Spaces:
Runtime error
Runtime error
File size: 10,732 Bytes
fccd4a8 d09b322 fccd4a8 d09b322 fccd4a8 d09b322 fccd4a8 d09b322 fccd4a8 d09b322 fccd4a8 d09b322 fccd4a8 d09b322 fccd4a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import pandas as pd
import numpy as np
import snscrape.modules.twitter as sntwitter
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go
import matplotlib as mpl
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from PIL import Image
import requests
from itertools import islice
from youtube_comment_downloader import *
@st.cache(allow_output_mutation=True)
def get_nltk():
import nltk
nltk.download(
["punkt", "wordnet", "omw-1.4", "averaged_perceptron_tagger", "universal_tagset"]
)
return
get_nltk()
from nltk.stem import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import word_tokenize
import re
from sklearn.feature_extraction.text import CountVectorizer
# Create a custom plotly theme and set it as default
pio.templates["custom"] = pio.templates["plotly_white"]
pio.templates["custom"].layout.margin = {"b": 25, "l": 25, "r": 25, "t": 50}
pio.templates["custom"].layout.width = 600
pio.templates["custom"].layout.height = 450
pio.templates["custom"].layout.autosize = False
pio.templates["custom"].layout.font.update(
{"family": "Arial", "size": 12, "color": "#707070"}
)
pio.templates["custom"].layout.title.update(
{
"xref": "container",
"yref": "container",
"x": 0.5,
"yanchor": "top",
"font_size": 16,
"y": 0.95,
"font_color": "#353535",
}
)
pio.templates["custom"].layout.xaxis.update(
{"showline": True, "linecolor": "lightgray", "title_font_size": 14}
)
pio.templates["custom"].layout.yaxis.update(
{"showline": True, "linecolor": "lightgray", "title_font_size": 14}
)
pio.templates["custom"].layout.colorway = [
"#1F77B4",
"#FF7F0E",
"#54A24B",
"#D62728",
"#C355FA",
"#8C564B",
"#E377C2",
"#7F7F7F",
"#FFE323",
"#17BECF",
]
pio.templates.default = "custom"
@st.cache(allow_output_mutation=True)
def get_sentiment_model():
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
return tokenizer,model
tokenizer_sentiment,model_sentiment = get_sentiment_model()
def get_tweets(query, max_tweets):
if query[0] == '@':
query = query[1:]
tweets_list = []
# Using TwitterSearchScraper to scrape data
for i,tweet in enumerate(sntwitter.TwitterSearchScraper('from:'+query).get_items()):
if i>max_tweets:
break
tweets_list.append([tweet.date, tweet.user.username, tweet.content])
# Creating a dataframe from the tweets list above
tweets_df = pd.DataFrame(tweets_list, columns=['Datetime', 'Username', 'Tweet'])
else:
# Creating list to append tweet data to
tweets_list = []
# Using TwitterSearchScraper to scrape data and append tweets to list
for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query+' until:').get_items()):
if i>max_tweets:
break
tweets_list.append([tweet.date, tweet.user.username, tweet.content])
# Creating a dataframe from the tweets list above
tweets_df = pd.DataFrame(tweets_list, columns=['Datetime', 'Username', 'Tweet'])
tweets_df['Datetime'] = pd.to_datetime(tweets_df['Datetime'])
tweets_df['Date'] = tweets_df['Datetime'].dt.date
tweets_df['Time'] = tweets_df['Datetime'].dt.strftime('%H:%M') #tweets_df['Datetime'].dt.time
tweets_df.drop('Datetime', axis=1, inplace=True)
return tweets_df
def get_youtube_comments(url, num_comments):
pattern = '"playabilityStatus":{"status":"ERROR","reason":"Video unavailable"'
def try_site(url):
request = requests.get(url)
return False if pattern in request.text else True
video_exists = try_site(url)
if video_exists:
comment_list = []
downloader = YoutubeCommentDownloader()
comments = downloader.get_comments_from_url(url, sort_by=SORT_BY_POPULAR)
for comment in islice(comments, num_comments):
comment_list.append(comment['text'])
return comment_list
else:
raise Exception('Video does not exist')
def get_sentiment_youtube(useful_sentence):
tokenizer = tokenizer_sentiment
model = model_sentiment
pipe = pipeline(model="ProsusAI/finbert")
classifier = pipeline(model="ProsusAI/finbert")
output=[]
i=0
useful_sentence_len = len(useful_sentence)
for temp in useful_sentence:
output.extend(classifier(temp))
i=i+1
df = pd.DataFrame.from_dict(useful_sentence)
df_temp = pd.DataFrame.from_dict(output)
df = pd.concat([df, df_temp], axis=1)
df = df.rename(columns={'label': 'Sentiment'})
df = df.rename(columns={0: 'Comment'})
df['Sentiment'] = df['Sentiment'].replace('positive', 'Positive')
df['Sentiment'] = df['Sentiment'].replace('negative', 'Negative')
