Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,737 Bytes
9887d4c ef1c0b9 1ace5a0 9887d4c 93fd450 af079bb 93fd450 af079bb 0abb371 7acfd95 9887d4c 93fd450 af079bb 93fd450 af079bb 9887d4c ef1c0b9 27bd4b7 9887d4c 5072f90 9887d4c 5072f90 9887d4c 4e901de 688c057 9887d4c 0abb371 03acac3 9887d4c 12f5f6e 9887d4c 099c99b 9887d4c 099c99b 9887d4c e99ca73 9887d4c 099c99b 9887d4c 621bbdc 9887d4c 5ddbee5 4dd28e3 944abe8 5ddbee5 9887d4c f8ac431 9887d4c 5072f90 9887d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from diffusers import PixArtSigmaPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
#torch.set_float32_matmul_precision("high")
#torch._inductor.config.conv_1x1_as_mm = True
#torch._inductor.config.coordinate_descent_tuning = True
#torch._inductor.config.epilogue_fusion = False
#torch._inductor.config.coordinate_descent_check_all_directions = True
pipe = PixArtSigmaPipeline.from_pretrained(
"dataautogpt3/PixArt-Sigma-900M",
torch_dtype=torch.float16,
).to("cuda")
#pipe.transformer.to(memory_format=torch.channels_last)
#pipe.vae.to(memory_format=torch.channels_last)
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width=width,
height=height,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
generator = generator
).images[0]
return image, seed
examples = [
"A taco food cart in front of a japanese castle",
"The spirit of a tamagotchi wandering in the city of Prague",
"A flourecent cat on the moon",
"A delicious gummy bear cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# PixArt Sigma 900M
Demo of the [PixArt Sigma 900M](https://huggingface.co/dataautogpt3/PixArt-Sigma-900M) model, expanded from [PixArt Sigma 600M](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
value="low quality, bad, watermark",
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
demo.queue().launch() |