Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer_3b_mt = AutoTokenizer.from_pretrained("google/madlad400-3b-mt", use_fast=True) | |
language_codes = [token for token in tokenizer_3b_mt.get_vocab().keys() if token.startswith("<2")] | |
remove_codes = ['<2>', '<2en_xx_simple>', '<2translate>', '<2back_translated>', '<2zxx_xx_dtynoise>', '<2transliterate>'] | |
language_codes = [token for token in language_codes if token not in remove_codes] | |
model_choices = [ | |
"google/madlad400-3b-mt", | |
"google/madlad400-7b-mt", | |
"google/madlad400-10b-mt", | |
"google/madlad400-7b-mt-bt" | |
] | |
model_resources = {} | |
def load_tokenizer_model(model_name): | |
""" | |
Load tokenizer and model for a chosen model name. | |
""" | |
if model_name not in model_resources: | |
# Load tokenizer and model for first time | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
model.to_bettertransformer() | |
model.to(device) | |
model_resources[model_name] = (tokenizer, model) | |
return model_resources[model_name] | |
def translate(text, target_language, model_name): | |
""" | |
Translate the input text from English to another language. | |
""" | |
# Load tokenizer and model if not already loaded | |
tokenizer, model = load_tokenizer_model(model_name) | |
text = target_language + text | |
input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device) | |
outputs = model.generate(input_ids=input_ids, max_new_tokens=128000) | |
text_translated = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return text_translated[0] | |
title = "MADLAD-400 Translation" | |
description = """ | |
Translation from English to over 400 languages based on [research](https://arxiv.org/pdf/2309.04662) by Google DeepMind and Google Research. Initial inference will be slow as models load. | |
""" | |
input_text = gr.Textbox( | |
label="Text", | |
placeholder="Enter text here" | |
) | |
target_language = gr.Dropdown( | |
choices=language_codes, | |
value="<2haw>", | |
label="Target language" | |
) | |
model_choice = gr.Dropdown( | |
choices=model_choices, | |
value="google/madlad400-3b-mt", | |
label="Model" | |
) | |
output_text = gr.Textbox(label="Translation") | |
demo = gr.Interface( | |
fn=translate, | |
inputs=[input_text, target_language, model_choice], | |
outputs=output_text, | |
title=title, | |
description=description | |
) | |
demo.queue() | |
demo.launch() |