df['Sentiment'] = df['Sentiment'].replace('neutral', 'Neutral')
return df
def text_preprocessing(text):
stopwords = set()
with open("static/en_stopwords.txt", "r") as file:
for word in file:
stopwords.add(word.rstrip("\n"))
lemmatizer = WordNetLemmatizer()
try:
url_pattern = r"((http://)[^ ]*|(https://)[^ ]*|(www\.)[^ ]*)"
user_pattern = r"@[^\s]+"
entity_pattern = r"&.*;"
neg_contraction = r"n't\W"
non_alpha = "[^a-z]"
cleaned_text = text.lower()
cleaned_text = re.sub(neg_contraction, " not ", cleaned_text)
cleaned_text = re.sub(url_pattern, " ", cleaned_text)
cleaned_text = re.sub(user_pattern, " ", cleaned_text)
cleaned_text = re.sub(entity_pattern, " ", cleaned_text)
cleaned_text = re.sub(non_alpha, " ", cleaned_text)
tokens = word_tokenize(cleaned_text)
# provide POS tag for lemmatization to yield better result
word_tag_tuples = pos_tag(tokens, tagset="universal")
tag_dict = {"NOUN": "n", "VERB": "v", "ADJ": "a", "ADV": "r"}
final_tokens = []
for word, tag in word_tag_tuples:
if len(word) > 1 and word not in stopwords:
if tag in tag_dict:
final_tokens.append(lemmatizer.lemmatize(word, tag_dict[tag]))
else:
final_tokens.append(lemmatizer.lemmatize(word))
return " ".join(final_tokens)
except:
return np.nan
def get_sentiment(df):
useful_sentence = df['Tweet'].tolist()
tokenizer = tokenizer_sentiment
model = model_sentiment
pipe = pipeline(model="ProsusAI/finbert")
classifier = pipeline(model="ProsusAI/finbert")
output=[]
i=0
useful_sentence_len = len(useful_sentence)
for temp in useful_sentence:
output.extend(classifier(temp))
i=i+1
df_temp = pd.DataFrame.from_dict(output)
df = pd.concat([df, df_temp], axis=1)
df = df.rename(columns={'label': 'Sentiment'})
df['Sentiment'] = df['Sentiment'].replace('positive', 'Positive')
df['Sentiment'] = df['Sentiment'].replace('negative', 'Negative')
df['Sentiment'] = df['Sentiment'].replace('neutral', 'Neutral')
return df
def plot_sentiment(tweet_df):
sentiment_count = tweet_df["Sentiment"].value_counts()
fig = px.pie(
values=sentiment_count.values,
names=sentiment_count.index,
hole=0.3,
title="<b>Sentiment Distribution</b>",
color=sentiment_count.index,
color_discrete_map={"Positive": "#54A24B", "Negative": "#FF7F0E", "Neutral": "#1F77B4"},
)
fig.update_traces(
textposition="inside",
texttemplate="%{label}<br>%{value} (%{percent})",
hovertemplate="<b>%{label}</b><br>Percentage=%{percent}<br>Count=%{value}",
)
fig.update_layout(showlegend=False)
return fig
def get_top_n_gram(tweet_df, ngram_range, n=10):
try:
stopwords = set()
with open("static/en_stopwords_ngram.txt", "r") as file:
for word in file:
stopwords.add(word.rstrip("\n"))
stopwords = list(stopwords)
corpus = tweet_df["Tweet"]
vectorizer = CountVectorizer(
analyzer="word", ngram_range=ngram_range, stop_words=stopwords
)
X = vectorizer.fit_transform(corpus.astype(str).values)
words = vectorizer.get_feature_names_out()
words_count = np.ravel(X.sum(axis=0))
df = pd.DataFrame(zip(words, words_count))
df.columns = ["words", "counts"]
df = df.sort_values(by="counts", ascending=False).head(n)
df["words"] = df["words"].str.title()
return df
except:
pass
def plot_n_gram(n_gram_df, title, color="#54A24B"):
try:
fig = px.bar(
# n_gram_df,
# x="counts",
# y="words",
x=n_gram_df.counts,
y=n_gram_df.words,
title="<b>{}</b>".format(title),
text_auto=True,
)
fig.update_layout(plot_bgcolor="white")
fig.update_xaxes(title=None)
fig.update_yaxes(autorange="reversed", title=None)
fig.update_traces(hovertemplate="<b>%{y}</b><br>Count=%{x}", marker_color=color)
return fig
except:
fig = go.Figure()
return fig
def plot_wordcloud(tweet_df, colormap="Greens", mask_url="static/twitter_mask.png"):
try:
stopwords = set()
with open("static/en_stopwords_ngram.txt", "r") as file:
for word in file:
stopwords.add(word.rstrip("\n"))
cmap = mpl.cm.get_cmap(colormap)(np.linspace(0, 1, 20))
cmap = mpl.colors.ListedColormap(cmap[10:15])
mask = np.array(Image.open(mask_url))
font = "static/quartzo.ttf"
tweet_df["Cleaned_Tweet"] = tweet_df["Tweet"].apply(text_preprocessing)
text = " ".join(tweet_df["Cleaned_Tweet"])
wc = WordCloud(
background_color="white",
font_path=font,
stopwords=stopwords,
max_words=90,
colormap=cmap,
mask=mask,
random_state=42,
collocations=False,
min_word_length=2,
max_font_size=200,
)
wc.generate(text)
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.title("Wordcloud", fontdict={"fontsize": 16}, fontweight="heavy", pad=20, y=1.0)
return fig
except:
fig = go.Figure()
return fig
|