGB')
|
55 |
+
|
56 |
+
st.subheader('Jasmine')
|
57 |
+
image = Image.open('Tepi Gambar Jasmine.png')
|
58 |
+
st.image(image, channels='RGB')
|
59 |
+
|
60 |
+
st.subheader('Karacadag')
|
61 |
+
image = Image.open('Tepi Gambar Karacadag.png')
|
62 |
+
st.image(image, channels='RGB')
|
63 |
+
st.divider()
|
64 |
+
|
65 |
+
# Warna Dominan Beras
|
66 |
+
st.header('Warna Dominan Beras', divider='gray')
|
67 |
+
st.subheader('Arborio')
|
68 |
+
image = Image.open('Color Dominance Arborio.png')
|
69 |
+
st.image(image, channels='RGB')
|
70 |
+
|
71 |
+
st.subheader('Basmati')
|
72 |
+
image = Image.open('Color Dominance Basmati.png')
|
73 |
+
st.image(image, channels='RGB')
|
74 |
+
|
75 |
+
st.subheader('Ipsala')
|
76 |
+
image = Image.open('Color Dominance Ipsala.png')
|
77 |
+
st.image(image, channels='RGB')
|
78 |
+
|
79 |
+
st.subheader('Jasmine')
|
80 |
+
image = Image.open('Color Dominance Jasmine.png')
|
81 |
+
st.image(image, channels='RGB')
|
82 |
+
|
83 |
+
st.subheader('Karacadag')
|
84 |
+
image = Image.open('Color Dominance Karacadag.png')
|
85 |
+
st.image(image, channels='RGB')
|
86 |
+
st.divider()
|
87 |
+
|
88 |
+
# Color Channel RGB Beras
|
89 |
+
st.header('Warna Channel RGB Beras', divider='gray')
|
90 |
+
st.subheader('Arborio')
|
91 |
+
image = Image.open('Color Channels Arborio.png')
|
92 |
+
st.image(image, channels='RGB')
|
93 |
+
|
94 |
+
st.subheader('Basmati')
|
95 |
+
image = Image.open('Color Channels Basmati.png')
|
96 |
+
st.image(image, channels='RGB')
|
97 |
+
|
98 |
+
st.subheader('Ipsala')
|
99 |
+
image = Image.open('Color Channels Ipsala.png')
|
100 |
+
st.image(image, channels='RGB')
|
101 |
+
|
102 |
+
st.subheader('Jasmine')
|
103 |
+
image = Image.open('Color Channels Jasmine.png')
|
104 |
+
st.image(image, channels='RGB')
|
105 |
+
|
106 |
+
st.subheader('Karacadag')
|
107 |
+
image = Image.open('Color Channels Karacadag.png')
|
108 |
+
st.image(image, channels='RGB')
|
109 |
+
st.divider()
|
110 |
+
|
111 |
+
|
112 |
+
# Color Channel CYMK Beras
|
113 |
+
st.header('Warna Channel RGB Beras', divider='gray')
|
114 |
+
st.subheader('Arborio')
|
115 |
+
image = Image.open('CYMK Color Channels Arborio.png')
|
116 |
+
st.image(image, channels='RGB')
|
117 |
+
|
118 |
+
st.subheader('Basmati')
|
119 |
+
image = Image.open('CYMK Color Channels Basmati.png')
|
120 |
+
st.image(image, channels='RGB')
|
121 |
+
|
122 |
+
st.subheader('Ipsala')
|
123 |
+
image = Image.open('CYMK Color Channels Ipsala.png')
|
124 |
+
st.image(image, channels='RGB')
|
125 |
+
|
126 |
+
st.subheader('Jasmine')
|
127 |
+
image = Image.open('CYMK Color Channels Jasmine.png')
|
128 |
+
st.image(image, channels='RGB')
|
129 |
+
|
130 |
+
st.subheader('Karacadag')
|
131 |
+
image = Image.open('CYMK Color Channels Karacadag.png')
|
132 |
+
st.image(image, channels='RGB')
|
133 |
+
st.divider()
|
134 |
+
|
135 |
+
if __name__ == '__main__':
|
136 |
+
run()
|
prediction.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
6 |
+
|
7 |
+
# Function to preprocess the uploaded image
|
8 |
+
def preprocess_image(image):
|
9 |
+
img = image.resize((img_height, img_width))
|
10 |
+
img_array = img_to_array(img)
|
11 |
+
img_array = np.expand_dims(img_array, axis=0)
|
12 |
+
img_array /= 255.0
|
13 |
+
return img_array
|
14 |
+
|
15 |
+
# Mapping numerical predictions to class labels
|
16 |
+
class_labels = {0: "Arborio", 1: "Basmati", 2: "Ipsala", 3: "Jasmine", 4: "Karacadag"}
|
17 |
+
|
18 |
+
# Main function to run the Streamlit app
|
19 |
+
def main():
|
20 |
+
st.title("Rice Classifier")
|
21 |
+
st.write("Upload a picture of rice to predict its type..")
|
22 |
+
|
23 |
+
# File upload
|
24 |
+
uploaded_file = st.file_uploader("Select the rice image...", type=["jpg", "jpeg", "png"])
|
25 |
+
|
26 |
+
if uploaded_file is not None:
|
27 |
+
# Display the uploaded image
|
28 |
+
image = Image.open(uploaded_file)
|
29 |
+
st.image(image, caption="Gambar yang diunggah", use_column_width=True)
|
30 |
+
|
31 |
+
# Load the model (once the image is uploaded)
|
32 |
+
model = load_model("my_model.keras")
|
33 |
+
|
34 |
+
# Preprocess and predict
|
35 |
+
img_array = preprocess_image(image)
|
36 |
+
prediction = model.predict(img_array)
|
37 |
+
predicted_class = np.argmax(prediction, axis=1)[0]
|
38 |
+
|
39 |
+
# Display prediction
|
40 |
+
st.write(f'Prediksi: {class_labels[predicted_class]}')
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
numpy
|
4 |
+
scikit.learn==1.3.0
|
5 |
+
tensorflow==2.15.0
|
6 |
+
tensorflow_hub==0.16.1
|
wallpaper.jpg
ADDED
![]() |
Git LFS Details
|