darly9991 commited on
Commit
103a864
·
verified ·
1 Parent(s): 966a2ac

Upload 35 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ cnn_model.keras filter=lfs diff=lfs merge=lfs -text
37
+ wallpaper.jpg filter=lfs diff=lfs merge=lfs -text
Arborio.png ADDED
Basmati.png ADDED
CYMK Color Channels Arborio.png ADDED
CYMK Color Channels Basmati.png ADDED
CYMK Color Channels Ipsala.png ADDED
CYMK Color Channels Jasmine.png ADDED
CYMK Color Channels Karacadag.png ADDED
Color Channels Arborio.png ADDED
Color Channels Basmati.png ADDED
Color Channels Ipsala.png ADDED
Color Channels Jasmine.png ADDED
Color Channels Karacadag.png ADDED
Color Dominance Arborio.png ADDED
Color Dominance Basmati.png ADDED
Color Dominance Ipsala.png ADDED
Color Dominance Jasmine.png ADDED
Color Dominance Karacadag.png ADDED
Ipsala.png ADDED
Jasmine.png ADDED
Karacadag.png ADDED
Tepi Gambar Arborio.png ADDED
Tepi Gambar Basmati.png ADDED
Tepi Gambar Ipsala.png ADDED
Tepi Gambar Jasmine.png ADDED
Tepi Gambar Karacadag.png ADDED
__pycache__/eda.cpython-311.pyc ADDED
Binary file (4.65 kB). View file
 
