Spaces:
Sleeping
Sleeping
File size: 6,293 Bytes
859119c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
"""
This application provides an interface for transcription and summarization using models powered by Groq.
The interface allows users to record audio or provide an audio file in supported formats.
The user will receive a transcription and a generated summary.
"""
import gradio as gr
import groq
import io
import numpy as np
import soundfile as sf
def transcribe_audio(audio: tuple, api_key: str) -> str:
"""
Transcribes the given audio using the Whisper Large v3 Turbo model via the Groq API.
The model supports mp3, mp4, mpeg, mpga, m4a, wav, and webm file types.
Args:
audio (tuple): A tuple where the first element is the sample rate and the second is a numpy array with audio data.
api_key (str): API key for Groq.
Returns:
str: Transcription result or an error message.
"""
if audio is None:
return ""
client = groq.Client(api_key=api_key)
# Convert the audio data to WAV format in-memory
audio_data = audio[1] # Get the numpy array from the tuple
buffer = io.BytesIO()
# Write numpy array to buffer as WAV format
sf.write(buffer, audio_data, audio[0], format='wav')
buffer.seek(0) # Reset buffer position
# Save audio data
bytes_audio = io.BytesIO()
np.save(bytes_audio, audio_data)
bytes_audio.seek(0)
try:
# Use Whisper Large v3 Turbo powered by Groq for transcription
completion = client.audio.transcriptions.create(
model="whisper-large-v3-turbo",
file=("audio.wav", buffer),
response_format="text"
)
return completion
except Exception as e:
return f"Error in transcription: {str(e)}"
def generate_response(transcription: str, api_key: str) -> str:
"""
Generate a response summary from the provided transcription using a Groq model.
Args:
transcription (str): The text transcription of the audio.
api_key (str): The API key to authenticate the request to Groq.
Returns:
str: Generated response summary or an error message.
"""
if not transcription:
return "No transcription available. Please try recording again."
client = groq.Client(api_key=api_key)
try:
# Use Llama 3.1 70B powered by Groq for text generation
completion = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{
"role": "system",
"content": (
"You are a helpful assistant powered by Groq's Language "
"Processing Units (LPU), designed for fast AI inference. "
"Use the following transcription of an audio file and generate 5 "
"bullet points that summarize what is covered in the audio. "
"Maintain a professional and conversational tone. Do not use "
"images or emojis in your answer. Prioritize accuracy and only "
"provide information directly supported by the text transcription."
)
},
{"role": "user", "content": transcription}
],
)
return completion.choices[0].message.content
except Exception as e:
return f"Error in response generation: {str(e)}"
def process_audio(audio: object, api_key: str) -> tuple[str, str]:
"""
Process the given audio by first transcribing it and then generating a response
using the Groq API.
Args:
audio (object): The audio file to be processed, expected as a numpy array or other format.
api_key (str): The API key to authenticate the request to Groq.
Returns:
tuple: A tuple containing the transcription of the audio and the generated response.
"""
if not api_key:
return "Please enter your Groq API key.", "API key is required."
if not audio:
return "No audio provided.", "Audio input is required for transcription."
# Transcribe audio and generate response
transcription = transcribe_audio(audio, api_key)
response = generate_response(transcription, api_key)
return transcription, response
# Custom CSS for the Groq badge and color scheme
custom_css = """
.gradio-container {
background-color: #f5f5f5;
}
.gr-button-primary {
background-color: #f55036 !important;
border-color: #f55036 !important;
}
.gr-button-secondary {
color: #f55036 !important;
border-color: #f55036 !important;
}
#groq-badge {
position: fixed;
bottom: 20px;
right: 20px;
z-index: 1000;
}
"""
# Define the Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# Groq Scribe")
# Input for Groq API key (password protected)
api_key_input = gr.Textbox(type="password", label="Enter your Groq API Key")
# Row for audio input
with gr.Row():
audio_input = gr.Audio(label="Audio", type="numpy")
# Row for transcription and summary outputs
with gr.Row():
transcription_output = gr.Textbox(label="Transcription")
response_output = gr.Textbox(label="Summary")
# Submit button
submit_button = gr.Button("Process", variant="primary")
# Add the Groq badge
gr.HTML(
"""
<div id="groq-badge">
<div style="color: #f55036; font-weight: bold;">POWERED BY GROQ</div>
</div>
"""
)
# Connect button click to the process_audio function
submit_button.click(
process_audio,
inputs=[audio_input, api_key_input],
outputs=[transcription_output, response_output]
)
# Markdown instructions for using the app
gr.Markdown(
"""
## How to use this app:
1. Enter your [Groq API Key](https://console.groq.com/keys) in the provided field.
2. Click on the microphone icon to record audio or provide a file in mp3, mp4, mpeg, mpga, m4a, wav, or webm format.
3. Click the "Process" button to transcribe the audio and generate a summary.
4. The transcription and summary will appear in the respective text boxes.
"""
)
# Launch the Gradio interface
demo.launch()
|