import streamlit as st import requests import json st.set_page_config(page_title="Generate Therapy Answers🤖", page_icon='🤖', layout='centered', initial_sidebar_state='collapsed') ## Function To get response from LLAma 2 model # def getLLamaresponse(input_text): # ### LLama2 model # llm=CTransformers(model='models/openorca_7b_chat_uncensored_FT_GGUF.gguf', # model_type='llama', # config={'max_new_tokens':256, # 'temperature':0.01, # 'gpu_layers':25, # }) # ## Prompt Template url = "https://localhost/api/generate" headers = { 'Content-Type': 'application/json', } def generate_text(): # prompt = f"Please generate a draft for a legal notice in detail. The notice is to be sent on behalf of {client_name}, located at {client_address}, to {recipient_name} regarding {reason_for_notice}. The notice should include a clear statement of the issue, a request for resolution or action, a deadline for response or action, and any legal consequences of non-compliance. Please use formal language and ensure the notice is legally sound.\n\nCrime Type: include any IPC that applies to this perticular case" prompt = f"PRovide Response on the below text \n\n{input_text}" data = { "model": "openorca_FT_medical", "stream": False, "prompt": prompt, } response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code == 200: response_text = response.text data = json.loads(response_text) actual_response = data["response"] return actual_response else: st.error(f"Error: {response.status_code}, {response.text}") st.header("Therapy Provider 🤖") input_text=st.text_area("Enter your Problem/Emotions") if st.button("Generate Response"): generated_notice = generate_text() st.text_area("Generated Legal Notice", generated_notice)