File size: 2,612 Bytes
a2533a3 c571a45 ee08279 c571a45 ee08279 c571a45 ee08279 c571a45 a2533a3 ee08279 c571a45 ee08279 c571a45 ee08279 c571a45 ee08279 c571a45 ee08279 c571a45 ee08279 c571a45 ee08279 f8f0190 ee08279 c571a45 ee08279 c571a45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import spaces
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer_3b_mt = AutoTokenizer.from_pretrained("google/madlad400-3b-mt", use_fast=True)
language_codes = [token for token in tokenizer_3b_mt.get_vocab().keys() if token.startswith("<2")]
remove_codes = ['<2>', '<2en_xx_simple>', '<2translate>', '<2back_translated>', '<2zxx_xx_dtynoise>', '<2transliterate>']
language_codes = [token for token in language_codes if token not in remove_codes]
model_choices = [
"google/madlad400-3b-mt",
"google/madlad400-7b-mt",
"google/madlad400-10b-mt",
"google/madlad400-7b-mt-bt"
]
model_resources = {}
def load_tokenizer_model(model_name):
"""
Load tokenizer and model for a chosen model name.
"""
if model_name not in model_resources:
# Load tokenizer and model for first time
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16)
model.to_bettertransformer()
model.to(device)
model_resources[model_name] = (tokenizer, model)
return model_resources[model_name]
@spaces.GPU
def translate(text, target_language, model_name):
"""
Translate the input text from English to another language.
"""
# Load tokenizer and model if not already loaded
tokenizer, model = load_tokenizer_model(model_name)
text = target_language + text
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(input_ids=input_ids, max_new_tokens=128000)
text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return text_translated[0]
title = "MADLAD-400 Translation"
description = """
Translation from English to over 400 languages based on [research](https://arxiv.org/pdf/2309.04662) by Google DeepMind and Google Research. Initial inference will be slow as models load.
"""
input_text = gr.Textbox(
label="Text",
placeholder="Enter text here"
)
target_language = gr.Dropdown(
choices=language_codes,
value="<2haw>",
label="Target language"
)
model_choice = gr.Dropdown(
choices=model_choices,
value="google/madlad400-3b-mt",
label="Model"
)
output_text = gr.Textbox(label="Translation")
demo = gr.Interface(
fn=translate,
inputs=[input_text, target_language, model_choice],
outputs=output_text,
title=title,
description=description
)
demo.queue()
demo.launch() |