Social_media_sentiment_tracker / helper_functions.py
darthPanda's picture
first
d09b322
raw
history blame
10.7 kB
import pandas as pd
import numpy as np
import snscrape.modules.twitter as sntwitter
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import plotly.express as px
import plotly.io as pio
import plotly.graph_objects as go
import matplotlib as mpl
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from PIL import Image
import requests
from itertools import islice
from youtube_comment_downloader import *
@st.cache(allow_output_mutation=True)
def get_nltk():
import nltk
nltk.download(
["punkt", "wordnet", "omw-1.4", "averaged_perceptron_tagger", "universal_tagset"]
)
return
get_nltk()
from nltk.stem import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import word_tokenize
import re
from sklearn.feature_extraction.text import CountVectorizer
# Create a custom plotly theme and set it as default
pio.templates["custom"] = pio.templates["plotly_white"]
pio.templates["custom"].layout.margin = {"b": 25, "l": 25, "r": 25, "t": 50}
pio.templates["custom"].layout.width = 600
pio.templates["custom"].layout.height = 450
pio.templates["custom"].layout.autosize = False
pio.templates["custom"].layout.font.update(
{"family": "Arial", "size": 12, "color": "#707070"}
)
pio.templates["custom"].layout.title.update(
{
"xref": "container",
"yref": "container",
"x": 0.5,
"yanchor": "top",
"font_size": 16,
"y": 0.95,
"font_color": "#353535",
}
)
pio.templates["custom"].layout.xaxis.update(
{"showline": True, "linecolor": "lightgray", "title_font_size": 14}
)
pio.templates["custom"].layout.yaxis.update(
{"showline": True, "linecolor": "lightgray", "title_font_size": 14}
)
pio.templates["custom"].layout.colorway = [
"#1F77B4",
"#FF7F0E",
"#54A24B",
"#D62728",
"#C355FA",
"#8C564B",
"#E377C2",
"#7F7F7F",
"#FFE323",
"#17BECF",
]
pio.templates.default = "custom"
@st.cache(allow_output_mutation=True)
def get_sentiment_model():
tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
return tokenizer,model
tokenizer_sentiment,model_sentiment = get_sentiment_model()
def get_tweets(query, max_tweets):
if query[0] == '@':
query = query[1:]
tweets_list = []
# Using TwitterSearchScraper to scrape data
for i,tweet in enumerate(sntwitter.TwitterSearchScraper('from:'+query).get_items()):
if i>max_tweets:
break
tweets_list.append([tweet.date, tweet.user.username, tweet.content])
# Creating a dataframe from the tweets list above
tweets_df = pd.DataFrame(tweets_list, columns=['Datetime', 'Username', 'Tweet'])
else:
# Creating list to append tweet data to
tweets_list = []
# Using TwitterSearchScraper to scrape data and append tweets to list
for i,tweet in enumerate(sntwitter.TwitterSearchScraper(query+' until:').get_items()):
if i>max_tweets:
break
tweets_list.append([tweet.date, tweet.user.username, tweet.content])
# Creating a dataframe from the tweets list above
tweets_df = pd.DataFrame(tweets_list, columns=['Datetime', 'Username', 'Tweet'])
tweets_df['Datetime'] = pd.to_datetime(tweets_df['Datetime'])
tweets_df['Date'] = tweets_df['Datetime'].dt.date
tweets_df['Time'] = tweets_df['Datetime'].dt.strftime('%H:%M') #tweets_df['Datetime'].dt.time
tweets_df.drop('Datetime', axis=1, inplace=True)
return tweets_df
def get_youtube_comments(url, num_comments):
pattern = '"playabilityStatus":{"status":"ERROR","reason":"Video unavailable"'
def try_site(url):
request = requests.get(url)
return False if pattern in request.text else True
video_exists = try_site(url)
if video_exists:
comment_list = []
downloader = YoutubeCommentDownloader()
comments = downloader.get_comments_from_url(url, sort_by=SORT_BY_POPULAR)
for comment in islice(comments, num_comments):
comment_list.append(comment['text'])
return comment_list
else:
raise Exception('Video does not exist')
def get_sentiment_youtube(useful_sentence):
tokenizer = tokenizer_sentiment
model = model_sentiment
pipe = pipeline(model="ProsusAI/finbert")
classifier = pipeline(model="ProsusAI/finbert")
output=[]
i=0
useful_sentence_len = len(useful_sentence)
for temp in useful_sentence:
output.extend(classifier(temp))
i=i+1
df = pd.DataFrame.from_dict(useful_sentence)
df_temp = pd.DataFrame.from_dict(output)
df = pd.concat([df, df_temp], axis=1)
df = df.rename(columns={'label': 'Sentiment'})
df = df.rename(columns={0: 'Comment'})
df['Sentiment'] = df['Sentiment'].replace('positive', 'Positive')
df['Sentiment'] = df['Sentiment'].replace('negative', 'Negative')