__pycache__/eda.cpython-39.pyc ADDED
Binary file (2.54 kB). View file
 
__pycache__/prediction.cpython-311.pyc ADDED
Binary file (6.32 kB). View file
 
__pycache__/prediction.cpython-39.pyc ADDED
Binary file (1.39 kB). View file
 
app.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import eda
3
+ import prediction
4
+
5
+ page = st.sidebar.selectbox('Pilih halaman ', ('EDA', 'Prediction'))
6
+
7
+ if page == 'EDA':
8
+ eda.run()
9
+ else:
10
+ prediction.run()
cnn_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62415b31f388fd90f974e7dbddc76aa0c2b53757a6005ec5750d97d570d9d2bb
3
+ size 492722299
eda.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import plotly.express as px
3
+ from PIL import Image
4
+
5
+ def run():
6
+ # Membuat judul
7
+ st.title('Rice Image Dataset')
8
+
9
+ # Membuat Sub Header
10
+ st.header('EDA Rice Image Dataset', divider='gray')
11
+
12
+ # Menambahkan Gambar
13
+ image = Image.open('wallpaper.jpg')
14
+ st.image(image, caption = 'Rice', channels='RGB')
15
+
16
+ # Menambahkan Divider
17
+ st.divider()
18
+
19
+ # Jenis - Jenis Beras
20
+ st.header('Jenis-Jenis Beras', divider='gray')
21
+ st.subheader('Arborio')
22
+ image = Image.open('Arborio.png')
23
+ st.image(image, channels='RGB')
24
+
25
+ st.subheader('Basmati')
26
+ image = Image.open('Basmati.png')
27
+ st.image(image, channels='RGB')
28
+
29
+ st.subheader('Ipsala')
30
+ image = Image.open('Ipsala.png')
31
+ st.image(image, channels='RGB')
32
+
33
+ st.subheader('Jasmine')
34
+ image = Image.open('Jasmine.png')
35
+ st.image(image, channels='RGB')
36
+
37
+ st.subheader('Karacadag')
38
+ image = Image.open('Karacadag.png')
39
+ st.image(image, channels='RGB')
40
+ st.divider()
41
+
42
+ # Tepi Gambar Beras
43
+ st.header('Tepi Gambar Beras', divider='gray')
44
+ st.subheader('Arborio')
45
+ image = Image.open('Tepi Gambar Arborio.png')
46
+ st.image(image, channels='RGB')
47
+
48
+ st.subheader('Basmati')
49
+ image = Image.open('Tepi Gambar Basmati.png')
50
+ st.image(image, channels='RGB')
51
+
52
+ st.subheader('Ipsala')
53
+ image = Image.open('Tepi Gambar Ipsala.png')
54
+ st.image(image, channels='RGB')
55
+
56
+ st.subheader('Jasmine')
57
+ image = Image.open('Tepi Gambar Jasmine.png')
58
+ st.image(image, channels='RGB')
59
+
60
+ st.subheader('Karacadag')
61
+ image = Image.open('Tepi Gambar Karacadag.png')
62
+ st.image(image, channels='RGB')
63
+ st.divider()
64
+
65
+ # Warna Dominan Beras
66
+ st.header('Warna Dominan Beras', divider='gray')
67
+ st.subheader('Arborio')
68
+ image = Image.open('Color Dominance Arborio.png')
69
+ st.image(image, channels='RGB')
70
+
71
+ st.subheader('Basmati')
72
+ image = Image.open('Color Dominance Basmati.png')
73
+ st.image(image, channels='RGB')
74
+
75
+ st.subheader('Ipsala')
76
+ image = Image.open('Color Dominance Ipsala.png')
77
+ st.image(image, channels='RGB')
78
+
79
+ st.subheader('Jasmine')
80
+ image = Image.open('Color Dominance Jasmine.png')
81
+ st.image(image, channels='RGB')
82
+
83
+ st.subheader('Karacadag')
84
+ image = Image.open('Color Dominance Karacadag.png')
85
+ st.image(image, channels='RGB')
86
+ st.divider()
87
+
88
+ # Color Channel RGB Beras
89
+ st.header('Warna Channel RGB Beras', divider='gray')
90
+ st.subheader('Arborio')
91
+ image = Image.open('Color Channels Arborio.png')
92
+ st.image(image, channels='RGB')
93
+
94
+ st.subheader('Basmati')
95
+ image = Image.open('Color Channels Basmati.png')
96
+ st.image(image, channels='RGB')
97
+
98
+ st.subheader('Ipsala')
99
+ image = Image.open('Color Channels Ipsala.png')
100
+ st.image(image, channels='RGB')
101
+
102
+ st.subheader('Jasmine')
103
+ image = Image.open('Color Channels Jasmine.png')
104
+ st.image(image, channels='RGB')
105
+
106
+ st.subheader('Karacadag')
107
+ image = Image.open('Color Channels Karacadag.png')
108
+ st.image(image, channels='RGB')
109
+ st.divider()
110
+
111
+
112
+ # Color Channel CYMK Beras
113
+ st.header('Warna Channel RGB Beras', divider='gray')
114
+ st.subheader('Arborio')
115
+ image = Image.open('CYMK Color Channels Arborio.png')
116
+ st.image(image, channels='RGB')
117
+
118
+ st.subheader('Basmati')
119
+ image = Image.open('CYMK Color Channels Basmati.png')
120
+ st.image(image, channels='RGB')
121
+
122
+ st.subheader('Ipsala')
123
+ image = Image.open('CYMK Color Channels Ipsala.png')
124
+ st.image(image, channels='RGB')
125
+
126
+ st.subheader('Jasmine')
127
+ image = Image.open('CYMK Color Channels Jasmine.png')
128
+ st.image(image, channels='RGB')
129
+
130
+ st.subheader('Karacadag')
131
+ image = Image.open('CYMK Color Channels Karacadag.png')
132
+ st.image(image, channels='RGB')
133
+ st.divider()
134
+
135
+ if __name__ == '__main__':
136
+ run()
prediction.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ from tensorflow.keras.models import load_model
5
+ from tensorflow.keras.preprocessing.image import img_to_array
6
+
7
+ # Function to preprocess the uploaded image
8
+ def preprocess_image(image):
9
+ img = image.resize((img_height, img_width))
10
+ img_array = img_to_array(img)
11
+ img_array = np.expand_dims(img_array, axis=0)
12
+ img_array /= 255.0
13
+ return img_array
14
+
15
+ # Mapping numerical predictions to class labels
16
+ class_labels = {0: "Arborio", 1: "Basmati", 2: "Ipsala", 3: "Jasmine", 4: "Karacadag"}
17
+
18
+ # Main function to run the Streamlit app
19
+ def main():
20
+ st.title("Rice Classifier")
21
+ st.write("Upload a picture of rice to predict its type..")
22
+
23
+ # File upload
24
+ uploaded_file = st.file_uploader("Select the rice image...", type=["jpg", "jpeg", "png"])
25
+
26
+ if uploaded_file is not None:
27
+ # Display the uploaded image
28
+ image = Image.open(uploaded_file)
29
+ st.image(image, caption="Gambar yang diunggah", use_column_width=True)
30
+
31
+ # Load the model (once the image is uploaded)
32
+ model = load_model("my_model.keras")
33
+
34
+ # Preprocess and predict
35
+ img_array = preprocess_image(image)
36
+ prediction = model.predict(img_array)
37
+ predicted_class = np.argmax(prediction, axis=1)[0]
38
+
39
+ # Display prediction
40
+ st.write(f'Prediksi: {class_labels[predicted_class]}')
41
+
42
+ if __name__ == "__main__":
43
+ main()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ numpy
4
+ scikit.learn==1.3.0
5
+ tensorflow==2.15.0
6
+ tensorflow_hub==0.16.1
wallpaper.jpg ADDED

Git LFS Details

  • SHA256: 269bc4e5796392d5c5d24e943094c53c647e5e6a75e04a6e4fde323de5f60cb9
  • Pointer size: 133 Bytes
  • Size of remote file: 14.5 MB