text-emotion / app.py
daspartho's picture
Create app.py
1b28f25
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline
tokenizer = AutoTokenizer.from_pretrained("daspartho/text-emotion")
model = AutoModelForSequenceClassification.from_pretrained("daspartho/text-emotion") # i've uploaded the model on HuggingFace :)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, top_k=6)
label_map={
'LABEL_0':'πŸ™',
'LABEL_1':'πŸ˜ƒ',
'LABEL_2':'πŸ₯°',
'LABEL_3':'😠',
'LABEL_4':'😬',
'LABEL_5':'😳'
}
def classify_text(text):
predictions = pipe(text)[0]
return {label_map[pred['label']]: float(pred['score']) for pred in predictions}
iface = gr.Interface(
title='Text Emotion',
description = "enter a text and the model will attempt to predict the emotion.",
article = "<p style='text-align: center'><a href='https://github.com/daspartho/text-emotion' target='_blank'>Github</a></p>",
fn=classify_text,
inputs=gr.inputs.Textbox(label="type the text here"),
outputs=gr.outputs.Label(label='what the model thinks'),
)
iface.launch()