df['Sentiment'] = df['Sentiment'].replace('neutral', 'Neutral')
return df
def text_preprocessing(text):
stopwords = set()
with open("static/en_stopwords.txt", "r") as file:
for word in file:
stopwords.add(word.rstrip("\n"))
lemmatizer = WordNetLemmatizer()
try:
url_pattern = r"((http://)[^ ]*|(https://)[^ ]*|(www\.)[^ ]*)"
user_pattern = r"@[^\s]+"
entity_pattern = r"&.*;"
neg_contraction = r"n't\W"
non_alpha = "[^a-z]"
cleaned_text = text.lower()
cleaned_text = re.sub(neg_contraction, " not ", cleaned_text)
cleaned_text = re.sub(url_pattern, " ", cleaned_text)
cleaned_text = re.sub(user_pattern, " ", cleaned_text)
cleaned_text = re.sub(entity_pattern, " ", cleaned_text)
cleaned_text = re.sub(non_alpha, " ", cleaned_text)
tokens = word_tokenize(cleaned_text)
# provide POS tag for lemmatization to yield better result
word_tag_tuples = pos_tag(tokens, tagset="universal")
tag_dict = {"NOUN": "n", "VERB": "v", "ADJ": "a", "ADV": "r"}
final_tokens = []
for word, tag in word_tag_tuples:
if len(word) > 1 and word not in stopwords:
if tag in tag_dict:
final_tokens.append(lemmatizer.lemmatize(word, tag_dict[tag]))
else:
final_tokens.append(lemmatizer.lemmatize(word))
return " ".join(final_tokens)
except:
return np.nan
def get_sentiment(df):
useful_sentence = df['Tweet'].tolist()
tokenizer = tokenizer_sentiment
model = model_sentiment
pipe = pipeline(model="ProsusAI/finbert")
classifier = pipeline(model="ProsusAI/finbert")
output=[]
i=0
useful_sentence_len = len(useful_sentence)
for temp in useful_sentence:
output.extend(classifier(temp))
i=i+1
df_temp = pd.DataFrame.from_dict(output)
df = pd.concat([df, df_temp], axis=1)
df = df.rename(columns={'label': 'Sentiment'})
df['Sentiment'] = df['Sentiment'].replace('positive', 'Positive')
df['Sentiment'] = df['Sentiment'].replace('negative', 'Negative')
df['Sentiment'] = df['Sentiment'].replace('neutral', 'Neutral')
return df
def plot_sentiment(tweet_df):
sentiment_count = tweet_df["Sentiment"].value_counts()
fig = px.pie(
values=sentiment_count.values,
names=sentiment_count.index,
hole=0.3,
title="<b>Sentiment Distribution</b>",
color=sentiment_count.index,
color_discrete_map={"Positive": "#54A24B", "Negative": "#FF7F0E", "Neutral": "#1F77B4"},
)
fig.update_traces(
textposition="inside",
texttemplate="%{label}<br>%{value} (%{percent})",
hovertemplate="<b>%{label}</b><br>Percentage=%{percent}<br>Count=%{value}",
)
fig.update_layout(showlegend=False)
return fig
def get_top_n_gram(tweet_df, ngram_range, n=10):
try:
stopwords = set()
with open("static/en_stopwords_ngram.txt", "r") as file:
for word in file:
stopwords.add(word.rstrip("\n"))
stopwords = list(stopwords)
corpus = tweet_df["Tweet"]
vectorizer = CountVectorizer(
analyzer="word", ngram_range=ngram_range, stop_words=stopwords
)
X = vectorizer.fit_transform(corpus.astype(str).values)
words = vectorizer.get_feature_names_out()
words_count = np.ravel(X.sum(axis=0))
df = pd.DataFrame(zip(words, words_count))
df.columns = ["words", "counts"]
df = df.sort_values(by="counts", ascending=False).head(n)
df["words"] = df["words"].str.title()
return df
except:
pass
def plot_n_gram(n_gram_df, title, color="#54A24B"):
try:
fig = px.bar(
# n_gram_df,
# x="counts",
# y="words",
x=n_gram_df.counts,
y=n_gram_df.words,
title="<b>{}</b>".format(title),
text_auto=True,
)
fig.update_layout(plot_bgcolor="white")
fig.update_xaxes(title=None)
fig.update_yaxes(autorange="reversed", title=None)
fig.update_traces(hovertemplate="<b>%{y}</b><br>Count=%{x}", marker_color=color)
return fig
except:
fig = go.Figure()
return fig
def plot_wordcloud(tweet_df, colormap="Greens", mask_url="static/twitter_mask.png"):
try:
stopwords = set()
with open("static/en_stopwords_ngram.txt", "r") as file:
for word in file:
stopwords.add(word.rstrip("\n"))
cmap = mpl.cm.get_cmap(colormap)(np.linspace(0, 1, 20))
cmap = mpl.colors.ListedColormap(cmap[10:15])
mask = np.array(Image.open(mask_url))
font = "static/quartzo.ttf"
tweet_df["Cleaned_Tweet"] = tweet_df["Tweet"].apply(text_preprocessing)
text = " ".join(tweet_df["Cleaned_Tweet"])
wc = WordCloud(
background_color="white",
font_path=font,
stopwords=stopwords,
max_words=90,
colormap=cmap,
mask=mask,
random_state=42,
collocations=False,
min_word_length=2,
max_font_size=200,
)
wc.generate(text)
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1)
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.title("Wordcloud", fontdict={"fontsize": 16}, fontweight="heavy", pad=20, y=1.0)
return fig
except:
fig = go.Figure()
return fig